函數(shù)占據(jù)了初中數(shù)學知識點的很大部分,因此學好函數(shù)十分重要。下面是由出國留學網(wǎng)編輯為大家整理的“初中數(shù)學函數(shù)知識點歸納總結(實用)”,僅供參考,歡迎大家閱讀本文。
一次函數(shù)知識點
1.一次函數(shù)
如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù)。
特別地,當b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù)。
2.一次函數(shù)的圖像及性質(zhì)
(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。
(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)。
(3)正比例函數(shù)的圖像總是過原點。
(4)k,b與函數(shù)圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
二次函數(shù)知識點
1.二次函數(shù)表達式
(一)頂點式
y=a(x-h)2+k(a≠0,a、h、k為常數(shù)),頂點坐標為(h,k),對稱軸為直線x=h,頂點的位置特征和圖像的開口方向與函數(shù)y=ax2的圖像相同,當x=h時,y最大(小)值=k。
(二)交點式
y=a(x-x?)(x-x?) [僅限于與x軸即y=0有交點時的拋物線,即b2-4ac>0]
函數(shù)與圖像交于(x?,0)和(x?,0)
(三)一般式
y=aX2+bX+c=0(a≠0)(a、b、c是常數(shù))
2.二次函數(shù)的對稱軸
二次函數(shù)圖像是軸對稱圖形。對稱軸為直線x=-b/2a
對稱軸與二次函數(shù)圖像唯一的交點為二次函數(shù)圖象的頂點P。
特別地,當b=0時,二次函數(shù)圖像的對稱軸是y軸(即直線x=0)。
a,b同號,對稱軸在y軸左側;
a,b異號,對稱軸在y軸右側。
3.二次函數(shù)圖像的對稱關系
(一)對于一般式:
①y=ax2+bx+c與y=ax2-bx+c兩圖像關于y軸對稱
②y=ax2+bx+c與y=-ax2-bx-c兩圖像關于x軸對稱
③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關于頂點對稱
④y=ax2+bx+c與y=-ax2+bx-c關于原點中心對稱。(即繞原點旋轉(zhuǎn)180度后得到的圖形)
(二)對于頂點式:
①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關于y軸對稱,即頂點(h,k)和(-h,k)關于y軸對稱,橫坐標相反、縱坐標相同。
②y=a(x-h)2+k與y=-a(x-h)2-k兩圖像關于x軸對稱,即頂點(h,k)和(h,-k)關于x軸對稱,橫坐標相同、縱坐標相反。
③y=a(x-h)2+k與y=-a(x-h)2+k關于頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。
④y=a(x-h)2+k與y=-a(x+h)2-k關于原點對稱,即頂點(h,k)和(-h,-k)關于原點對稱,橫坐標、縱坐標都相反。
拓展閱讀:初中數(shù)學函數(shù)解題技巧
1、注重“類比”思想
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法。初中學習的正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)在概念的得來、圖象性質(zhì)的研究、及基本解題方法上都有著本質(zhì)上的相似。因此老師指出,采用類比的方法不但省時、省力,還有助于學生的理解和應用。是一種既經(jīng)濟又實效的教學方法。
2、注重“數(shù)形結合”思想
數(shù)形結合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關系和空間形式的科學。而數(shù)形結合就是通過數(shù)與形之間的對應和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
函數(shù)的三種表示方法:解析法、列表法、圖象法本身就體現(xiàn)著函數(shù)的“數(shù)形結合”。函數(shù)圖象就是將變化抽象的函數(shù)“拍照”下來研究的有效工具,函數(shù)教學離不開函數(shù)圖象的研究。
3、注重自變量的取值范圍
自變量的取值范圍,是解函數(shù)問題的難點和考點。正確求出自變量取值范圍,正確理解問題,并化歸為解不等式或不等式組。這需要學生掌握函數(shù)的思想,不等式的實際應用,全面考慮取值的實際意義。
4、注重實際應用問題
學習函數(shù)的主要目的之一就是在復雜的實際生活中建立有效的函數(shù)模型,利用函數(shù)的知識解決問題。這也是新課標所倡導的學習,因此新教材大力倡導函數(shù)與實際的應用。
初中掌握數(shù)學解題方法和技巧很重要,同學們要能夠掌握函數(shù)的基本知識點,效地形成“類比”和“數(shù)形結合”等數(shù)學思想,從而形成自己的在數(shù)學函數(shù)方面的解題方法和技巧。