2017考研高數(shù)4大重要定理的證明

字號:


    出國留學網考研網為大家提供2017考研高數(shù)4大重要定理的證明,更多考研資訊請關注我們網站的更新!
    2017考研高數(shù)4大重要定理的證明
    1、微分中值定理的證明
    這一部分內容比較豐富,包括費馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會證。
    費馬引理的條件有兩個:1.f'(x0)存在2.f(x0)為f(x)的極值,結論為f'(x0)=0。考慮函數(shù)在一點的導數(shù),用什么方法?自然想到導數(shù)定義。我們可以按照導數(shù)定義寫出f'(x0)的極限形式。往下如何推理?關鍵要看第二個條件怎么用?!癴(x0)為f(x)的極值”翻譯成數(shù)學語言即f(x)-f(x0)<0(或>0),對x0的某去心鄰域成立。結合導數(shù)定義式中函數(shù)部分表達式,不難想到考慮函數(shù)部分的正負號。若能得出函數(shù)部分的符號,如何得到極限值的符號呢?極限的保號性是個橋梁。
    2、求導公式的證明
    2015年真題考了一個證明題:證明兩個函數(shù)乘積的導數(shù)公式。幾乎每位同學都對這個公式怎么用比較熟悉,而對它怎么來的較為陌生。實際上,從授課的角度,這種在2015年前從未考過的基本公式的證明,一般只會在基礎階段講到。如果這個階段的考生帶著急功近利的心態(tài)只關注結論怎么用,而不關心結論怎么來的,那很可能從未認真思考過該公式的證明過程,進而在考場上變得很被動。這里給2017考研學子提個醒:要重視基礎階段的復習,那些真題中未考過的重要結論的證明,有可能考到,不要放過。
    3、積分中值定理
    該定理條件是定積分的被積函數(shù)在積分區(qū)間(閉區(qū)間)上連續(xù),結論可以形式地記成該定積分等于把被積函數(shù)拎到積分號外面,并把積分變量x換成中值。如何證明?可能有同學想到用微分中值定理,理由是微分相關定理的結論中含有中值??梢园凑沾怂悸吠路治?,不過更易理解的思路是考慮連續(xù)相關定理(介值定理和零點存在定理),理由更充分些:上述兩個連續(xù)相關定理的結論中不但含有中值而且不含導數(shù),而待證的積分中值定理的結論也是含有中值但不含導數(shù)。
    若我們選擇了用連續(xù)相關定理去證,那么到底選擇哪個定理呢?這里有個小的技巧——看中值是位于閉區(qū)間還是開區(qū)間。介值定理和零點存在定理的結論中的中值分別位于閉區(qū)間和開區(qū)間,而待證的積分中值定理的結論中的中值位于閉區(qū)間。那么何去何從,已經不言自明了。
    4、微積分基本定理的證明
    該部分包括兩個定理:變限積分求導定理和牛頓-萊布尼茨公式。
    變限積分求導定理的條件是變上限積分函數(shù)的被積函數(shù)在閉區(qū)間連續(xù),結論可以形式地理解為變上限積分函數(shù)的導數(shù)為把積分號扔掉,并用積分上限替換被積函數(shù)的自變量。注意該求導公式對閉區(qū)間成立,而閉區(qū)間上的導數(shù)要區(qū)別對待:對應開區(qū)間上每一點的導數(shù)是一類,而區(qū)間端點處的導數(shù)屬單側導數(shù)?;ㄩ_兩朵,各表一枝。我們先考慮變上限積分函數(shù)在開區(qū)間上任意點x處的導數(shù)。一點的導數(shù)仍用導數(shù)定義考慮。至于導數(shù)定義這個極限式如何化簡,筆者就不能剝奪讀者思考的權利了。單側導數(shù)類似考慮。
    “牛頓-萊布尼茨公式是聯(lián)系微分學與積分學的橋梁,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運算,同時在理論上標志著微積分完整體系的形成,從此微積分成為一門真正的學科?!边@段話精彩地指出了牛頓-萊布尼茨公式在高數(shù)中舉足輕重的作用。而多數(shù)考生能熟練運用該公式計算定積分。不過,提起該公式的證明,熟悉的考生并不多。
    小編精心為您推薦:
      考研數(shù)學考場注意事項??
      考研數(shù)學選擇填空題丟分原因有哪些??
      考研數(shù)學答題技巧:巧用定積分的幾個結論
      考研數(shù)學重難點復習:矩陣的對角化和二次型
    
考研大綱 考研經驗 考研真題 考研答案 考研院校 考研錄取