2023年初三數(shù)學知識點總結筆記 初一初二初三數(shù)學知識點總結匯總(6篇)

字號:

    當工作或學習進行到一定階段或告一段落時,需要回過頭來對所做的工作認真地分析研究一下,肯定成績,找出問題,歸納出經驗教訓,提高認識,明確方向,以便進一步做好工作,并把這些用文字表述出來,就叫做總結。怎樣寫總結才更能起到其作用呢?總結應該怎么寫呢?下面是小編整理的個人今后的總結范文,歡迎閱讀分享,希望對大家有所幫助。
    初三數(shù)學知識點總結筆記 初一初二初三數(shù)學知識點總結篇一
    三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。
    (平行四邊形的性質)
    ①平行四邊形的對邊相等;
    ②平行四邊形的對角相等;
    ③平行四邊形的對角線互相平分。
    (矩形的性質)
    ①矩形具有平行四邊形的一切性質;
    ②矩形的四個角都是直角;
    ③矩形的對角線相等。
    正方形的判定與性質
    1鄰邊相等的矩形;
    2鄰邊垂直的菱形;
    3對角線垂直的矩形;
    4對角線相等的菱形;
    1邊:四邊相等,對邊平行;
    2角:四個角都相等都是直角,鄰角互補;
    3對角線互相平分、垂直、相等,且每長對角線平分一組內角。
    等腰三角形的判定定理
    (等腰三角形的判定方法)
    1、有兩條邊相等的三角形是等腰三角形。
    2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。
    角平分線:把一個角平分的射線叫該角的角平分線。
    定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
    性質定理:角平分線上的點到該角兩邊的距離相等
    判定定理:到角的兩邊距離相等的點在該角的角平分線上
    標準差與方差
    極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
    計算器——求標準差與方差的一般步驟:
    1、打開計算器,按“on”鍵,按“mode”“2”進入統(tǒng)計sd狀態(tài)。
    2、在開始數(shù)據(jù)輸入之前,請務必按“shift”“clr”“1”“=”鍵清除統(tǒng)計存儲器。
    3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“m+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“shiet”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“m+”鍵。
    4、當所有的數(shù)據(jù)全部輸入結束后,按“shift”“2”,選擇的是“標準差”,就可以得到所求數(shù)據(jù)的標準差;
    5、標準差的平方就是方差。
    初三數(shù)學知識點總結筆記 初一初二初三數(shù)學知識點總結篇二
    三角形的外心定義:
    外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。
    外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。
    三角形的外心的性質:
    1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;
    2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內接三角形卻有無數(shù)個,這些三角形的外心重合;
    3、銳角三角形的外心在三角形內;
    鈍角三角形的外心在三角形外;
    直角三角形的外心與斜邊的中點重合。
    在△abc中
    4、oa=ob=oc=r
    5、∠boc=2∠bac,∠aob=2∠acb,∠coa=2∠cba
    6、s△abc=abc/4r
    初三數(shù)學知識點總結筆記 初一初二初三數(shù)學知識點總結篇三
    全套教科書包含了課程標準(實驗稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計與概率”“實踐與綜合應用”四個領域的內容,在體系結構的設計上力求反映這些內容之間的聯(lián)系與綜合,使它們形成一個有機的整體。
    九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標準》的四個領域。本冊書內容分析如下:
    學生已經學過整式與分式,知道用式子可以表示實際問題中的數(shù)量關系。解決與數(shù)量關系有關的問題還會遇到二次根式?!岸胃健币徽戮蛠碚J識這種式子,探索它的性質,掌握它的運算。
    在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:
    注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減?!岸胃降某顺币还?jié)的內容有兩條發(fā)展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到
    并運用它們進行二次根式的化簡。
    “二次根式的加減”一節(jié)先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節(jié)中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節(jié)內容。
    學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程?!耙辉畏匠獭币徽戮蛠碚J識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。
    本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,
    “22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
    (1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的.例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了“公式法”以后,學生對這個內容會有進一步的理解。
    (2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數(shù)根的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
    (3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
    “22.3實際問題與一元二次方程”一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。
    學生已經認識了平移、軸對稱,探索了它們的性質,并運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉?!靶D”一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。
    “23.1旋轉”一節(jié)首先通過實例介紹旋轉的概念。然后讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉后的圖形的方法。最后舉例說明用旋轉可以進行圖案設計。
    “23.2中心對稱”一節(jié)首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關于原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。
    “23.3課題學習圖案設計”一節(jié)讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。
    圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質,并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。
    “24.1圓”一節(jié)首先介紹圓及其有關概念。然后讓學生探究與垂直于弦的直徑有關的結論,并運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,并運用上述關系解決問題。最后讓學生探究圓周角與圓心角的關系,并運用上述關系解決問題。
    “24.2與圓有關的位置關系”一節(jié)首先介紹點和圓的三種位置關系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最后介紹圓和圓的位置關系。
    “24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。
    “24.4弧長和扇形面積”一節(jié)首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側面積公式。
    將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。
    “25.1概率”一節(jié)首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。
    “25.2用列舉法求概率”一節(jié)首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。
    “25.3利用頻率估計概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。
