行測(cè)備考:行測(cè)排列組合題常用技巧

字號(hào):


    公務(wù)員行測(cè)考試主要是考量大家的數(shù)學(xué)推理能力和邏輯分析能力,下面由出國(guó)留學(xué)網(wǎng)小編為你精心準(zhǔn)備了“行測(cè)備考:行測(cè)排列組合題常用技巧”,持續(xù)關(guān)注本站將可以持續(xù)獲取更多的考試資訊!
    行測(cè)備考:行測(cè)排列組合題常用技巧
    排列組合是行測(cè)考試中的常見(jiàn)題型,基本上屬于必考題型。中公教育專家在此將排列組合中的常用方法進(jìn)行總結(jié),希望對(duì)各位考生有所幫助,包括四個(gè)常用方法的含義及相應(yīng)的例題解析。
    一、優(yōu)限法
    (一)含義
    對(duì)于有限制條件的元素(或位置),在解題時(shí)優(yōu)先考慮這些元素(或位置),再去解決其它元素(或位置)。
    (二)例題解析
    例:甲、乙、丙、丁、戊五個(gè)人排成一列,其中甲不站在頭或尾的位置,共有多少種不同的排列方法?
    【中公解析】甲是這5個(gè)人里面有限制條件的元素,所以就優(yōu)先考慮甲。讓他站在除頭尾以外的中間的3個(gè)位置,有3種選擇;然后仔安排除甲以外的另外4個(gè)人,有A4 4=24種方法。所以最終共有3×24=72種方法。
    二、捆綁法
    (一)含義
    在解決對(duì)于某幾個(gè)元素要求相鄰的問(wèn)題時(shí),先相鄰元素視作一個(gè)大元素進(jìn)行排序,然后再考慮大元素內(nèi)部各元素間順序的解題策略。
    (二)例題解析
    例:甲、乙、丙、丁、戊五個(gè)人排成一列,其中甲乙必須相鄰,共有多少種不同的排列方法?
    【中公解析】甲乙要求相鄰,將甲乙捆綁變?yōu)橐粋€(gè)大元素進(jìn)行排序,這五個(gè)人變?yōu)?個(gè)元素,全排列共有A4 4=24種方法,甲乙內(nèi)部?jī)蓚€(gè)人可以更換位置,共A2 2=2種方法。所以總共2×24=48種方法。
    例:圖書(shū)管理員要整理書(shū)籍,現(xiàn)在有3本教育類書(shū)籍,4本藝術(shù)類書(shū)籍,5本化學(xué)類書(shū)籍。把他們整理在同一層書(shū)架,且同類的書(shū)籍必須擺在一起,共有多少種不同的方法?
    【中公解析】同類書(shū)籍必須擺在一起,屬于元素相鄰的問(wèn)題,所以使用捆綁法。把這些有相鄰要求的元素捆綁為3個(gè)大元素排列,然后再考慮各個(gè)大元素內(nèi)部元素的排序,共有A3 3A3 3A4 4A5 5=103680種方法。
    三、插空法
    (一)含義
    插空法就是先將其他元素排好,再要求不相鄰的元素插入它們的間隙或兩端位置。
    (二)例題解析
    例:甲、乙、丙、丁、戊五個(gè)人排成一列,其中甲乙不相鄰,共有多少種不同的排列方法?
    【中公解析】甲乙要求不相鄰,屬于插空問(wèn)題。先把其他三個(gè)元素進(jìn)行排序,共A3 3=6種方法,在將甲乙插空進(jìn)去丙丁戊包含兩端的4個(gè)位置,有A4 2=12種方法。所以總共的方法有6×12=72種。
    四、間接法
    (一)含義
    有些題目所給的特殊條件較多或者較復(fù)雜,直接考慮分類過(guò)多,它的對(duì)立面卻往往只有一種或者兩種情況,考慮先算出總情況數(shù)再減去對(duì)立面情況數(shù)即可。
    (二)例題解析
    例:由1、2、3、4、5組成無(wú)重復(fù)數(shù)字的5位數(shù),其中不能被4整除的數(shù)有多少個(gè)?
    【中公解析】不能被4整除的5位數(shù)情況過(guò)多,分類計(jì)數(shù)比較復(fù)雜,所以間接考慮,先考慮能被4整除的情況,再用總的情況數(shù)減去能被4整除的剩下的即是不能被4整除的數(shù)。能被4整除的數(shù)的特點(diǎn)是末兩位能被4整除,滿足條件的兩位數(shù)包括12、24、42、52。把這個(gè)四種情況當(dāng)做5位數(shù)的末兩位即可滿足5位數(shù)被4整除,共有4×A3 3=24個(gè),總的情況有A5 5=120種。所以不能被4整除的數(shù)有120-24=96個(gè)。