教案是教師為了指導(dǎo)教學(xué)活動而編寫的一種設(shè)計和計劃的文本。要編寫一份較為完美的教案,首先需要對教學(xué)目標和要求進行明確和準確的把握。教案的編寫需要充分發(fā)揮教師的主觀能動性,以下是小編為大家整理的一些編寫教案的準則和方法,希望對大家有所啟發(fā)。
有理數(shù)的加法數(shù)學(xué)七年級教案篇一
2.內(nèi)容解析。
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習是至關(guān)重要的.
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則.
二、目標及其解析。
1.目標。
(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
2.目標解析。
達成目標(1)的標志是學(xué)生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.
達成目標(2)的標志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
三、教學(xué)問題診斷分析。
有理數(shù)的乘法與小學(xué)學(xué)習的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
四、教學(xué)過程設(shè)計。
教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習有關(guān)知識,為下面的教學(xué)做好準備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學(xué)生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
3×(-2)=,
3×(-3)=.
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習奠定基礎(chǔ).
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學(xué)生的模仿、概括的能力.
追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成.
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.
學(xué)生獨立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.
設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.
例1計算:
(1)。
;(2)。
;(3)。
學(xué)生獨立完成后,全班交流.
教師說明:在(3)中,我們得到了。
=1.與以前學(xué)習過的倒數(shù)概念一樣,我們說。
與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
小結(jié)、布置作業(yè)。
請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
(2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習過程兩個方面進行小結(jié).
作業(yè):教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
五、目標檢測設(shè)計。
1.判斷下列運算結(jié)果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2計算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況.
有理數(shù)的加法數(shù)學(xué)七年級教案篇二
1.1正數(shù)和負數(shù)(2)。
教學(xué)目標:
教學(xué)重點:
深化對正負數(shù)概念的理解。
教學(xué)難點:
正確理解和表示向指定方向變化的量。
教學(xué)準備:彩色粉筆。
教學(xué)過程:
一、復(fù)習引入:
學(xué)生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
二、講解新課。
度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
思考:教科書第4頁(學(xué)生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結(jié)。
引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學(xué)過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設(shè)計:
有理數(shù)的加法數(shù)學(xué)七年級教案篇三
學(xué)習目標:。
1、理解加減法統(tǒng)一成加法運算的意義.
2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.
3、培養(yǎng)學(xué)習數(shù)學(xué)的興趣,增強學(xué)習數(shù)學(xué)的信心.
教學(xué)方法:講練相結(jié)合。
教學(xué)過程。
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
記作+4.5千米—3.2千米+1.1千米—1.4千米。
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
2、你是怎么算出來的,方法是。
1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導(dǎo).
如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。
=-20+3+5-7再把加號記在腦子里,省略不寫。
可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
4、師生完整寫出解題過程。
1、解決引例中的問題,再比較前面的方法,你的感覺是。
2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
1、小結(jié):說說這節(jié)課的收獲。
2、p241、2。
3、計算。
1)27—18+(—7)—322)。
五、作業(yè)。
1、p2552、p26第8題、14題。
有理數(shù)的加法數(shù)學(xué)七年級教案篇四
教材分析:
在教材分析中我將談一下幾點:
(一)、教材的地位與作用:
【有理數(shù)的加法法則】是初中華師版七年級上冊第二章第六節(jié)的內(nèi)容,在這之前,學(xué)生已經(jīng)在小學(xué)掌握了算術(shù)運算,而前邊的學(xué)習又初步掌握了有理數(shù)的基本概念,有理數(shù)的加法運算是建立在小學(xué)運算的基礎(chǔ)之上的,又與小學(xué)加法運算有很大的區(qū)別,如小學(xué)的加法運算不需要確定符號運算單一,而有理數(shù)的加法不但要計算絕對值的大小而且還要確定結(jié)果的符號,由算術(shù)到代數(shù)式學(xué)生從小學(xué)到初中的一個新的轉(zhuǎn)折點。而有理數(shù)的加法又是有理數(shù)運算的主要內(nèi)容是初等數(shù)學(xué)運算的基礎(chǔ),同時又是學(xué)習物理、化學(xué)等相關(guān)學(xué)科的基礎(chǔ)。因此,這部分內(nèi)容在學(xué)習數(shù)學(xué)及其他方面占有相當重要的地位及作用。
(二)、教學(xué)內(nèi)容:
有理數(shù)的加法的教學(xué)共分2課時,這是有理數(shù)的加法第一課時。本節(jié)課主要講授有理數(shù)加法的意義,歸納有理數(shù)加法的法則,能區(qū)別有理數(shù)的和與小學(xué)運算的和的不同,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。
(三)、教學(xué)目標:
倡導(dǎo)有理數(shù)的加法要以學(xué)生為主,讓學(xué)生參與”觀察、猜想、驗證、歸納、運用“的全過程。以培養(yǎng)創(chuàng)新意識與培養(yǎng)能力為宗旨。從教材的特點和初一學(xué)生的認知水平,以教學(xué)思維為出發(fā)點。我設(shè)計如下的教學(xué)目標:
1、知識目標:使學(xué)生有理數(shù)加法的意義,掌握有理數(shù)加法的法則,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。
2、能力目標:在本節(jié)課的教學(xué)中,借助數(shù)軸向?qū)W生滲透數(shù)形結(jié)合的思想,利用絕對值把有理數(shù)的加法運算化歸為小學(xué)算術(shù)的加減運算,體現(xiàn)化歸的思想,以及適度加強法則的形成過程,著重培養(yǎng)學(xué)生”觀察、猜想、驗證、歸納、運用“等綜合能力。
3、情感目標:遵循學(xué)生學(xué)習的認知規(guī)律和初一學(xué)生的身心特點,按照啟發(fā)式教學(xué)原則用發(fā)現(xiàn)法和直觀教學(xué)法激發(fā)學(xué)生探究教學(xué)的興趣,培養(yǎng)學(xué)生敢于探索、樂于創(chuàng)新的精神。
4、教學(xué)重點、難點和教學(xué)關(guān)鍵:
解決問題的關(guān)鍵是有理數(shù)加法中結(jié)果符號的確定。
二、教法分析:
為了充分調(diào)動學(xué)生的積極性,變被動學(xué)習為主動學(xué)習使教學(xué)生動、有趣、高效,我采用啟發(fā)式教學(xué),發(fā)現(xiàn)法教學(xué)形成性學(xué)習和多媒體教學(xué)手段共用,考慮到學(xué)生目前仍以直觀思維為主,在教學(xué)中,我采用針對性較強的相應(yīng)措施。首先,我創(chuàng)設(shè)具體的問題情景運用多媒體手段進行必要的動態(tài)演示,讓學(xué)生看的清楚,聽的明白逐步從圖形的直觀向深化過渡,最后向抽象思維過渡,引導(dǎo)學(xué)生觀察與思考,以增強教學(xué)的直觀性、有效性;其次,引導(dǎo)學(xué)生從特殊到一般的探究,師生共同歸納出有理數(shù)的加法法則,以以增強教學(xué)的直觀性、有效性、深刻性這既是形象思維轉(zhuǎn)化為抽象思維的過程,也是對學(xué)生觀察、歸納思維能力的過程,再讓學(xué)生參與知識的形成過程,促進認知結(jié)構(gòu)的建構(gòu),培養(yǎng)學(xué)生活動知識的能力,從而使學(xué)生在學(xué)習知識的過程中,獲得成功的體驗。
三、學(xué)法指導(dǎo):
