最新《等式與方程》教學(xué)反思與評價(4篇)

字號:

    范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。
    等式與方程教學(xué)反思與評價篇一
    1.能積極學(xué)習(xí)并采用多媒體課件進行授課。應(yīng)用多媒體課件直觀、明了的展示了一次函數(shù)與一元一次方程、一元一次不等式的聯(lián)系,且課堂容量大、課堂效率高。運用幻燈片讓枯燥的理論知識直觀、形象、生動起來,激發(fā)了學(xué)生學(xué)習(xí)的積極性。
    2.能緊緊抓住教學(xué)重難點進行精講精練。本節(jié)課重難點是讓學(xué)生掌握一次函數(shù)與一元一次方程、一元一次不等式的聯(lián)系,會用函數(shù)的觀點解釋方程和不等式及其解或解集的意義,掌握用圖象求解方程、不等式的方法。教學(xué)時,每講一個知識點,我都會及時給予訓(xùn)練題進行鞏固,讓學(xué)生理解理論知識的應(yīng)用價值,從而把難點知識逐一擊破,也讓學(xué)生一點一點的感悟到用函數(shù)模型解決問題的可操作性和簡便性。
    3.“數(shù)形結(jié)合”思想的完美體現(xiàn)。我能夠從“數(shù)”的方面來解釋方程的解及不等式的解集,反過來,又利用一次函數(shù)圖象從“形”方面直觀地表示方程和不等式的解或解集的含義。實質(zhì)就是圖象上對應(yīng)點的自變量的取值或取值范圍。這節(jié)課讓學(xué)生充分感受到“數(shù)形結(jié)合”思想的重要性。
    4.課堂練習(xí)設(shè)置恰當(dāng)。練習(xí)量適中,能達到及時訓(xùn)練鞏固的目的;練習(xí)題的難度有梯度,層層遞進;題型新穎,有選擇、填空、回答、解答題型,讓學(xué)生從不同角度理解知識,提高理論知識的認識水平;難度把握較好,情境1、情境2屬于鋪墊性練習(xí),探究題屬于討論性題型,練習(xí)題屬于鞏固性題型,最后的熱氣球問題屬于拔高性題型。
    1. 課堂容量有些大,學(xué)生組內(nèi)討論時間較少。
    2. 對學(xué)生語言表達能力估計過高,用函數(shù)觀點解釋方程、不等式,學(xué)生只可意會,不會言語表達。
    等式與方程教學(xué)反思與評價篇二
    本節(jié)課是在學(xué)生學(xué)會用字母表示數(shù)的基礎(chǔ)上進行教學(xué)的,方程作為一種重要的思想方法,它對豐富學(xué)生解決問題的策略,提高解決問題的能力,發(fā)展數(shù)學(xué)素養(yǎng)有著非常重要的意義。本節(jié)課的教學(xué)設(shè)計是從學(xué)生已有的.知識和經(jīng)驗出發(fā),旨在引導(dǎo)學(xué)生經(jīng)歷將現(xiàn)實問題數(shù)學(xué)化的過程。
    整節(jié)課先從觀察天平兩邊的物體質(zhì)量入手,先得出等式的含義,再結(jié)合具體的問題情境,使學(xué)生通過觀察、分析和比較,在思考和交流中由具體到抽象,一步步地揭示出方程的含義。在例1和例2的教學(xué)基礎(chǔ)上,及時組織學(xué)生討論"等式和方程"有什么聯(lián)系?幫助學(xué)生感受等式和方程的聯(lián)系與區(qū)別,體會方程就是一類特殊的等式。當(dāng)學(xué)生對等式和方程的聯(lián)系與區(qū)別已有深刻領(lǐng)會后,讓學(xué)生自己試著用語言來表述。"試一試"中,有些學(xué)生列出如"20-12=x"這樣的方程,這時要進行強調(diào),告訴學(xué)生盡量避免將未知數(shù)單獨放在等式的一邊。由于線段圖很形象直觀,學(xué)生看到了線段圖上的大括號就想到了這是表示把兩部分結(jié)合起來,很快就列出加法的方程。