出國(guó)留學(xué)網(wǎng)考研數(shù)學(xué)頻道為大家提供考研數(shù)學(xué)定理復(fù)習(xí):導(dǎo)數(shù),希望幫助能掌握好這些定理在考試中熟練運(yùn)用。
考研數(shù)學(xué)定理復(fù)習(xí):導(dǎo)數(shù)
以下是考研高數(shù)第二章和第三章關(guān)于導(dǎo)數(shù)的定理:
第二章 導(dǎo)數(shù)與微分
1、導(dǎo)數(shù)存在的充分必要條件函數(shù)f(x)在點(diǎn)x0處可導(dǎo)的充分必要條件是在點(diǎn)x0處的左極限lim(h→-0)[f(x0+h)-f(x0)]/h及右極限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左導(dǎo)數(shù)f-′(x0)右導(dǎo)數(shù)f+′(x0)存在相等。
2、函數(shù)f(x)在點(diǎn)x0處可導(dǎo)=>函數(shù)在該點(diǎn)處連續(xù);函數(shù)f(x)在點(diǎn)x0處連續(xù)≠>在該點(diǎn)可導(dǎo)。即函數(shù)在某點(diǎn)連續(xù)是函數(shù)在該點(diǎn)可導(dǎo)的必要條件而不是充分條件。
3、原函數(shù)可導(dǎo)則反函數(shù)也可導(dǎo),且反函數(shù)的導(dǎo)數(shù)是原函數(shù)導(dǎo)數(shù)的倒數(shù)。
4、函數(shù)f(x)在點(diǎn)x0處可微=>函數(shù)在該點(diǎn)處可導(dǎo);函數(shù)f(x)在點(diǎn)x0處可微的充分必要條件是函數(shù)在該點(diǎn)處可導(dǎo)。
第三章 中值定理與導(dǎo)數(shù)的應(yīng)用
1、定理(羅爾定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且在區(qū)間端點(diǎn)的函數(shù)值相等,即f(a)=f(b),那么在開(kāi)區(qū)間(a,b)內(nèi)至少有一點(diǎn)ξ(a<ξ< p="">
2、定理(拉格朗日中值定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),那么在開(kāi)區(qū)間(a,b)內(nèi)至少有一點(diǎn)ξ(a<ξ< p="">
3、定理(柯西中值定理)如果函數(shù)f(x)及F(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且F’(x)在(a,b)內(nèi)的每一點(diǎn)處均不為零,那么在開(kāi)區(qū)間(a,b)內(nèi)至少有一點(diǎn)ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。
4、洛必達(dá)法則應(yīng)用條件只能用與未定型諸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。
5、函數(shù)單調(diào)性的判定法設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),那么:(1)如果在(a,b)內(nèi)f’(x)>0,那么函數(shù)f(x)在[a,b]上單調(diào)增加;(2)如果在(a,b)內(nèi)f’(x)<0,那么函數(shù)f(x)在[a,b]上單調(diào)減少。< p="">
如果函數(shù)在定義區(qū)間上連續(xù),除去有限個(gè)導(dǎo)數(shù)不存在的點(diǎn)外導(dǎo)數(shù)存在且連續(xù),那么只要用方程f’(x)=0的根及f’(x)不存在的點(diǎn)來(lái)劃分函數(shù)f(x)的定義區(qū)間,就能保證f’(x)在各個(gè)部分區(qū)間內(nèi)保持固定符號(hào),因而函數(shù)f(x)在每個(gè)部分區(qū)間上單調(diào)。
6、函數(shù)的極值如果函數(shù)f(x)在區(qū)間(a,b)內(nèi)有定義,x0是(a,b)內(nèi)的一個(gè)點(diǎn),如果存在著點(diǎn)x0的一個(gè)去心鄰域,對(duì)于這去心鄰域內(nèi)的任何點(diǎn)x,f(x)f(x0)均成立,就稱f(x0)是函數(shù)f(x)的一個(gè)極小值。
在函數(shù)取得極值處,曲線上的切線是水平的,但曲線上有水平曲線的地方,函數(shù)不一定取得極值,即可導(dǎo)函數(shù)的極值點(diǎn)必定是它的駐點(diǎn)(導(dǎo)數(shù)為0的點(diǎn)),但函數(shù)的駐點(diǎn)卻不一定是極值點(diǎn)。
定理(函數(shù)取得極值的必要條件)設(shè)函數(shù)f(x)在x0處可導(dǎo),且在x0處取得極值,那么函數(shù)在x0的導(dǎo)數(shù)為零,即f’(x0)=0.定理(函數(shù)取得極值的第一種充分條件)設(shè)函數(shù)f(x)在x0一個(gè)鄰域內(nèi)可導(dǎo),且f’(x0)=0,那么:(1)如果當(dāng)x取x0左側(cè)臨近的值時(shí),f’(x)恒為正;當(dāng)x去x0右側(cè)臨近的值時(shí),f’(x)恒為負(fù),那么函數(shù)f(x)在x0處取得極大值;(2)如果當(dāng)x取x0左側(cè)臨近的值時(shí),f’(x)恒為負(fù);當(dāng)x去x0右側(cè)臨近的值時(shí),f’(x)恒為正,那么函數(shù)f(x)在x0處取得極小值;(3)如果當(dāng)x取x0左右兩側(cè)臨近的值時(shí),f’(x)恒為正或恒為負(fù),那么函數(shù)f(x)在x0處沒(méi)有極值。
定理(函數(shù)取得極值的第二種充分條件)設(shè)函數(shù)f(x)在x0處具有二階導(dǎo)數(shù)且f’(x0)=0,f’’(x0)≠0那么:(1)當(dāng)f’’(x0)<0時(shí),函數(shù)f(x)在x0處取得極大值;(2)當(dāng)f’’(x0)>0時(shí),函數(shù)f(x)在x0處取得極小值;駐點(diǎn)有可能是極值點(diǎn),不是駐點(diǎn)也有可能是極值點(diǎn)。
7、函數(shù)的凹凸性及其判定設(shè)f(x)在區(qū)間Ix上連續(xù),如果對(duì)任意兩點(diǎn)x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]>[f(x1)+f(x1)]/2,那么稱f(x)在區(qū)間Ix上圖形是凸的。
定理設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)具有一階和二階導(dǎo)數(shù),那么(1)若在(a,b)內(nèi)f’’(x)>0,則f(x)在閉區(qū)間[a,b]上的圖形是凹的;(2)若在(a,b)內(nèi)f’’(x)<0,則f(x)在閉區(qū)間[a,b]上的圖形是凸的。< p="">
判斷曲線拐點(diǎn)(凹凸分界點(diǎn))的步驟(1)求出f’’(x);(2)令f’’(x)=0,解出這方程在區(qū)間(a,b)內(nèi)的實(shí)根;(3)對(duì)于(2)中解出的每一個(gè)實(shí)根x0,檢查f’’(x)在x0左右兩側(cè)鄰近的符號(hào),如果f’’(x)在x0左右兩側(cè)鄰近分別保持一定的符號(hào),那么當(dāng)兩側(cè)的符號(hào)相反時(shí),點(diǎn)(x0,f(x0))是拐點(diǎn),當(dāng)兩側(cè)的符號(hào)相同時(shí),點(diǎn)(x0,f(x0))不是拐點(diǎn)。
在做函數(shù)圖形的時(shí)候,如果函數(shù)有間斷點(diǎn)或?qū)?shù)不存在的點(diǎn),這些點(diǎn)也要作為分點(diǎn)。
2015考研數(shù)學(xué)復(fù)習(xí)資料及方法匯總>>> 點(diǎn)擊查看
2015年考研高等數(shù)學(xué)公式匯總?>>> 點(diǎn)擊查看
2015考研數(shù)學(xué)考前模擬試卷(一)>>> 點(diǎn)擊查看
2015考研數(shù)學(xué)(一)模擬試卷及答案>>> 點(diǎn)擊查看
考研大綱 | 考研經(jīng)驗(yàn) | 考研真題 | 考研答案 | 考研院校 | 考研錄取 |