課堂教學(xué)要體現(xiàn)以學(xué)生的發(fā)展為本,為充分體現(xiàn)教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,我采用啟發(fā)式教學(xué)原則,通過提出問題,多媒體的直觀演示和學(xué)生一起分析,歸納出法則。始終讓學(xué)生參與整個問題的全過程,在整個教學(xué)過程的設(shè)計中力求發(fā)揮學(xué)生的主體意識,盡情創(chuàng)造性的學(xué)習,無論在法則的形成,還是法則的運用數(shù)學(xué)思想方法的滲透,都避免教師的灌輸方法,有意識的讓學(xué)生主動觀察、比較、分類、歸納積極思考,教師在教學(xué)中加以引導(dǎo)、及時點撥,激發(fā)學(xué)生的探索精神和求知欲望,培養(yǎng)學(xué)生的學(xué)習數(shù)學(xué)的主動性,讓學(xué)生在愉悅的氣氛中感受到數(shù)學(xué)學(xué)習的無限樂趣。
四、說教學(xué)過程:
2、然后設(shè)置這樣一個問題情景,利用動態(tài)演示帶領(lǐng)學(xué)生進行新課探索,首先我提出問題”兩次一共向東走了多少米?“用什么方法呢?接著我提醒學(xué)生注意審題,暗示學(xué)生題中沒有明確小明朝那個方向走,通過暗示,引導(dǎo)學(xué)生思考。
3、接著我又提出問題2”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了-20米,那么兩次一共走了多少米?“利用動態(tài)演示,學(xué)生很容易得出”互為相反數(shù)的兩數(shù)相加得0“之后我又提出問題3”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了0米,那么兩次一共走了多少米?“學(xué)生很容易得出”一個數(shù)與0相加,仍得0“從而利用上面的演示過程,歸納出有一個加數(shù)為0的法則。
4、至此,通過師生多種情形的歸納,一起歸納出有理數(shù)的加法法則。
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;
3、互為相反數(shù)的兩數(shù)相加得0。
4、一個數(shù)與0相加,仍得0】意義上教學(xué)過程通過多媒體演示,把數(shù)、式、形的靜變?yōu)閯樱栽鰪姺▌t的直觀性,加深法則的理解,突出本節(jié)課的重點、突破難點,同時也增強了數(shù)形結(jié)合的思想運用,在歸納出法則后,我有進一步啟發(fā)引導(dǎo)學(xué)生分析法則的'特點,并總結(jié)規(guī)律”兩有理數(shù)相加,所得的和為符號和和兩部分組成,加法運算的關(guān)鍵是福海的確定,符號運算一旦解決,余下的就是小學(xué)算術(shù)的加減問題了“在這里,我給出兩個具體的實例通過對他們的分析得出:
(-4)+(-8)=-(4+8)=-12。
同號兩數(shù)相加取相同的符號通過絕對值化歸為算術(shù)數(shù)和的過程。
(-9)+(+2)=-(9-2)=-7。
異號兩數(shù)相加取絕對值較大符號通過絕對值化歸為算術(shù)數(shù)減的過程。
總結(jié):同號兩數(shù)之和——名副其實的和——做加法。
異號兩數(shù)之和——表面是”和“實際上是做減法。
運算步驟:1、先判斷類型:同號還是異號;2、確定和的符號;
3、后進行絕對值的加減運算。
簡單歸為:8字訣——符號法則+算式加減。
通過以上的設(shè)計,進一步加深了對法則中難點問題的理解之后教師引導(dǎo)學(xué)生歸納出運算步驟,然后又教師歸納出加法法則。
6、接下來我又設(shè)置了一道改錯題:
設(shè)置問題,強化關(guān)鍵判斷正誤,并改錯。
1、兩個負數(shù)相加,絕對值相加;
2、正數(shù)加負數(shù),何謂負數(shù);
3、負數(shù)加正數(shù),和為正數(shù);
4、兩個有理數(shù)和為負數(shù)時,著兩個有理數(shù)都是負數(shù)它是專為學(xué)生在運用法則時易出錯的問題而設(shè)計的為促使學(xué)生在引用時仔細審題,通過分析辯誤,抓住關(guān)鍵。
7、為了完成從掌握知識到引用知識的轉(zhuǎn)化,使知識教學(xué)與智能訓(xùn)練相結(jié)合,我設(shè)置了以下例、習題易培養(yǎng)他們的邏輯思維和嚴密的計算能力,下面的這組練習由淺入深、循序漸進的原則,其目的在于鞏固法則,加深對法則的理解和記憶,練習2通過強化與訓(xùn)練,使學(xué)生熟中生巧、將知識轉(zhuǎn)化為技能,也為以后的學(xué)習奠定基礎(chǔ)。
計算下列各題:
例題1、(-6)+(-8)2、5.2+(-4.5)。
練習:1、計算下列各題:并說明理由(1)、(-4)+(-7)。
(2)、(-4)+(+7)(3)、(+4)+(+7)。
(4)、(-4)+(+4)(5)、(-9)+0。
練習:2、計算下列各題:
(1)、15+(-22)(2)、(+0.9)+1.5(3)、(+2.7)+(-3.5)。
8、到這時,整個教學(xué)過程也接近尾聲了,為了是學(xué)生對所學(xué)知識有一個完整的框架,利于學(xué)生對知識的理解和記憶,師生共同合作,從以下三方面進行小結(jié):
1、本節(jié)課學(xué)習的主要內(nèi)容;
2、運用有理數(shù)加法法則的關(guān)鍵問題;
9作業(yè)布置:(必做)練習2、3、4、(選作)習題1、
10、最后是我的板書設(shè)計:
法則小結(jié)。
步驟與口訣布置作業(yè)。
結(jié)論。
以上是我從四個方面闡述了本節(jié)課”教什么,怎么教,有理數(shù)的加法為什么這樣教"希望各位專家、老師對本節(jié)課提出寶貴意見,再次謝謝各位評委老師。
有理數(shù)的加法數(shù)學(xué)七年級教案篇五
1.使學(xué)生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算.
2.通過有理數(shù)的加法運算,培養(yǎng)學(xué)生的運算能力.
教學(xué)重點與難點。
重點:熟練應(yīng)用有理數(shù)的加法法則進行加法運算.
教學(xué)過程。
(一)復(fù)習提問。
1.有理數(shù)是怎么分類的?
2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?
3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?
-3與-2;3與-3;-3與0;。
-2與+1;-+4與-3.
(二)引入新課。
在小學(xué)算術(shù)中學(xué)過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內(nèi)的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學(xué)有理數(shù)的加法運算.
兩次行走后距原點0為8米,應(yīng)該用加法.
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:
1.同號兩數(shù)相加。
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8。
用數(shù)軸表示如圖:略。
從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米。
(-5)+(-3)=-8。
用數(shù)軸表示如圖:略。
從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.
總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),同號兩數(shù)相加。
(-4)+(-5)=-(),取相同的符號。
4+5=9把絕對值相加。
(-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
2.異號兩數(shù)相加。
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0。
可知,互為相反數(shù)的兩個數(shù)相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是3+(-5)=-2.
最后歸納。
例如(-8)+5絕對值不相等的異號兩數(shù)相加。
85。
(-8)+5=-()取絕對值較大的加數(shù)符號。
8-5=3用較大的絕對值減去較小的絕對值。
(-8)+5=-3.
口答練習。
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)。
3.一個數(shù)和零相加。
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結(jié)果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結(jié)果向東走了-5米,即向西走了5米.
請同學(xué)們把(1)、(2)畫出圖來。
由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).
總結(jié)有理數(shù)加法的三個法則.學(xué)生看書,引導(dǎo)他們看有理數(shù)加法運算的三種情況.
特例:兩個互為相反數(shù)相加;。
(3)一個數(shù)和零相加.
每種運算的法則強調(diào):(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析。
例1計算(-3)+(-9).
分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應(yīng)為負),和的絕對值就是把絕對值相加(應(yīng)為3+9=12)(強調(diào)相同、相加的特征).
解:(-3)+(-9)=-12.
例2。
分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應(yīng)為負),和的絕對值等于較大絕對值減去較小絕對值..(強調(diào)兩個較大一個較小)。
解:解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習。
1.計算(口答)。
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);。
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;。
2.計算。
(1)5+(-22);(2)(-1.3)+(-8)。
(3)(-0.9)+1.5;(4)2.7+(-3.5)。
將本文的word文檔下載到電腦,方便收藏和打印。
有理數(shù)的加法數(shù)學(xué)七年級教案篇六
學(xué)習過程:
一、自主學(xué)習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學(xué)學(xué)過的加法運算律有哪些?舉例說明運用運算律有何好處?
2.加法的交換律:
兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.