練一練的第一大題,對學(xué)生來說是重點,也是容易錯的地方,很多學(xué)生只找出了不含未知數(shù)的等式,而沒有想到方程也是等式,在這里要強調(diào)找的方法,先找等式,再在等式里找出方程。練習(xí)一的第二大題中的第2幅圖"原有x本書,借出56本,還剩60本",用方程表示數(shù)量關(guān)系時,還有部分學(xué)生寫出了56+60=x這樣的方程。這時,我便及時指出這樣寫的不合理性,讓學(xué)生及時改正,強調(diào)過后,后面的練習(xí)題學(xué)生就順利多了,沒再出現(xiàn)以上這樣的情況。
    在教學(xué)過程中,我還有很多細節(jié)問題沒有注意到,師父都給我一一指出來了。讓我明白,課堂教學(xué)中教師應(yīng)該做一個敏銳的觀察者和引導(dǎo)者,針對學(xué)生出現(xiàn)的問題,應(yīng)該及時地給予點撥和糾正,這樣才能幫助學(xué)生排除學(xué)習(xí)中的困惑,讓他們少走彎路,更好地理解和消化。
    體情境,從直觀感知出發(fā)引出抽象的數(shù)學(xué)式子,從理性的角度理解并掌握等式與方程的意義。同時在觀察、分析、比較、抽象、概括、交流合作中,體會方程與等式之間的異同點。能對方程與等式作出正確的判斷。能在具體情境中根據(jù)數(shù)量關(guān)系列出符合題意的方程。最后,在活動中,培養(yǎng)學(xué)生良好的習(xí)慣,讓學(xué)生獲得成功的體驗,進一步樹立學(xué)好數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
    "+=100、60-a=55+b"不認為是方程。他們認為未知數(shù)一定是x、y......,而不是其它符號。針對這一問題,我們通過討論得出:只要不是具體數(shù)值,無論是符號,還是任意字母,都可以表示未知數(shù)。第二、學(xué)生的思維定勢在作祟。因為一直以來我們的題目都是單選,沒有多選的,導(dǎo)致學(xué)生不能肯定是寫等式、方程,還是兩個都寫呢?當(dāng)然第二方面也是由于學(xué)生理解概念不扎實、透徹,只有通過不同變式練習(xí)的辨析,學(xué)生才能逐步認清等式與方程的"真面目"。
    從中,我也深知教學(xué)不能只是灌輸,而是要邊教邊學(xué),在教學(xué)中及時發(fā)現(xiàn)問題,尋找原因,解決問題,達到提升學(xué)生的知識與能力,培養(yǎng)學(xué)生思維的最終目的。
    《等式與方程》這節(jié)課的教學(xué)內(nèi)容較為簡單,重點內(nèi)容是認識方程和方程與等式之間的關(guān)系。我在教學(xué)這節(jié)課內(nèi)容時通過例1的教學(xué)讓學(xué)生自己總結(jié)出什么是等式:含有等號的式子叫等式。再區(qū)別等式與我們以前的算式,如8+2是算式,而8+2=10就是等式。
    邊的兩個是等式。那左邊的兩個叫什么呢?學(xué)生們思考了一下,沒有一個人能回答的出來,此時我告訴學(xué)生這叫不等式。當(dāng)學(xué)生們聽了"不等式"三個字之后都笑了,當(dāng)時我還沒有反應(yīng)過來,當(dāng)我再說到"不等式"時,我明白學(xué)生們?yōu)槭裁磿α?,他們以為我說的是"不懂事",所以我立馬把"不等式"三個字寫到黑板上,原來鬧了一個小笑話。
    對于方程的定義:含有未知數(shù)的等式叫方程,學(xué)生們明白定義中的關(guān)鍵字是未知數(shù)和等式,明白了這點我再問例1中的等式50+50=100是方程嗎?學(xué)生們說不是,因為沒有未知數(shù)。方程與等式之間有什么關(guān)系?指名幾位學(xué)生回答,一般都能明白,但語言表述的不是很清晰,最后葛晨曦和趙龍新總結(jié)說:方程肯定是等式,但等式不一定是方程,總結(jié)的很好。
