考研大綱頻道為大家提供南京信息工程大學2019考研大綱:601數(shù)學(理),一起來看看吧!更多考研資訊請關注我們網(wǎng)站的更新!
南京信息工程大學2019考研大綱:601數(shù)學(理)
科目代碼:601
科目名稱:數(shù)學(理)
第一部分 大綱內(nèi)容
一、函數(shù)、極限、連續(xù)
1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應用問題中的函數(shù)關系式。
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。
5.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關系。
6.了解極限的性質(zhì),掌握極限的四則運算法則。
7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。
8.理解無窮小、無窮大的概念,會用無窮小的比較方法,掌握等價無窮小求極限的方法。
9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型。
10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應用這些性質(zhì)。
二、一元函數(shù)微分學
1.理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系。
2. 掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式,了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。
3.了解高階導數(shù)的概念,會求簡單函數(shù)的n階導數(shù)。
4.會求分段函數(shù)的一階、二階導數(shù)。
5.會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù)。
6.理解并會用羅爾定理、拉格朗日中值定理,了解并會用柯西中值定理和泰勒定理。
7.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應用。
8.會用導數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。
9.掌握用洛必達法則求未定式極限的方法。
10.了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。
三、一元函數(shù)積分學
1.理解原函數(shù)概念,理解不定積分和定積分的概念。
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。
3.會求有理函數(shù)、三角函數(shù)有理式及簡單無理函數(shù)的積分。
4.理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓一萊布尼茨公式。
5.了解廣義積分的概念,會計算廣義積分。
6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積、平行截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值等。
四、向量代數(shù)和空間解析幾何
1. 理解空間直角坐標系,理解向量的概念及其表示。
2.掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件。
3.理解單位向量、方向數(shù)與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法。
4.掌握平面方程和直線方程及其求法。
5.會求平面與平面、平面與直線、 直線與直線之間的夾角,并會利用平面、直線的相互關系(平行、垂直、相交等)解決有關問題。
6.會求點到直線以及點到平面的距離。
7. 了解曲面方程和空間曲線方程的概念。
8. 了解常用二次曲面的方程及其圖形,會求以坐標軸為旋轉軸的旋轉曲面及母線平行于坐標軸的柱面方程。
9. 了解空間曲線的參數(shù)方程和一般方程.了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程。
五、多元函數(shù)微分學
1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。
2.了解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。
3.理解多元函數(shù)偏導數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。
4.理解方向導數(shù)與梯度的概念并掌握其計算方法。
5.掌握多元復合函數(shù)一階、二階偏導數(shù)的求法。
6.了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù)。
7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。
8.了解二元函數(shù)的二階泰勒公式。
9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應用問題。
六、多元函數(shù)積分學
1.理解二重積分、三重積分的概念,了解重積分的性質(zhì),了解二重積分的中值定理。
2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標)。
3.理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關系。
4.掌握計算兩類曲線積分的方法。
5.掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求全微分的原函數(shù)。
6.了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,會用高斯公式、斯托克斯公式計算曲面、曲線積分。
7.了解散度與旋度的概念,并會計算。
8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、重心、轉動慣量、引力、功及流量等)。
七、無窮級數(shù)
1.理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必

小編精心為您推薦:
| 2019年考研大綱及解析匯總 | |
| 1 | 2019年考研政治大綱及解析匯總 |
| 2 | 2019年考研英語大綱原文匯總 |
| 3 | 2019年考研數(shù)學大綱原文匯總 |
| 4 | 2019年考研專業(yè)課大綱匯總 |
| 考研大綱頻道整理 | |
| 考研大綱匯總 | 考研英語大綱 | 考研政治大綱 | 考研數(shù)學大綱 | 考研專業(yè)課大綱 |