3.加法的結(jié)合律:
有理數(shù)的加法數(shù)學(xué)七年級教案篇七
2.培養(yǎng)學(xué)生觀察、分析、歸納及運算能力。
三、教學(xué)重點。
四、教學(xué)難點。
五、教學(xué)用具。
三角尺、小黑板、小卡片。
六、課時安排。
1課時。
七、教學(xué)過程。
(一)、從學(xué)生原有認知結(jié)構(gòu)提出問題。
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學(xué)里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。
(二)、師生共同研究有理數(shù)減法法則。
問題1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,(更多內(nèi)容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的結(jié)果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:
減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。
教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃ǎ欢菧p數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):
在小學(xué)里學(xué)習的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。
閱讀課本63頁例3。
(四)、小結(jié)。
1.教師指導(dǎo)學(xué)生閱讀教材后強調(diào)指出:
由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。
2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數(shù)減法解下列問題。
八、布置課后作業(yè):
課本習題2.6知識技能的2、3、4和問題解決1。
九、板書設(shè)計。
2.5有理數(shù)的減法。
(一)知識回顧(三)例題解析(五)課堂小結(jié)。
例1、例2、例3。
(二)觀察發(fā)現(xiàn)(四)課堂練習練習設(shè)計。
十、課后反思。
有理數(shù)的加法數(shù)學(xué)七年級教案篇八
理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
二、過程與方法。
經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
三、情感態(tài)度與價值觀。
通過對有理數(shù)的學(xué)習,體會到數(shù)學(xué)與現(xiàn)實世界的緊密聯(lián)系。
教學(xué)重難點及突破。
在引入了負數(shù)后,本課對所學(xué)過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習,使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開。
教學(xué)準備。
用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
教學(xué)過程。
四、課堂引入。
2.舉例說明現(xiàn)實中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區(qū)別。
有理數(shù)的加法數(shù)學(xué)七年級教案篇九
三、情感態(tài)度與價值觀。
體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,提高學(xué)生學(xué)習數(shù)學(xué)的興趣、
教學(xué)重點、難點與關(guān)鍵。
1、重點:有理數(shù)加減法統(tǒng)一為加法運算,掌握有理數(shù)加減混合運算、
2、難點:省略括號和加號的加法算式的運算方法、
投影儀、
四、教學(xué)過程。
一、復(fù)習提問,引入新課。
1、敘述有理數(shù)的加法、減法法則、
2、計算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我們已學(xué)習了有理數(shù)加、減法的運算,今天我們來研究怎樣進行有理數(shù)的加減混合運算、
六、鞏固練習。
1、課本第24頁練習、
(1)題是已寫成省略加號的代數(shù)和,可運用加法交換律、結(jié)合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)題運用加減混合運算律,同號結(jié)合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)題先把加減混合運算統(tǒng)一為加法運算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括號和加號)。
=—16+10。
=—6。
七、課堂小結(jié)。
八、作業(yè)布置。
1、課本第25頁第26頁習題1、3第5、6、13題、
九、板書設(shè)計:
第四課時。
1、把有理數(shù)加減混合運算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計算簡便、
歸納:加減混合運算可以統(tǒng)一為加法運算、
用式子表示為a+b—c=a+b+(—c)、
2、隨堂練習。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思。
本課教學(xué)反思。
本節(jié)課主要采用過程教案法訓(xùn)練學(xué)生的聽說讀寫。過程教案法的理論基礎(chǔ)是交際理論,認為寫作的過程實質(zhì)上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學(xué)生指導(dǎo),更正其錯誤,幫助學(xué)生完成寫作各階段任務(wù)。課堂是寫作車間,學(xué)生與教師,學(xué)生與學(xué)生彼此交流,提出反饋或修改意見,學(xué)生不斷進行寫作,修改和再寫作。在應(yīng)用過程教案法對學(xué)生進行寫作訓(xùn)練時,學(xué)生從沒有想法到有想法,從不會構(gòu)思到會構(gòu)思,從不會修改到會修改,這一過程有利于培養(yǎng)學(xué)生的寫作能力和自主學(xué)習能力。學(xué)生由于能得到教師的及時幫助和指導(dǎo),所以,即使是英語基礎(chǔ)薄弱的同學(xué),也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學(xué)生寫作興趣,增強了寫作的自信心。
這個話題很容易引起學(xué)生的共鳴,比較貼近生活,能激發(fā)學(xué)生的興趣,在教授知識的同時,應(yīng)注意將本單元情感目標融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應(yīng)注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡(luò)能為后續(xù)學(xué)習打下基礎(chǔ)。此教案設(shè)計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
在此教案過程中,應(yīng)注重培養(yǎng)學(xué)生的自學(xué)能力,通過輔導(dǎo)學(xué)生掌握一套科學(xué)的學(xué)習方法,才能使學(xué)生的學(xué)習積極性進一步提高。再者,培養(yǎng)學(xué)生的學(xué)習興趣,增強教案效果,才能避免在以后的學(xué)習中產(chǎn)生兩極分化。
在教案中任然存在的問題是,學(xué)生在“說”英語這個環(huán)節(jié)還有待提高,大部分學(xué)生都不愿意開口朗讀課文,所以復(fù)述課文便尚有難度,對于這一部分學(xué)生的學(xué)習成績的提高還有待研究。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十
在本節(jié)課的教學(xué)過程中,將先復(fù)習舊知引入課題,這樣能使學(xué)生積極主動地學(xué)習。在探究有理數(shù)加法的過程中,先讓學(xué)生獨立觀察,然后通過小組合作學(xué)習交流并討論,從而發(fā)現(xiàn)有理數(shù)加法的性質(zhì),注重學(xué)生探究能力的培養(yǎng),讓學(xué)生支親身體驗的產(chǎn)生過程,充分發(fā)揮學(xué)生的主觀能動性。最后通過例題來鞏固有理數(shù)的加法法則,讓學(xué)生及時地掌握所學(xué)的新知,對于學(xué)生起到有效地鞏固作用。
有理數(shù)加法是小學(xué)學(xué)過的加法去處的拓展,學(xué)生已經(jīng)具有了正數(shù)、負數(shù)、數(shù)軸和絕對值等知識。加法法則實際上給出了確定兩個有理數(shù)的和的“符號”與“絕對值”的規(guī)則,它是通過分析兩個有理數(shù)哩可能出現(xiàn)的各種不同情況,再歸納出同號相加、民號相加、一個有理數(shù)與0相加三種情況而得到的。由于學(xué)生的思維發(fā)展水平和知識準備的限制,在分情況討論、應(yīng)分成哪幾種情況、如何歸納不同情況等方面都需要教師的引導(dǎo),甚至是直接講解。同號兩數(shù)的加法法則比較易于理解,而異號兩數(shù)相加時情況比較復(fù)雜,學(xué)習難度較大,需要教師加強引導(dǎo)。另外,根據(jù)法則做加法,需要注意“按部就班”地計算,這是一個培養(yǎng)良好運算習慣的過程。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十一
平行公理及推論
(二)難點
平行線概念的理解
(三)解決辦法
通過引導(dǎo)學(xué)生嘗試發(fā)現(xiàn)新知、練習鞏固的方法來解決
投影儀、三角板、自制膠片
1通過投影片和適當問題創(chuàng)設(shè)情境,引入新課
2通過教師引導(dǎo),學(xué)生積極思維,進行反饋練習,完成新授
3學(xué)生自己完成本課小結(jié)
(-)明確目標
(二)整體感知
(三)教學(xué)過程
創(chuàng)設(shè)情境,引出課題
學(xué)生齊聲答:不是
師:因此,平面內(nèi)的兩條直線除了相交以外,還有不相交的情形,這就是我們本節(jié)所要研究的內(nèi)容(板書課題)
[板書]24平行線及平行公理
探究新知,講授新課
師:在我們生活的周圍,平面內(nèi)不相交的情形還有許多,你能舉例說明嗎?
學(xué)生:窗戶相對的棱,桌面的對邊,書的對邊……
師:我們把它們向兩方無限延伸,得到的直線總也不會相交我們把這樣的直線叫做平行線
[板書]在同一平面內(nèi),不相交的兩條直線叫做平行線
教師出示投影片(課本第74頁圖2?17)
師:請同學(xué)們觀察,長方體的棱與無論怎樣延長,它們會不會相交?
學(xué)生:不會相交
師:那么它們是平行線嗎?
學(xué)生:不是
師:也就是說平行線的定義必須有怎樣的'前提條件?
學(xué)生:在同一平面內(nèi)
師:誰能說為什么要有這個前提條件?
學(xué)生:因為空間里,不相交的直線不一定平行
教師在黑板上給出課本第73頁圖2
學(xué)生:兩種相交和平行
由此師生共同小結(jié):在同一平面內(nèi),兩條直線的位置關(guān)系只有相交、平行兩種
嘗試反饋,鞏固練習(出示投影)
1判斷正誤
(1)兩條不相交的直線叫做平行線()
(2)有且只有一個公共點的兩直線是相交直線()
(3)在同一平面內(nèi),不相交的兩條直線一定平行()
(4)一個平面內(nèi)的兩條直線,必把這個平面分為四部分()
2下列說法中正確的是()
a在同一平面內(nèi),兩條直線的位置關(guān)系有相交、垂直、平行三種
b在同一平面內(nèi),不垂直的兩直線必平行
c在同一平面內(nèi),不平行的兩直線必垂直
d在同一平面內(nèi),不相交的兩直線一定不垂直
學(xué)生活動:學(xué)生回答,并簡要說明理由
師:我們很容易畫出兩條相交直線,而對于平行線的畫法,我們在小學(xué)就學(xué)過用直尺和三角板畫,下面清同學(xué)在練習本上完成下面題目(投影顯示)
已知直線和外一點,過點畫直線
師:請根據(jù)語句,自己畫出已知圖形
學(xué)生活動:學(xué)生在練習本上畫出圖形
師:下面請你們按要求畫出直線
注意:(1)在推動三角尺時,直尺不要動;
(2)畫平行線必須用直尺三角板,不能徒手畫
嘗試反饋,鞏固練習(出示投影)
1畫線段,畫任意射線,在上取、、三點,使,連結(jié),用三角板畫,,分別交于、,量出、、的長(精確到)
2讀下列語句,并畫圖形
(1)點是直線外的一點,直線經(jīng)過點,且與直線平行
(2)直線、是相交直線,點是直線、外的一點,直線經(jīng)過點與直線平行與直線相交于
(3)過點畫,交的延長線于
學(xué)生活動:學(xué)生思考并回答,能畫,而且只能畫一條
師:我們把這個結(jié)論叫平行公理,教師板書
【板書】平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
學(xué)生:思考后,立即回答,能畫無數(shù)條
師:請同學(xué)們在練習本上完成
(出示投影)
已知直線,分別畫直線、,使,
學(xué)生活動:學(xué)生在練習本上完成
師:請同學(xué)們觀察,直線、能不能相交?
