2015高考數(shù)學答題技巧
函數(shù)與方程
函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學中的數(shù)量關系,通過建立函數(shù)關系(或構造函數(shù))運用函數(shù)的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數(shù)量關系入手,運用數(shù)學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數(shù)與方程間的相互轉化。
數(shù)形結合
中學數(shù)學研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結合或形數(shù)結合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
特殊與一般
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設法構思一個與它有關的變量;(2)確認這變量通過無限過程的結果就是所求的未知量;(3)構造函數(shù)(數(shù)列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。
分類討論
我們常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學概念本身具有多種情形,數(shù)學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標準統(tǒng)一,不重不漏。復習:函數(shù)與導數(shù)
出國留學網(wǎng)高考頻道為您整理史上高考復習資料大全!讓您的高考成績穩(wěn)步上升!
| 高考語文考點 |
高考數(shù)學考點 |
高考英語考點 |
高考理綜考點 |
高考文綜考點 |
| 高考語文復習資料 |
高考數(shù)學復習資料 |
高考英語復習資料 |
高考理綜復習資料 |
高考文綜復習資料 |
| 高考語文模擬試題 |
高考數(shù)學模擬試題 |
高考英語模擬試題 |
高考理綜模擬試題 |
高考文綜模擬試題 |
| 高考語文歷年真題 |
高考數(shù)學歷年真題 |
高考英語歷年真題 |
高考理綜歷年真題 |
高考文綜歷年真題 |
| 高考備考輔導;高考食譜大全;高考前必須做的事 |
| 高考語文復習資料 |
高考數(shù)學復習資料 |
高考英語復習資料 |
高考文綜復習資料 |
高考理綜復習資料 |
| 高考語文模擬試題 |
高考數(shù)學模擬試題 |
高考英語模擬試題 |
高考文綜模擬試題 |
高考理綜模擬試題 |
| 高中學習方法 |
高考復習方法 |
高考狀元學習方法 |
高考飲食攻略 |
高考勵志名言 |