    "練一練",讓學(xué)生自己寫一些方程,通過指名回答,發(fā)現(xiàn)學(xué)生們的方程一般都是5x=60、12+x=30等,考慮到學(xué)生是否以為未知數(shù)只能表示正數(shù)?所以我在黑板上寫了這樣一個等式讓學(xué)生判斷它是否是方程:2+x=0,學(xué)生們紛紛說不是,我說它符合方程的定義嗎?學(xué)生若有所思的說符合,原來未知數(shù)還可以表示負數(shù)。我接著問未知數(shù)除了可以表示正數(shù)和負數(shù)還可以表示什么?分數(shù)和小數(shù),于是我要求他們再寫幾個未知數(shù)能表示分數(shù)、小數(shù)和負數(shù)的方程。未知數(shù)我們可以用任何一個字母來表示,但我們習(xí)慣性用字母x來表示。等式x+y=20是方程嗎?學(xué)生們基本上都能回答"是",原因是因為有上面的思考,對于判斷是否是方程,學(xué)生們會看方程的定義來判斷。
    下課后,有學(xué)生問我,這樣的等式后面要寫單位嗎?這是我在上課時忽略的地方,含有未知數(shù)的等式也就是方程列出來之后,后面不需要帶單位。
    分析本節(jié)課中出現(xiàn)的幾個主要問題。
    等式與方程教學(xué)反思與評價篇三
    作為教師,我們都有這樣的體會:自然界的萬事萬物,事物息息相關(guān),都是有聯(lián)系的。知識是人類已經(jīng)認識的世界,知識與世界“互映”。形象地說,知識也像一張大網(wǎng),所有的知識都有千絲萬縷的關(guān)系。每次學(xué)習(xí)的新知識只是網(wǎng)上的幾個“結(jié)”,它與原有的知識經(jīng)驗之間有著必然的聯(lián)系。在教師備課的過程中,需要了解每一個知識點的地位,也就是不僅要知道這些知識的源頭在哪里?還要清楚這些知識會流向哪里。特級教師吳汝萍老師在《教育研究與評論》雜志上也有過這么一段觀點:“源”,就是知識的源頭,這個知識從哪里來,現(xiàn)在處在什么的位置;“流”就是這一知識有哪些應(yīng)用,將來要“流”向哪里。
    眾所周知,教師需要一方面對知識的“源”與“流”進行梳理,即所謂的備教材;另一方面,更要清楚在學(xué)生腦海中這些知識的“源”與“流”會呈現(xiàn)怎樣的精彩,即所謂的備學(xué)生。這是每個老師進行課堂教學(xué)前需要做的功課。
    近三年,我在“協(xié)同教育理論”指導(dǎo)下開展“小學(xué)數(shù)學(xué)綠樹課堂”的實踐與研究,其中讓學(xué)生在課堂學(xué)習(xí)之前進行準備學(xué)習(xí)(后面謂之備學(xué))是一個重點研究課題。
    新知識是網(wǎng)上的一小部分,那么學(xué)生完全有能力找到與新知識有關(guān)系的知識經(jīng)驗、生活經(jīng)驗和思維經(jīng)驗,這些都是腦中的已有的信息,完全可以在課前搜集,哪些知識與新知學(xué)習(xí)是相關(guān)的,新知中的哪些問題是感到疑惑的。搜集已知,捕捉問題,看似簡單的兩個步驟,其實正是學(xué)生為新知的學(xué)習(xí)進行著“網(wǎng)游”,這種主動的行為就是一種“習(xí)”,“學(xué)而時習(xí)之,不亦樂乎“,不僅積極影響著學(xué)生的學(xué)習(xí)狀態(tài),而且進一步鞏固了以前學(xué)過的知識,發(fā)展了學(xué)生的思維,也為教師的備學(xué)生了解學(xué)情提供了極大的的支撐。
    1、搜集天平的知識(可以問家長,可以查資料。)
    2、閱讀書p1—2,有哪些知識是你已經(jīng)學(xué)過的?一一列舉出來。
    3、閱讀書本后,你產(chǎn)生了什么問題?一一列舉出來。
    4、閱讀范老師博客上的《關(guān)于方程的資料(1)》。
    備學(xué)中,孩子們的真實思考最可貴,聽聽他們是怎么說的吧!