學(xué)生活動:觀察,回答:不相交,也就是說
師:為什么呢?同桌可以討論
學(xué)生活動:學(xué)生積極討論,各抒己見
學(xué)生活動:教師讓學(xué)生積極發(fā)表意見,然后給出正確的引導(dǎo)
師:我們觀察圖形,如果直線與相交,設(shè)交點為,那么會產(chǎn)生什么問題呢?請同學(xué)們討論
學(xué)生活動:學(xué)生在教師的啟發(fā)引導(dǎo)下思考、討論,得出結(jié)論
[板書]如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行
學(xué)生活動:學(xué)生思考,回答:不對,給出反例圖形,
例如:如圖1所示,射線與就不相交,也不平行
師:同學(xué)們想一想,當我們說兩條射線或線段平行時,實際上是什么平行才可以呢?
生:它們所在的直線平行
嘗試反饋,鞏固練習(投影)
有理數(shù)的加法數(shù)學(xué)七年級教案篇十二
因為時間關(guān)系,本課的隨堂練習沒有時間完成,只剛把異號兩數(shù)相加的法則歸納出來就下課了,遠沒有完成計劃中的任務(wù)。
自以為應(yīng)該是很成功的一節(jié)課卻感到寸步難行?;仡櫛竟?jié)課,問題究竟出在哪里呢?通過仔細思考,我認為存在的有以下幾方面的問題。
1、有正確的把握好教材,是片斷1失誤的主要原因。
如情境的引入要恰當。如本節(jié)中“凈勝球”學(xué)生就不懂,如無事先進行補充說明,學(xué)生就不懂,導(dǎo)致一節(jié)課的進度一拖再拖。必須讓學(xué)生所接觸的例子和我們的生活密切相關(guān),這樣才能更易為學(xué)生所接受?;仡欉@一整節(jié)課,其實還有很多可以對教材進行發(fā)掘的地方,如在數(shù)軸上的運動問題,也可以是讓學(xué)生在一條直路上運動,這樣可能讓學(xué)生更有興趣,再用數(shù)軸進行抽象,可能效果會更好。
《平行》這一節(jié)中所提到的滑雪運動最關(guān)鍵的是要保持兩只雪撬的平行,這一知識點對于我們這里的孩子是非常陌生的,我們都沒見過雪撬,更談不上其技巧了。
用過新教材的同行們都說,一節(jié)課完后不知這節(jié)課都在干什么!我也常有這種想法,教材是專家們研究實驗過的,專家是干啥的?現(xiàn)在痛定思痛,實際上是我們對新教材把握不夠,沒有搞清其重難點,沒有把握教材的真正要求。雖然我們天天在談、天天在寫“目標”“重點”“難點”,但實際上僅僅是在寫而已。實際情形往往是這樣:由于我們教學(xué)多年,大都只憑我們以往的經(jīng)驗來“把握”教材,憑我們過去所了解的重難點、教學(xué)方法、教學(xué)模式來引導(dǎo)我們、來確定組織教學(xué),實質(zhì)是用老教法來教新教材。所以一節(jié)課下來我們自己都不知干了些什么!實際上只要我們真正掌握了其教學(xué)要求,把握了新教材的內(nèi)涵、我們的思路清醒,方向明確,就知道自己應(yīng)該怎樣做。
2、備課粗枝大葉,造成一些不應(yīng)有的失誤。
如在片斷2中,由在數(shù)軸上先后兩次不同方向的運動,得到兩個算式:
3+(-2)=1(-3)+(+2)=-1。
教師:這兩個算式結(jié)果的'符號有何特點?
生答:兩個結(jié)果的符號都與第一個加數(shù)的符號相同。
學(xué)生的回答非常正確,而且是經(jīng)過仔細觀察后回答的,但我的本意是要把絕對值較大的數(shù)放在不同的位置讓學(xué)生來觀察、歸納的。這實際上是備課工作中的馬虎大意引起的,備課缺乏深度。備課以及課堂中要盡量避免人為地給學(xué)生帶來的錯誤導(dǎo)向。
3、教學(xué)語言單調(diào)、生硬缺乏啟發(fā)性、激勵性。
課堂上,我十分吝嗇“請”“請坐”及一些稱頌學(xué)生的語言,認為自己天天在說沒有必要,在一定程度上就變相抑制了學(xué)生的積極性,尤其是對差生而言,他們是進行課堂學(xué)習的“學(xué)困生”更需要我們的肯定和贊揚,每一次真心的贊揚可能都會給他們帶來一次新的進步。
教學(xué)語言是決定教學(xué)效果好壞的一個重要環(huán)節(jié)。教學(xué)語言活潑風趣、幽默可以活躍課堂氣氛,調(diào)動學(xué)生的學(xué)習熱情。常言道“親其師、信其道”,語言是讓學(xué)生對教師產(chǎn)生親切感的一個重要渠道。啟發(fā)性的語言能使學(xué)生順理成張的回答教師提出的問題,不需要繞太多的圈子,具有點石成金的功效。通俗易懂的語言可以讓學(xué)生學(xué)得輕松自然。激勵性的語言則幫助學(xué)生樹立學(xué)習信心、肯定了他們的學(xué)習成果,讓他們時時能找到自己的價值,尤其是對“學(xué)困生”更要讓他們找到自己身上的閃光點,提高他們的學(xué)習興趣,充分發(fā)揮語言評價的功效。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十三
有理數(shù)的加法與減法這節(jié)課,法則的生成很重要,所以在教學(xué)中我注重法則的生成過程,因為也剛剛寫了一篇博文就是注重數(shù)學(xué)知識的形成,對于法則,老師可以直接告訴答案,也可以和學(xué)生一起探討,研究得出法則,對于兩種教學(xué)方式,我采取更多的時間讓學(xué)生自己體會法則的生成,注重引導(dǎo)學(xué)生參與探索、歸納有理數(shù)加法法則的過程,主動獲取知識.這樣,學(xué)生在這節(jié)課上不僅學(xué)懂了法則,而且能感知到研究數(shù)學(xué)問題的一些基本方法.我在講完法則的'時候課程已經(jīng)進行了三十分鐘多一點,所以課上例題和練習才用了十分鐘,所以又用了習題課上了一節(jié),盡管上的比較慢,但是這種方案減少了應(yīng)用法則進行計算的練習,所以學(xué)生掌握法則的熟練程度可能稍差,這是教學(xué)中應(yīng)當注意的問題.但是,在后續(xù)的教學(xué)中學(xué)生將千萬次應(yīng)用“有理數(shù)加法法則”進行計算,故這種缺陷是可以得到彌補的.如果直接告訴答案削弱了得出結(jié)論的“過程”,失去了培養(yǎng)學(xué)生觀察、比較、歸納能力的一次機會。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十四
數(shù)學(xué)學(xué)習過程應(yīng)當是一個生動活潑的、主動的和富有個性的過程,而不能再是單一的、枯燥的,以被動聽講和練習為主的方式,它應(yīng)該是一個充滿生命力的過程。本節(jié)課在教學(xué)中以故事引入,在學(xué)生已有的知識經(jīng)驗建構(gòu)新知主動探索有理數(shù)加法交換律和結(jié)合律,從而引起他們學(xué)習的興趣,把他們被動地接受學(xué)習變成一種主動探索獲取知識的過程。
數(shù)學(xué)與人和現(xiàn)實生活之間是有著緊密的聯(lián)系的,把貼近學(xué)生熟悉的,現(xiàn)實生活,引入教學(xué),不斷溝通生活中的數(shù)學(xué)與教科書的聯(lián)系使生活和數(shù)學(xué)融為一體,是“新課標”所倡導(dǎo)的理念之一。本課教學(xué)時的最大特點是讓學(xué)生體會生活中的數(shù)學(xué),有益于學(xué)生理解數(shù)學(xué)、熱愛數(shù)學(xué),從而把數(shù)學(xué)當成自己發(fā)展的重要動力源泉。
本節(jié)課中如何更有效地調(diào)動“弱勢群體”的積極性,是我們進一步要探討的方向。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十五
一、問題的引入:在問題的引入上。新課標規(guī)定應(yīng)從實際情景入手,并且使學(xué)生能夠?qū)栴}產(chǎn)生強烈的求知欲。我采用了敵軍對我軍進行小規(guī)模軍事偵察的問題,使學(xué)生處在一個指揮官的角色。對問題提出解決的辦法,并且在對學(xué)生提出的各種情況,作出實際的操作,使學(xué)生明白數(shù)學(xué)在解決實際問題中的應(yīng)用。我感覺在問題的引入上問題過于簡單,使學(xué)生思考的范圍過于局限。沒有出現(xiàn)比較熱烈的學(xué)習氣氛。所以問題的引入應(yīng)加大深度,應(yīng)具有一定的挑戰(zhàn)性。
二、問題的探索:在問題的探索上,我采用了一個小人在坐標軸上來回行走,產(chǎn)生一種動態(tài)效果,使學(xué)生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時間和空間的條件下,親身參加探索發(fā)現(xiàn),主動的獲取知識和技能。但在整個的實施過程中出現(xiàn)了一些問題,比如:在法則的得出上學(xué)生的總結(jié)出現(xiàn)了一些問題,我再處理時由于怕時間不夠充裕所以學(xué)生出現(xiàn)的問題我給作出了解答,其實這里應(yīng)由學(xué)生自己來解決,這樣對學(xué)生能力的提高非常有幫助。
三、習題的配備:整個習題的配備大致是按從易到難的順序排列的,面向全體學(xué)生,采用多種形式,使不同層次的學(xué)生都有所得,并且采用循序漸進的方法,使學(xué)生對加法法則的理解進一步的加強。在講解完例題后,讓學(xué)生互相提問,以促使學(xué)生積極踴躍的參與到教學(xué)活動中來,創(chuàng)造一種輕松的學(xué)習氛圍。在最后的習題配備上,讓學(xué)生對兩個加數(shù)及和之間的關(guān)系作出判斷,并且對各種情況作出討論,達到本節(jié)課的一個高潮。促使學(xué)生的思路得到進一步的加強。但我總體感覺習題的量不夠充足,學(xué)生的練習機會較少。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十六
1.同號相加,取相同符號,并把絕對值相加。
2.絕對值不等的異號相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
4.相反數(shù)相加結(jié)果一定得0。
注意。
一是確定結(jié)果的符號;二是求結(jié)果的絕對值.在進行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有0.從而確定用那一條法則。在應(yīng)用過程中,一定要牢記“先符號,后絕對值”,熟練以后就不會出錯了.多個有理數(shù)的加法,可以從左向右計算,也可以用加法的運算定律計算,但是在下筆前一定要思考好,哪一個要用定律哪一個要從左往右計算.
減法。
法則。
有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。其中:兩變:減法運算變加法運算,減數(shù)變成它的相反數(shù)做加數(shù)。一不變:被減數(shù)不變。可以表示成:a-b=a+(-b)。
乘法。
法則。
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘。例:(-5)×(-3)=15(-6)×4=-24。
(2)任何數(shù)同0相乘,都得0。例:0×1=0。
(4)幾個數(shù)相乘,有一個因數(shù)為0時,積為0。例:3×(-2)×0=0。
(5)乘積為1的兩個有理數(shù)互為倒數(shù)(reciprocal)。(乘積為-1的互為負倒數(shù))例如,—3與—1/3,—3/8與—8/3。
除法。
法則。
(1)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。(注意:0沒有倒數(shù))。
(2)兩數(shù)相除,同號為正,異號為負,并把絕對值相除。
(3)0除以任何一個不等于0的數(shù),都等于0。
注意:
0在任何條件下都不能做除數(shù)。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十七
有理數(shù)的加法與減法這節(jié)課,法則的生成很重要,所以在教學(xué)中我注重法則的生成過程,因為也剛剛寫了一篇博文就是注重數(shù)學(xué)知識的形成,對于法則,老師可以直接告訴答案,也可以和學(xué)生一起探討,研究得出法則,對于兩種教學(xué)方式,我采取更多的時間讓學(xué)生自己體會法則的生成,注重引導(dǎo)學(xué)生參與探索、歸納有理數(shù)加法法則的過程,主動獲取知識。
這樣,學(xué)生在這節(jié)課上不僅學(xué)懂了法則,而且能感知到研究數(shù)學(xué)問題的一些基本方法。我在講完法則的時候課程已經(jīng)進行了三十分鐘多一點,所以課上例題和練習才用了十分鐘,所以又用了習題課上了一節(jié),盡管上的比較慢,但是這種方案減少了應(yīng)用法則進行計算的練習,所以學(xué)生掌握法則的熟練程度可能稍差,這是教學(xué)中應(yīng)當注意的問題。但是,在后續(xù)的教學(xué)中學(xué)生將千萬次應(yīng)用“有理數(shù)加法法則”進行計算,故這種缺陷是可以得到彌補的。如果直接告訴答案削弱了得出結(jié)論的“過程”,失去了培養(yǎng)學(xué)生觀察、比較、歸納能力的一次機會。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十八
1、知識目標:借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性,會判斷一個數(shù)是正數(shù)還是負數(shù)。
2、能力目標:能應(yīng)用正負數(shù)表示生活中具有相反意義的量。
3、情感態(tài)度:讓學(xué)生了解有關(guān)負數(shù)的歷史、體會負數(shù)與實際生活的聯(lián)系。教學(xué)重難點。
重點:理解有理數(shù)的意義。
難點:能用正負數(shù)表示生活中具有相反意義的量。
教學(xué)過程。
一、創(chuàng)設(shè)情境、提出問題。
某班舉行知識競賽,評分標準是:答對一題加1分,答錯一題扣1分,不回答得0分;每個隊的基礎(chǔ)分均為0分。兩個隊答題情況見書上第23頁。
二、分析探索、問題解決。
分組討論扣的分怎樣表示?
用前面學(xué)的數(shù)能表示嗎?
數(shù)怎么不夠用了?
引出課題。
講授正數(shù)、負數(shù)、有理數(shù)的定義。
用負數(shù)表示比“0”低的數(shù),如:-10,讀作負10,表示比0低10分的數(shù)。啟發(fā)學(xué)生再從生活中例舉出用負數(shù)表示具有相反意義的數(shù)。
三、鞏固練習。
1、用正數(shù)或負數(shù)表示下列各題中的數(shù)量:
(2)球賽時,如果勝2局記作+2,那么-2表示______;。
(3)若-4萬表示虧損4萬元,那么盈余3萬元記作______;。
(4)+150米表示高出海平面150米,低于海平面200米應(yīng)記作______.
分析:用正、負數(shù)可分別表示具有相反意義的量,通常高于海平面的高度用正數(shù)表示,低于海平面的高度用負數(shù)表示;完全相反的兩個方向,一個方向定為用正數(shù)表示,則另一個方向用負數(shù)表示;如運進與運出,收入與支出,盈利與虧損,買進與賣出,勝與負等都是具有相反意義的量。
2、下面說法中正確的是().
a.“向東5米”與“向西10米”不是相反意義的量;
b.如果汽球上升25米記作+25米,那么-15米的意義就是下降-15米;
c.如果氣溫下降6℃記作-6℃,那么+8℃的意義就是零上8℃;。
d.若將高1米設(shè)為標準0,高1.20米記作+0.20米,那么-0.05米所表示的高是0.95米。
三、小結(jié)回顧、納入體系。
學(xué)生交流回顧、討論總結(jié),教師補充如下:
概念:正數(shù)、負數(shù)、有理數(shù)。
分類:有理數(shù)的分類:兩種分法。
應(yīng)用:有理數(shù)可以用來表示具有相反意義的量。
有理數(shù)的加法數(shù)學(xué)七年級教案篇一
2.內(nèi)容解析。
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習是至關(guān)重要的.
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則.
二、目標及其解析。
1.目標。
(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
2.目標解析。
達成目標(1)的標志是學(xué)生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.
達成目標(2)的標志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
三、教學(xué)問題診斷分析。
有理數(shù)的乘法與小學(xué)學(xué)習的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
四、教學(xué)過程設(shè)計。
教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習有關(guān)知識,為下面的教學(xué)做好準備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學(xué)生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
3×(-2)=,
3×(-3)=.
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習奠定基礎(chǔ).
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學(xué)生的模仿、概括的能力.
追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成.
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.
學(xué)生獨立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.
設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.
例1計算:
(1)。
;(2)。
;(3)。
學(xué)生獨立完成后,全班交流.
教師說明:在(3)中,我們得到了。
=1.與以前學(xué)習過的倒數(shù)概念一樣,我們說。
與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
小結(jié)、布置作業(yè)。
請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
(2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習過程兩個方面進行小結(jié).
作業(yè):教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
五、目標檢測設(shè)計。
1.判斷下列運算結(jié)果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2計算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況.
有理數(shù)的加法數(shù)學(xué)七年級教案篇二
1.1正數(shù)和負數(shù)(2)。
教學(xué)目標:
教學(xué)重點:
深化對正負數(shù)概念的理解。
教學(xué)難點:
正確理解和表示向指定方向變化的量。
教學(xué)準備:彩色粉筆。
教學(xué)過程:
一、復(fù)習引入:
學(xué)生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
二、講解新課。
度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
思考:教科書第4頁(學(xué)生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結(jié)。
引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學(xué)過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設(shè)計:
有理數(shù)的加法數(shù)學(xué)七年級教案篇三
學(xué)習目標:。
1、理解加減法統(tǒng)一成加法運算的意義.
2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.
3、培養(yǎng)學(xué)習數(shù)學(xué)的興趣,增強學(xué)習數(shù)學(xué)的信心.
教學(xué)方法:講練相結(jié)合。
教學(xué)過程。
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
記作+4.5千米—3.2千米+1.1千米—1.4千米。
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
2、你是怎么算出來的,方法是。
1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導(dǎo).
