弧度與角度在數(shù)學(xué)中是比較難的欄目之一,那么弧度與角度的轉(zhuǎn)換公式是什么呢。以下是由出國留學(xué)網(wǎng)編輯為大家整理的“弧度與角度的轉(zhuǎn)換公式”,僅供參考,歡迎大家閱讀。
弧度與角度的轉(zhuǎn)換公式
原理分析
角度與弧度轉(zhuǎn)換
1.公式1使用RADIANS函數(shù)可以將角度轉(zhuǎn)換為弧度。
2.公式2根據(jù)數(shù)學(xué)中角度與弧度關(guān)系,將角度乘以圓周率π再除以180得到弧度。
其中,RADIANS函數(shù)語法如下:
RADIANS(angle)
參數(shù)angle為需要轉(zhuǎn)換成弧度的角度,以10進(jìn)制數(shù)值表示例如30.5表示30°30′。
知識擴(kuò)展
如果要將B列弧度值轉(zhuǎn)換為角度,則可以使用如下公式:
公式1 =DEGREES(B2)
公式2 =B2*180/PI()
拓展閱讀:數(shù)學(xué)重要思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度*時(shí)間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴(kuò)展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計(jì)算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。