    陸瑤:方程這一單元,里面有一個等式是我學(xué)過的,但是這里面有一個未知數(shù)。
    天奕:把一個沒有余數(shù)的算式,加、減、乘、除都可以,把一個數(shù)變成“x”,這就是方程。
    李好:我發(fā)現(xiàn)用x表示一個未知數(shù),是我們低年級下學(xué)期學(xué)過的知識。(用字母表示數(shù))可那學(xué)期學(xué)的字母是求不出來的,可這里的字母卻是求出來的。
    小睿:像2+1=3、3-1=2這樣的式子叫等式,其實我們在一年級時就已經(jīng)認識了等式。
    萱萱:我知道有一些數(shù)量關(guān)系式可以讓我們求出未知數(shù):減數(shù)+差=被減數(shù)、被減數(shù)-減數(shù)=差、被減數(shù)-差=減數(shù)、積÷乘數(shù)=乘數(shù)、乘數(shù)×乘數(shù)=積、除數(shù)×商=被除數(shù)、被除數(shù)÷除數(shù)=商、被除數(shù)÷商=除數(shù)。
    小立:比如8+○=19,那么求○是多少,只需要用19減8,○是11,在這里是一樣的,只不過把○換成了x。
    我無法想象我獨立備課或與其他老師集體備課是否會有這么具體生動的教學(xué)資源,反正在我課前瀏覽的那么多教育網(wǎng)站中,沒有搜索到這些鮮活的內(nèi)容。這些來自孩子真實的“最近學(xué)習(xí)工作區(qū)”的聲音,不正是課堂教學(xué)之“源”嗎!
    秦秦:如果x+3<100,那x是多少?
    戴戴:方程為什么含有未知數(shù)?
    小雯:x可以表示未知數(shù),那么abc可以表示未知數(shù)嗎?
    干干:方程一定要有等式才可以成立嗎?范老師,我媽媽有時看到我一些難題不會,就寫什么x的,我終于知道了方程。
    小雨:方程是用來解決什么問題的?面積問題,數(shù)量關(guān)系……
    我很欣賞小雨的問題,這正是知識之“流”呀!因為它道出了學(xué)習(xí)方程的意義是什么?我們學(xué)習(xí)它,到底用它來解決哪類問題?小雨的問題,提醒我在教學(xué)目標(biāo)設(shè)定中,一定要讓孩子們學(xué)完這個知識后,擁有這樣的判斷力,思考力。
    清兒:等式和方程有什么不同,那它們又是什么關(guān)系呢?
    不少孩子問這個問題,說明對于式子、等式和方程的邏輯關(guān)系,學(xué)生需要老師的引導(dǎo)幫助!
    曉哲:怎樣才能算出未知數(shù)?
    呵呵,小家伙們總是思維敏捷,總是透過窗戶,看到更遠的風(fēng)景。
    課上交流以后,相信孩子們會有正確的認識。
    通過翻閱孩子們的備學(xué),我發(fā)現(xiàn),不僅老師需要知道數(shù)學(xué)知識的“源”與“流”,學(xué)生也有能力發(fā)現(xiàn)數(shù)學(xué)知識的“源”與“流”。在發(fā)現(xiàn)的過程中,學(xué)生不斷思考,回想,建構(gòu)合理的認知結(jié)構(gòu),同時思維向青草更青處漫溯。
    備學(xué)以后的討論更有意思:
    小璜益:方程不是一個完整的等式,因為有一個數(shù)是多少還不知道。
    萱萱:我爸爸在教我做一些課外題時,他用的就是方程。
    小疊:方程里用x來替代數(shù)字。
    孩子們聊到興頭上的時候,有個孩子問,怎么才能知道方程里的未知數(shù)是多少?我說,你們隨便考考我,我都知道。
    小巖:x+100>120。
    小欣:這個不是方程,方程必須是等式,這個不是等式。
    小愷:x+110=210。
    小欣把110聽成了120,就說,x等于90。
    孩子們一片疾呼:x等于100呀!??!
    還有幾個孩子站起來振振有詞的解釋x等于100的原因。
    呵呵,意外的聽錯數(shù)字,卻讓我看到了孩子有極強的學(xué)習(xí)能力,還沒有教,其實他們已經(jīng)有了一些經(jīng)驗。這些現(xiàn)象,又將成為下一場備學(xué)的起點。
    每節(jié)課的開始,找到一些結(jié)點,讓孩子們動起身心,鋪一些知識小路,老師順著孩子的思維去引導(dǎo)他們創(chuàng)造,探究,發(fā)現(xiàn),總結(jié),體會數(shù)學(xué)的簡潔與抽象,發(fā)展自己思考的能力,那樣的學(xué)習(xí)交流,是我所追逐的樣子。
    聽聽孩子們對備學(xué)的感性體會:
    小欣:備學(xué)就像是吃飯前的開胃菜,幫助我們更好的去吃飯,吸收菜里的營養(yǎng);備學(xué)就像是砍柴前磨了的刀,使砍柴更加輕而易舉,更方便;備學(xué)就像是活動前的熱身,使活動更加安全、快樂。備學(xué)給了我們一篇傾訴的天地,備學(xué)給了我們一個展示的舞臺。我愛備學(xué)。
    小涵:我覺得備學(xué)就像一顆知識的種子,當(dāng)我們開始新一學(xué)期的備學(xué)旅途,就是在給這顆種子澆水、施肥,讓它快快長大。當(dāng)我們結(jié)束了一學(xué)期的備學(xué)后,這顆種子就長大了,長成了參天大樹,樹上的果實非常多,各有千秋。這些果實,就是我們每天記下的備學(xué),備學(xué)后的與同伴交流所得的收獲,就是我們努力后的回報。
    奕奕:對我來說,備學(xué)就像是老師的備課,為了明天的課程而做準備,就像海棠花,冬天積蓄力量,到春天抽出枝條,綻放美麗。
    備學(xué),點擊著孩子數(shù)學(xué)世界的“源”與“流”,更點擊了一份學(xué)習(xí)數(shù)學(xué)的快樂與樂趣,孩子們享受備學(xué),享受數(shù)學(xué)。
    等式與方程教學(xué)反思與評價篇四
    本課從天平的平衡與不平衡引出等式,根據(jù)老師提供的天平圖,學(xué)生寫出等式或不等式,再把這些學(xué)生寫出的式子進行分類,從分類中的得出等式和方程之間的聯(lián)系,展示了學(xué)習(xí)的過程。學(xué)習(xí)的整個過程符合兒童認知發(fā)展的一般規(guī)律。從生活實際——天平實驗中引進,學(xué)生有生活的經(jīng)驗,很自然地想到兩種不同情況,并用式子表示,引出等式;其中有含有未知數(shù)、不含未知數(shù)的兩種形式。體現(xiàn)“生活中有數(shù)學(xué),數(shù)學(xué)可以展現(xiàn)生活”這一大眾數(shù)學(xué)觀,也體現(xiàn)了科學(xué)的本質(zhì)是“來源于生活,運用于生活”。通過觀察,探尋式子特點,再把這些式子進行兩次分類,在分類中得出方程的意義,也看出了構(gòu)成方程的兩個條件,反映了認識事物從具體到抽象的一般過程。但在教學(xué)過程中存在很多問題。
    一、對于突發(fā)狀況不能機智應(yīng)對,
    在各小組交流時,部分學(xué)生沒按要求做,而是把題中給的x計算出來,我在小組巡視的時候已經(jīng)看見但沒提示學(xué)生,導(dǎo)致挑戰(zhàn)組在交流的時候出現(xiàn)三個錯誤,這是我應(yīng)該講解一個,可我三個一一講解,浪費了時間。
    在班級展示提升環(huán)節(jié),學(xué)生分類時位置不對,這時,應(yīng)該放手讓學(xué)生去做,而不是指揮學(xué)生放的位置,導(dǎo)致學(xué)生不知所措。
    二、對于教學(xué)設(shè)計不能熟記于心
    在學(xué)生進行分類時,我竟然忘了5+a存在,導(dǎo)致學(xué)生誤解為它是不等式,所以在做游戲這個環(huán)節(jié),學(xué)生就誤解為2a+10為不等式,可想而知,由于我的疏忽大意導(dǎo)致學(xué)生的誤解,在這方面我要更加謹慎。
    三、課上語言隨意性
    在游戲這個環(huán)節(jié),應(yīng)說不含未知數(shù)的等式請回倒座位,我卻把未知數(shù)說成了字母,這樣說學(xué)生可能就認為是字母了。
    在以后的教學(xué)中我課前應(yīng)該思考該怎么說,而不是隨意說,讓學(xué)生誤解。在今后教學(xué)中,我一定要真正讓學(xué)生放手去做,相信孩子的能力,逐步的提高自己的教學(xué)水平。