如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。
=-20+3+5-7再把加號記在腦子里,省略不寫。
可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
4、師生完整寫出解題過程。
1、解決引例中的問題,再比較前面的方法,你的感覺是。
2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
1、小結(jié):說說這節(jié)課的收獲。
2、p241、2。
3、計算。
1)27—18+(—7)—322)。
五、作業(yè)。
1、p2552、p26第8題、14題。
有理數(shù)的加法數(shù)學(xué)七年級教案篇四
教材分析:
在教材分析中我將談一下幾點:
(一)、教材的地位與作用:
【有理數(shù)的加法法則】是初中華師版七年級上冊第二章第六節(jié)的內(nèi)容,在這之前,學(xué)生已經(jīng)在小學(xué)掌握了算術(shù)運算,而前邊的學(xué)習又初步掌握了有理數(shù)的基本概念,有理數(shù)的加法運算是建立在小學(xué)運算的基礎(chǔ)之上的,又與小學(xué)加法運算有很大的區(qū)別,如小學(xué)的加法運算不需要確定符號運算單一,而有理數(shù)的加法不但要計算絕對值的大小而且還要確定結(jié)果的符號,由算術(shù)到代數(shù)式學(xué)生從小學(xué)到初中的一個新的轉(zhuǎn)折點。而有理數(shù)的加法又是有理數(shù)運算的主要內(nèi)容是初等數(shù)學(xué)運算的基礎(chǔ),同時又是學(xué)習物理、化學(xué)等相關(guān)學(xué)科的基礎(chǔ)。因此,這部分內(nèi)容在學(xué)習數(shù)學(xué)及其他方面占有相當重要的地位及作用。
(二)、教學(xué)內(nèi)容:
有理數(shù)的加法的教學(xué)共分2課時,這是有理數(shù)的加法第一課時。本節(jié)課主要講授有理數(shù)加法的意義,歸納有理數(shù)加法的法則,能區(qū)別有理數(shù)的和與小學(xué)運算的和的不同,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。
(三)、教學(xué)目標:
倡導(dǎo)有理數(shù)的加法要以學(xué)生為主,讓學(xué)生參與”觀察、猜想、驗證、歸納、運用“的全過程。以培養(yǎng)創(chuàng)新意識與培養(yǎng)能力為宗旨。從教材的特點和初一學(xué)生的認知水平,以教學(xué)思維為出發(fā)點。我設(shè)計如下的教學(xué)目標:
1、知識目標:使學(xué)生有理數(shù)加法的意義,掌握有理數(shù)加法的法則,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。
2、能力目標:在本節(jié)課的教學(xué)中,借助數(shù)軸向?qū)W生滲透數(shù)形結(jié)合的思想,利用絕對值把有理數(shù)的加法運算化歸為小學(xué)算術(shù)的加減運算,體現(xiàn)化歸的思想,以及適度加強法則的形成過程,著重培養(yǎng)學(xué)生”觀察、猜想、驗證、歸納、運用“等綜合能力。
3、情感目標:遵循學(xué)生學(xué)習的認知規(guī)律和初一學(xué)生的身心特點,按照啟發(fā)式教學(xué)原則用發(fā)現(xiàn)法和直觀教學(xué)法激發(fā)學(xué)生探究教學(xué)的興趣,培養(yǎng)學(xué)生敢于探索、樂于創(chuàng)新的精神。
4、教學(xué)重點、難點和教學(xué)關(guān)鍵:
解決問題的關(guān)鍵是有理數(shù)加法中結(jié)果符號的確定。
二、教法分析:
為了充分調(diào)動學(xué)生的積極性,變被動學(xué)習為主動學(xué)習使教學(xué)生動、有趣、高效,我采用啟發(fā)式教學(xué),發(fā)現(xiàn)法教學(xué)形成性學(xué)習和多媒體教學(xué)手段共用,考慮到學(xué)生目前仍以直觀思維為主,在教學(xué)中,我采用針對性較強的相應(yīng)措施。首先,我創(chuàng)設(shè)具體的問題情景運用多媒體手段進行必要的動態(tài)演示,讓學(xué)生看的清楚,聽的明白逐步從圖形的直觀向深化過渡,最后向抽象思維過渡,引導(dǎo)學(xué)生觀察與思考,以增強教學(xué)的直觀性、有效性;其次,引導(dǎo)學(xué)生從特殊到一般的探究,師生共同歸納出有理數(shù)的加法法則,以以增強教學(xué)的直觀性、有效性、深刻性這既是形象思維轉(zhuǎn)化為抽象思維的過程,也是對學(xué)生觀察、歸納思維能力的過程,再讓學(xué)生參與知識的形成過程,促進認知結(jié)構(gòu)的建構(gòu),培養(yǎng)學(xué)生活動知識的能力,從而使學(xué)生在學(xué)習知識的過程中,獲得成功的體驗。
三、學(xué)法指導(dǎo):
課堂教學(xué)要體現(xiàn)以學(xué)生的發(fā)展為本,為充分體現(xiàn)教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,我采用啟發(fā)式教學(xué)原則,通過提出問題,多媒體的直觀演示和學(xué)生一起分析,歸納出法則。始終讓學(xué)生參與整個問題的全過程,在整個教學(xué)過程的設(shè)計中力求發(fā)揮學(xué)生的主體意識,盡情創(chuàng)造性的學(xué)習,無論在法則的形成,還是法則的運用數(shù)學(xué)思想方法的滲透,都避免教師的灌輸方法,有意識的讓學(xué)生主動觀察、比較、分類、歸納積極思考,教師在教學(xué)中加以引導(dǎo)、及時點撥,激發(fā)學(xué)生的探索精神和求知欲望,培養(yǎng)學(xué)生的學(xué)習數(shù)學(xué)的主動性,讓學(xué)生在愉悅的氣氛中感受到數(shù)學(xué)學(xué)習的無限樂趣。
四、說教學(xué)過程:
2、然后設(shè)置這樣一個問題情景,利用動態(tài)演示帶領(lǐng)學(xué)生進行新課探索,首先我提出問題”兩次一共向東走了多少米?“用什么方法呢?接著我提醒學(xué)生注意審題,暗示學(xué)生題中沒有明確小明朝那個方向走,通過暗示,引導(dǎo)學(xué)生思考。
3、接著我又提出問題2”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了-20米,那么兩次一共走了多少米?“利用動態(tài)演示,學(xué)生很容易得出”互為相反數(shù)的兩數(shù)相加得0“之后我又提出問題3”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了0米,那么兩次一共走了多少米?“學(xué)生很容易得出”一個數(shù)與0相加,仍得0“從而利用上面的演示過程,歸納出有一個加數(shù)為0的法則。
4、至此,通過師生多種情形的歸納,一起歸納出有理數(shù)的加法法則。
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;
3、互為相反數(shù)的兩數(shù)相加得0。
4、一個數(shù)與0相加,仍得0】意義上教學(xué)過程通過多媒體演示,把數(shù)、式、形的靜變?yōu)閯樱栽鰪姺▌t的直觀性,加深法則的理解,突出本節(jié)課的重點、突破難點,同時也增強了數(shù)形結(jié)合的思想運用,在歸納出法則后,我有進一步啟發(fā)引導(dǎo)學(xué)生分析法則的'特點,并總結(jié)規(guī)律”兩有理數(shù)相加,所得的和為符號和和兩部分組成,加法運算的關(guān)鍵是福海的確定,符號運算一旦解決,余下的就是小學(xué)算術(shù)的加減問題了“在這里,我給出兩個具體的實例通過對他們的分析得出:
(-4)+(-8)=-(4+8)=-12。
同號兩數(shù)相加取相同的符號通過絕對值化歸為算術(shù)數(shù)和的過程。
(-9)+(+2)=-(9-2)=-7。
異號兩數(shù)相加取絕對值較大符號通過絕對值化歸為算術(shù)數(shù)減的過程。
總結(jié):同號兩數(shù)之和——名副其實的和——做加法。
異號兩數(shù)之和——表面是”和“實際上是做減法。
運算步驟:1、先判斷類型:同號還是異號;2、確定和的符號;
3、后進行絕對值的加減運算。
簡單歸為:8字訣——符號法則+算式加減。
通過以上的設(shè)計,進一步加深了對法則中難點問題的理解之后教師引導(dǎo)學(xué)生歸納出運算步驟,然后又教師歸納出加法法則。
6、接下來我又設(shè)置了一道改錯題:
設(shè)置問題,強化關(guān)鍵判斷正誤,并改錯。
1、兩個負數(shù)相加,絕對值相加;
2、正數(shù)加負數(shù),何謂負數(shù);
3、負數(shù)加正數(shù),和為正數(shù);
4、兩個有理數(shù)和為負數(shù)時,著兩個有理數(shù)都是負數(shù)它是專為學(xué)生在運用法則時易出錯的問題而設(shè)計的為促使學(xué)生在引用時仔細審題,通過分析辯誤,抓住關(guān)鍵。
7、為了完成從掌握知識到引用知識的轉(zhuǎn)化,使知識教學(xué)與智能訓(xùn)練相結(jié)合,我設(shè)置了以下例、習題易培養(yǎng)他們的邏輯思維和嚴密的計算能力,下面的這組練習由淺入深、循序漸進的原則,其目的在于鞏固法則,加深對法則的理解和記憶,練習2通過強化與訓(xùn)練,使學(xué)生熟中生巧、將知識轉(zhuǎn)化為技能,也為以后的學(xué)習奠定基礎(chǔ)。
計算下列各題:
例題1、(-6)+(-8)2、5.2+(-4.5)。
練習:1、計算下列各題:并說明理由(1)、(-4)+(-7)。
(2)、(-4)+(+7)(3)、(+4)+(+7)。
(4)、(-4)+(+4)(5)、(-9)+0。
練習:2、計算下列各題:
(1)、15+(-22)(2)、(+0.9)+1.5(3)、(+2.7)+(-3.5)。
8、到這時,整個教學(xué)過程也接近尾聲了,為了是學(xué)生對所學(xué)知識有一個完整的框架,利于學(xué)生對知識的理解和記憶,師生共同合作,從以下三方面進行小結(jié):
1、本節(jié)課學(xué)習的主要內(nèi)容;
2、運用有理數(shù)加法法則的關(guān)鍵問題;
9作業(yè)布置:(必做)練習2、3、4、(選作)習題1、
10、最后是我的板書設(shè)計:
法則小結(jié)。
步驟與口訣布置作業(yè)。
結(jié)論。
以上是我從四個方面闡述了本節(jié)課”教什么,怎么教,有理數(shù)的加法為什么這樣教"希望各位專家、老師對本節(jié)課提出寶貴意見,再次謝謝各位評委老師。
有理數(shù)的加法數(shù)學(xué)七年級教案篇五
1.使學(xué)生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算.
2.通過有理數(shù)的加法運算,培養(yǎng)學(xué)生的運算能力.
教學(xué)重點與難點。
重點:熟練應(yīng)用有理數(shù)的加法法則進行加法運算.
教學(xué)過程。
(一)復(fù)習提問。
1.有理數(shù)是怎么分類的?
2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?
3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?
-3與-2;3與-3;-3與0;。
-2與+1;-+4與-3.
(二)引入新課。
在小學(xué)算術(shù)中學(xué)過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內(nèi)的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學(xué)有理數(shù)的加法運算.
兩次行走后距原點0為8米,應(yīng)該用加法.
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:
1.同號兩數(shù)相加。
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8。
用數(shù)軸表示如圖:略。
從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米。
(-5)+(-3)=-8。
用數(shù)軸表示如圖:略。
從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.
總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),同號兩數(shù)相加。
(-4)+(-5)=-(),取相同的符號。
4+5=9把絕對值相加。
(-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
2.異號兩數(shù)相加。
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0。
可知,互為相反數(shù)的兩個數(shù)相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是3+(-5)=-2.
最后歸納。
例如(-8)+5絕對值不相等的異號兩數(shù)相加。
85。
(-8)+5=-()取絕對值較大的加數(shù)符號。
8-5=3用較大的絕對值減去較小的絕對值。
(-8)+5=-3.
口答練習。
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)。
3.一個數(shù)和零相加。
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結(jié)果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結(jié)果向東走了-5米,即向西走了5米.
請同學(xué)們把(1)、(2)畫出圖來。
由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).
總結(jié)有理數(shù)加法的三個法則.學(xué)生看書,引導(dǎo)他們看有理數(shù)加法運算的三種情況.
特例:兩個互為相反數(shù)相加;。
(3)一個數(shù)和零相加.
每種運算的法則強調(diào):(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析。
例1計算(-3)+(-9).
分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應(yīng)為負),和的絕對值就是把絕對值相加(應(yīng)為3+9=12)(強調(diào)相同、相加的特征).
解:(-3)+(-9)=-12.
例2。
分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應(yīng)為負),和的絕對值等于較大絕對值減去較小絕對值..(強調(diào)兩個較大一個較小)。
解:解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習。
1.計算(口答)。
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);。
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;。
2.計算。
(1)5+(-22);(2)(-1.3)+(-8)。
(3)(-0.9)+1.5;(4)2.7+(-3.5)。
將本文的word文檔下載到電腦,方便收藏和打印。
有理數(shù)的加法數(shù)學(xué)七年級教案篇六
學(xué)習過程:
一、自主學(xué)習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學(xué)學(xué)過的加法運算律有哪些?舉例說明運用運算律有何好處?
2.加法的交換律:
兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.
3.加法的結(jié)合律:
有理數(shù)的加法數(shù)學(xué)七年級教案篇七
2.培養(yǎng)學(xué)生觀察、分析、歸納及運算能力。
三、教學(xué)重點。
四、教學(xué)難點。
五、教學(xué)用具。
三角尺、小黑板、小卡片。
六、課時安排。
1課時。
七、教學(xué)過程。
(一)、從學(xué)生原有認知結(jié)構(gòu)提出問題。
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學(xué)里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。
(二)、師生共同研究有理數(shù)減法法則。
問題1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,(更多內(nèi)容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的結(jié)果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:
減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。
教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃ǎ欢菧p數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):
在小學(xué)里學(xué)習的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。
閱讀課本63頁例3。
(四)、小結(jié)。
1.教師指導(dǎo)學(xué)生閱讀教材后強調(diào)指出:
由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。
2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數(shù)減法解下列問題。
八、布置課后作業(yè):
課本習題2.6知識技能的2、3、4和問題解決1。
九、板書設(shè)計。
2.5有理數(shù)的減法。
(一)知識回顧(三)例題解析(五)課堂小結(jié)。
例1、例2、例3。
(二)觀察發(fā)現(xiàn)(四)課堂練習練習設(shè)計。
十、課后反思。
有理數(shù)的加法數(shù)學(xué)七年級教案篇八
理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
二、過程與方法。
經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
三、情感態(tài)度與價值觀。
通過對有理數(shù)的學(xué)習,體會到數(shù)學(xué)與現(xiàn)實世界的緊密聯(lián)系。
教學(xué)重難點及突破。
在引入了負數(shù)后,本課對所學(xué)過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習,使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開。
教學(xué)準備。
用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
教學(xué)過程。
四、課堂引入。
2.舉例說明現(xiàn)實中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區(qū)別。
有理數(shù)的加法數(shù)學(xué)七年級教案篇九
三、情感態(tài)度與價值觀。
體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,提高學(xué)生學(xué)習數(shù)學(xué)的興趣、
教學(xué)重點、難點與關(guān)鍵。
1、重點:有理數(shù)加減法統(tǒng)一為加法運算,掌握有理數(shù)加減混合運算、
2、難點:省略括號和加號的加法算式的運算方法、
投影儀、
四、教學(xué)過程。
一、復(fù)習提問,引入新課。
1、敘述有理數(shù)的加法、減法法則、
2、計算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我們已學(xué)習了有理數(shù)加、減法的運算,今天我們來研究怎樣進行有理數(shù)的加減混合運算、
六、鞏固練習。
1、課本第24頁練習、
(1)題是已寫成省略加號的代數(shù)和,可運用加法交換律、結(jié)合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)題運用加減混合運算律,同號結(jié)合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)題先把加減混合運算統(tǒng)一為加法運算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括號和加號)。
=—16+10。
=—6。
七、課堂小結(jié)。
八、作業(yè)布置。
1、課本第25頁第26頁習題1、3第5、6、13題、
九、板書設(shè)計:
第四課時。
1、把有理數(shù)加減混合運算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計算簡便、
歸納:加減混合運算可以統(tǒng)一為加法運算、
用式子表示為a+b—c=a+b+(—c)、
2、隨堂練習。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思。
本課教學(xué)反思。
本節(jié)課主要采用過程教案法訓(xùn)練學(xué)生的聽說讀寫。過程教案法的理論基礎(chǔ)是交際理論,認為寫作的過程實質(zhì)上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學(xué)生指導(dǎo),更正其錯誤,幫助學(xué)生完成寫作各階段任務(wù)。課堂是寫作車間,學(xué)生與教師,學(xué)生與學(xué)生彼此交流,提出反饋或修改意見,學(xué)生不斷進行寫作,修改和再寫作。在應(yīng)用過程教案法對學(xué)生進行寫作訓(xùn)練時,學(xué)生從沒有想法到有想法,從不會構(gòu)思到會構(gòu)思,從不會修改到會修改,這一過程有利于培養(yǎng)學(xué)生的寫作能力和自主學(xué)習能力。學(xué)生由于能得到教師的及時幫助和指導(dǎo),所以,即使是英語基礎(chǔ)薄弱的同學(xué),也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學(xué)生寫作興趣,增強了寫作的自信心。
這個話題很容易引起學(xué)生的共鳴,比較貼近生活,能激發(fā)學(xué)生的興趣,在教授知識的同時,應(yīng)注意將本單元情感目標融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應(yīng)注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡(luò)能為后續(xù)學(xué)習打下基礎(chǔ)。此教案設(shè)計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
在此教案過程中,應(yīng)注重培養(yǎng)學(xué)生的自學(xué)能力,通過輔導(dǎo)學(xué)生掌握一套科學(xué)的學(xué)習方法,才能使學(xué)生的學(xué)習積極性進一步提高。再者,培養(yǎng)學(xué)生的學(xué)習興趣,增強教案效果,才能避免在以后的學(xué)習中產(chǎn)生兩極分化。
在教案中任然存在的問題是,學(xué)生在“說”英語這個環(huán)節(jié)還有待提高,大部分學(xué)生都不愿意開口朗讀課文,所以復(fù)述課文便尚有難度,對于這一部分學(xué)生的學(xué)習成績的提高還有待研究。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十
在本節(jié)課的教學(xué)過程中,將先復(fù)習舊知引入課題,這樣能使學(xué)生積極主動地學(xué)習。在探究有理數(shù)加法的過程中,先讓學(xué)生獨立觀察,然后通過小組合作學(xué)習交流并討論,從而發(fā)現(xiàn)有理數(shù)加法的性質(zhì),注重學(xué)生探究能力的培養(yǎng),讓學(xué)生支親身體驗的產(chǎn)生過程,充分發(fā)揮學(xué)生的主觀能動性。最后通過例題來鞏固有理數(shù)的加法法則,讓學(xué)生及時地掌握所學(xué)的新知,對于學(xué)生起到有效地鞏固作用。
有理數(shù)加法是小學(xué)學(xué)過的加法去處的拓展,學(xué)生已經(jīng)具有了正數(shù)、負數(shù)、數(shù)軸和絕對值等知識。加法法則實際上給出了確定兩個有理數(shù)的和的“符號”與“絕對值”的規(guī)則,它是通過分析兩個有理數(shù)哩可能出現(xiàn)的各種不同情況,再歸納出同號相加、民號相加、一個有理數(shù)與0相加三種情況而得到的。由于學(xué)生的思維發(fā)展水平和知識準備的限制,在分情況討論、應(yīng)分成哪幾種情況、如何歸納不同情況等方面都需要教師的引導(dǎo),甚至是直接講解。同號兩數(shù)的加法法則比較易于理解,而異號兩數(shù)相加時情況比較復(fù)雜,學(xué)習難度較大,需要教師加強引導(dǎo)。另外,根據(jù)法則做加法,需要注意“按部就班”地計算,這是一個培養(yǎng)良好運算習慣的過程。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十一
平行公理及推論
(二)難點
平行線概念的理解
(三)解決辦法
通過引導(dǎo)學(xué)生嘗試發(fā)現(xiàn)新知、練習鞏固的方法來解決
投影儀、三角板、自制膠片
1通過投影片和適當問題創(chuàng)設(shè)情境,引入新課
2通過教師引導(dǎo),學(xué)生積極思維,進行反饋練習,完成新授
3學(xué)生自己完成本課小結(jié)
(-)明確目標
(二)整體感知
(三)教學(xué)過程
創(chuàng)設(shè)情境,引出課題
學(xué)生齊聲答:不是
師:因此,平面內(nèi)的兩條直線除了相交以外,還有不相交的情形,這就是我們本節(jié)所要研究的內(nèi)容(板書課題)
[板書]24平行線及平行公理
探究新知,講授新課
師:在我們生活的周圍,平面內(nèi)不相交的情形還有許多,你能舉例說明嗎?