    “25.4課題學習鍵盤上字母的排列規(guī)律”一節(jié)讓學生通過這一課題的研究體會概率的廣泛應用。
    初三數(shù)學知識點總結筆記 初一初二初三數(shù)學知識點總結篇四
    1、不等式:用不等號表示不等關系的式子,叫做不等式。
    2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。
    3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。
    4、求不等式的解集的過程,叫做解不等式。
    5、用數(shù)軸表示不等式的方法。
    1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。
    2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。
    3、不等式兩邊都乘以或除以同一個負數(shù),不等號的方向改變。
    4、說明:
    ①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。
    ②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
    1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
    2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數(shù)化為1。
    1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
    2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
    3、求不等式組的解集的過程,叫做解不等式組。
    4、當任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
    5、一元一次不等式組的解法
    1分別求出不等式組中各個不等式的解集。
    2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
    6、不等式與不等式組
    不等式:
    ①用符號〉,=,〈號連接的式子叫不等式。
    ②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
    ③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
    ④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
    7、不等式的解集:
    ①能使不等式成立的未知數(shù)的值,叫做不等式的解。
    ②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
    ③求不等式解集的過程叫做解不等式。
    初三數(shù)學知識點總結筆記 初一初二初三數(shù)學知識點總結篇五
    單項式與多項式
    僅含有一些數(shù)和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數(shù)或字母也是單項式。
    單項式中的數(shù)字因數(shù)叫做這個單項式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。
    當一個單項式的系數(shù)是1或—1時,“1”通常省略不寫。
    一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
    如果在幾個單項式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數(shù)都是同類項。
    有有限個單項式的代數(shù)和組成的式子,叫做多項式。
    多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項。
    單項式可以看作是多項式的特例
    把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變。
    在多項式中,所含的不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的次數(shù),就稱為這個多項式的次數(shù)。
    任何一個多項式,就是一個用加、減、乘、乘方運算把已知數(shù)和未知數(shù)連接起來的式子。
    對于兩個一元多項式fx、gx來說,當未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恒等的記為fx==gx,或簡記為fx=gx。
    性質1如果fx==gx,那么,對于任一個數(shù)值a,都有fa=ga。
    性質2如果fx==gx,那么,這兩個多項式的個同類項系數(shù)就一定對應相等。
    一般地,能夠使多項式fx的值等于0的未知數(shù)x的值,叫做多項式fx的根。
    多項式的加、減法,乘法
    1、多項式的加、減法
    2、多項式的乘法
    單項式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。
    3、多項式的乘法
    多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
    常用乘法公式
    公式i平方差公式
    a+ba—b=a^2—b^2
    兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差。
    初三數(shù)學知識點總結筆記 初一初二初三數(shù)學知識點總結篇六
    1.不在同一直線上的三點確定一個圓。
    2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
    推論1
    ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
    ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
    ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
    推論2圓的兩條平行弦所夾的弧相等
    3.圓是以圓心為對稱中心的中心對稱圖形
    4.圓是定點的距離等于定長的點的集合
    5.圓的內部可以看作是圓心的距離小于半徑的點的集合
    6.圓的外部可以看作是圓心的距離大于半徑的點的集合
    7.同圓或等圓的半徑相等
    8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
    9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
    10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
    11定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
    12.①直線l和⊙o相交d
    ②直線l和⊙o相切d=r
    ③直線l和⊙o相離d>r
    13.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線
    14.切線的性質定理圓的切線垂直于經過切點的半徑
    15.推論1經過圓心且垂直于切線的直線必經過切點
    16.推論2經過切點且垂直于切線的直線必經過圓心
    17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
    18.圓的外切四邊形的兩組對邊的和相等外角等于內對角
    19.如果兩個圓相切,那么切點一定在連心線上
    20.①兩圓外離d>r+r
    ②兩圓外切d=r+r
    ③.兩圓相交r-rr
    ④.兩圓內切d=r-rr>r
    ⑤兩圓內含dr
    21.定理相交兩圓的連心線垂直平分兩圓的公共弦
    22.定理把圓分成nn≥3:
    ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
    ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
    23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
    24.正n邊形的每個內角都等于n-2×180°/n
    25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
    26.正n邊形的面積sn=pnrn/2 p表示正n邊形的周長
    27.正三角形面積√3a/4 a表示邊長
    28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4
    29.弧長計算公式:l=n兀r/180
    30.扇形面積公式:s扇形=n兀r^2/360=lr/2
    31.內公切線長= d-r-r外公切線長= d-r+r
    32.定理一條弧所對的圓周角等于它所對的圓心角的一半
    33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
    34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
    35.弧長公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr