高頻考點:線代方程組部分

字號:


    最近小編通過整理歷年考研數(shù)學試卷以及測試真題,發(fā)現(xiàn)了考研的高頻考點線代方程,下面就由出國留學網(wǎng)小編給大家?guī)怼案哳l考點:線代方程組部分”,持續(xù)關注本站將可以持續(xù)獲取更多的考試資訊!
    高頻考點:線代方程組部分
    線性代數(shù)是考研數(shù)學必考的內(nèi)容,也是大家感覺最難攻克的知識。下面小編為大家分享2020考研數(shù)學線代方程組部分高頻考點,希望對2020考研的同學有所幫助。
    1、非齊次線性方程組解的結(jié)構(gòu)及通解;
    2、齊次線性方程組的基礎解系、通解及解空間的概念,齊次線性方程組的基礎解系和通解的求法;
    3、齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件;
    4、矩陣初等變換的概念,初等矩陣的性質(zhì),矩陣等價的概念,矩陣的秩的概念,用初等變換求矩陣的秩和逆矩陣;
    5、向量、向量的線性組合與線性表示的概念;
    6、用初等行變換求解線性方程組的方法;
    7、基變換和坐標變換公式,過渡矩陣。(數(shù)一)
    8、向量空間、子空間、基底、維數(shù)、坐標等概念;(數(shù)一)
    9、向量組線性相關、線性無關的概念,向量組線性相關、線性無關的有關性質(zhì)及判別法;
    10、向量組的極大線性無關組和向量組的秩的概念和求解;
    11、向量組等價的概念,矩陣的秩與其行(列)向量組的秩之間的關系;
    矩陣的特征值特征向量與二次型相當于是求解線性方程組的應用,出題比較靈活,有些題目技巧性較強,復習起來也是比較有意思的一章。在考試中也是比較容易出大題的內(nèi)容。
    其中我們應當掌握:
    1、規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì);
    2、內(nèi)積的概念,線性無關向量組正交規(guī)范化的施密特(Schmidt)方法;
    3、矩陣的特征值和特征向量的概念及性質(zhì),求矩陣的特征值和特征向量;
    4、實對稱矩陣的特征值和特征向量的性質(zhì);
    5、相似矩陣的概念、性質(zhì),矩陣可相似對角化的充分必要條件,將矩陣化為相似對角矩陣的方法;
    6、二次型及其矩陣表示,二次型秩的概念,合同變換與合同矩陣的概念,二次型的標準形、規(guī)范形的概念以及慣性定理;
    7、正定二次型、正定矩陣的概念和判別法。
    8、正交變換化二次型為標準形,配方法化二次型為標準形;