2013年413聯(lián)考行測備考輔導:極限思維法解數(shù)量關(guān)系

字號:

413聯(lián)考在即,我為您準備了行測答題技巧,并附有例題解析,歡迎您收藏本網(wǎng)站,了解更多與413公務員考試相關(guān)的信息。
            極限思維法
    所謂的極限思想就是指平時生活中遇到某件事情時,我們會自然考慮事情最好會是什么樣子,最差會是什么樣子的一種能力;轉(zhuǎn)換成解題其實就是考慮符合題目中條件的最大值或最小值的一種解題技巧。
    不過根據(jù)題目中所給條件的不同,可以大致分成兩類:一類是最大值和最小值都能實現(xiàn);另一類是最大值或最小值只能實現(xiàn)其中一個。下面華圖公務員考試研究中心就這個聯(lián)考真題來分析下這種方法是如何應用的。
    【例1】劉女士今年48歲,她說:“我有兩個女兒,當妹妹長到姐姐現(xiàn)在的年齡時,姐妹倆的年齡之和比我到那時的年齡還大2歲。”問姐姐今年多少歲?
    A.23B.24
    C.25D.不確定
    【解析一】典型年齡問題:由“妹妹長到姐姐現(xiàn)在的年齡時”可知姐妹之間存在年齡差,但是具體差幾歲我們不清楚,所以設年齡差為a歲,即a年后妹妹長到姐姐現(xiàn)在的年齡,設姐姐今年為x歲,則根據(jù)“姐妹倆的年齡之和比我到那時的年齡還大2歲”得出(x+a)+x=(48+a)+2,解得x=25歲,所以選擇C選項。
    【解析二】此題就是典型的單側(cè)極限法的應用,因為姐妹之間的年齡差值未知,所以我們討論極限情況:最小值為0,最大值不能確定。所以我們可以直接討論姐妹年齡差為0歲,即雙胞胎時的情況:設姐姐今年為x歲,則根據(jù)“姐妹倆的年齡之和比我到那時的年齡還大2歲”得出x+x=48+2,解得x=25歲,所以選擇C選項。
    比較下兩種解法,后者是更側(cè)重考察實際的理解分析能力,更能體現(xiàn)出一個公務員的內(nèi)在素質(zhì),而且也比前者大大的縮短了解題時間。我們來通過下面這個例題再來體會下。
    【例2】有兩只相同的大桶和一只空杯子,甲桶和乙桶分別裝一樣多的牛奶和糖水,先從甲桶內(nèi)取出一杯牛奶倒入乙桶,再從乙桶取出一杯糖水和牛奶的混合倒入甲桶,問,此時甲桶內(nèi)的糖水多還是乙桶內(nèi)的牛奶多?
    A.無法判定B.甲桶糖水多
    C.乙桶牛奶多D.一樣多
    【解析】此題如果按照常規(guī)的濃度問題來求解,很多考生只能放棄,應為太浪費時間,但是如果我們考慮杯子的極值:最小值不能設定為0,最大值可以與溶液的容積一樣大。所以題目中的第一步可以轉(zhuǎn)換為完全混合,第二步將混合液體倒回,故甲桶內(nèi)的糖水和乙桶內(nèi)的牛奶一樣,所以選擇D選項。
    這種單側(cè)極限思想的應用非常廣泛,比如也可以應用于類似的構(gòu)造類問題中。
    【例3】一個班里有30名學生,有12人會跳拉丁舞,有8人會跳肚皮舞,有10人會跳芭蕾舞。問至多有幾人會跳兩種舞蹈?
    A.12人B.14人
    C.15人D.16人
    【解析】“至多有幾人會跳兩種舞蹈”即最大值的考慮,如果30人每人多會2個即出現(xiàn)最大值,即答案為30÷2=15人,所以選擇C選項。