學(xué)生:窗戶相對的棱,桌面的對邊,書的對邊……
師:我們把它們向兩方無限延伸,得到的直線總也不會相交我們把這樣的直線叫做平行線
[板書]在同一平面內(nèi),不相交的兩條直線叫做平行線
教師出示投影片(課本第74頁圖2?17)
師:請同學(xué)們觀察,長方體的棱與無論怎樣延長,它們會不會相交?
學(xué)生:不會相交
師:那么它們是平行線嗎?
學(xué)生:不是
師:也就是說平行線的定義必須有怎樣的'前提條件?
學(xué)生:在同一平面內(nèi)
師:誰能說為什么要有這個前提條件?
學(xué)生:因為空間里,不相交的直線不一定平行
教師在黑板上給出課本第73頁圖2
學(xué)生:兩種相交和平行
由此師生共同小結(jié):在同一平面內(nèi),兩條直線的位置關(guān)系只有相交、平行兩種
嘗試反饋,鞏固練習(出示投影)
1判斷正誤
(1)兩條不相交的直線叫做平行線()
(2)有且只有一個公共點的兩直線是相交直線()
(3)在同一平面內(nèi),不相交的兩條直線一定平行()
(4)一個平面內(nèi)的兩條直線,必把這個平面分為四部分()
2下列說法中正確的是()
a在同一平面內(nèi),兩條直線的位置關(guān)系有相交、垂直、平行三種
b在同一平面內(nèi),不垂直的兩直線必平行
c在同一平面內(nèi),不平行的兩直線必垂直
d在同一平面內(nèi),不相交的兩直線一定不垂直
學(xué)生活動:學(xué)生回答,并簡要說明理由
師:我們很容易畫出兩條相交直線,而對于平行線的畫法,我們在小學(xué)就學(xué)過用直尺和三角板畫,下面清同學(xué)在練習本上完成下面題目(投影顯示)
已知直線和外一點,過點畫直線
師:請根據(jù)語句,自己畫出已知圖形
學(xué)生活動:學(xué)生在練習本上畫出圖形
師:下面請你們按要求畫出直線
注意:(1)在推動三角尺時,直尺不要動;
(2)畫平行線必須用直尺三角板,不能徒手畫
嘗試反饋,鞏固練習(出示投影)
1畫線段,畫任意射線,在上取、、三點,使,連結(jié),用三角板畫,,分別交于、,量出、、的長(精確到)
2讀下列語句,并畫圖形
(1)點是直線外的一點,直線經(jīng)過點,且與直線平行
(2)直線、是相交直線,點是直線、外的一點,直線經(jīng)過點與直線平行與直線相交于
(3)過點畫,交的延長線于
學(xué)生活動:學(xué)生思考并回答,能畫,而且只能畫一條
師:我們把這個結(jié)論叫平行公理,教師板書
【板書】平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
學(xué)生:思考后,立即回答,能畫無數(shù)條
師:請同學(xué)們在練習本上完成
(出示投影)
已知直線,分別畫直線、,使,
學(xué)生活動:學(xué)生在練習本上完成
師:請同學(xué)們觀察,直線、能不能相交?
學(xué)生活動:觀察,回答:不相交,也就是說
師:為什么呢?同桌可以討論
學(xué)生活動:學(xué)生積極討論,各抒己見
學(xué)生活動:教師讓學(xué)生積極發(fā)表意見,然后給出正確的引導(dǎo)
師:我們觀察圖形,如果直線與相交,設(shè)交點為,那么會產(chǎn)生什么問題呢?請同學(xué)們討論
學(xué)生活動:學(xué)生在教師的啟發(fā)引導(dǎo)下思考、討論,得出結(jié)論
[板書]如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行
學(xué)生活動:學(xué)生思考,回答:不對,給出反例圖形,
例如:如圖1所示,射線與就不相交,也不平行
師:同學(xué)們想一想,當我們說兩條射線或線段平行時,實際上是什么平行才可以呢?
生:它們所在的直線平行
嘗試反饋,鞏固練習(投影)
有理數(shù)的加法數(shù)學(xué)七年級教案篇十二
因為時間關(guān)系,本課的隨堂練習沒有時間完成,只剛把異號兩數(shù)相加的法則歸納出來就下課了,遠沒有完成計劃中的任務(wù)。
自以為應(yīng)該是很成功的一節(jié)課卻感到寸步難行?;仡櫛竟?jié)課,問題究竟出在哪里呢?通過仔細思考,我認為存在的有以下幾方面的問題。
1、有正確的把握好教材,是片斷1失誤的主要原因。
如情境的引入要恰當。如本節(jié)中“凈勝球”學(xué)生就不懂,如無事先進行補充說明,學(xué)生就不懂,導(dǎo)致一節(jié)課的進度一拖再拖。必須讓學(xué)生所接觸的例子和我們的生活密切相關(guān),這樣才能更易為學(xué)生所接受?;仡欉@一整節(jié)課,其實還有很多可以對教材進行發(fā)掘的地方,如在數(shù)軸上的運動問題,也可以是讓學(xué)生在一條直路上運動,這樣可能讓學(xué)生更有興趣,再用數(shù)軸進行抽象,可能效果會更好。
《平行》這一節(jié)中所提到的滑雪運動最關(guān)鍵的是要保持兩只雪撬的平行,這一知識點對于我們這里的孩子是非常陌生的,我們都沒見過雪撬,更談不上其技巧了。
用過新教材的同行們都說,一節(jié)課完后不知這節(jié)課都在干什么!我也常有這種想法,教材是專家們研究實驗過的,專家是干啥的?現(xiàn)在痛定思痛,實際上是我們對新教材把握不夠,沒有搞清其重難點,沒有把握教材的真正要求。雖然我們天天在談、天天在寫“目標”“重點”“難點”,但實際上僅僅是在寫而已。實際情形往往是這樣:由于我們教學(xué)多年,大都只憑我們以往的經(jīng)驗來“把握”教材,憑我們過去所了解的重難點、教學(xué)方法、教學(xué)模式來引導(dǎo)我們、來確定組織教學(xué),實質(zhì)是用老教法來教新教材。所以一節(jié)課下來我們自己都不知干了些什么!實際上只要我們真正掌握了其教學(xué)要求,把握了新教材的內(nèi)涵、我們的思路清醒,方向明確,就知道自己應(yīng)該怎樣做。
2、備課粗枝大葉,造成一些不應(yīng)有的失誤。
如在片斷2中,由在數(shù)軸上先后兩次不同方向的運動,得到兩個算式:
3+(-2)=1(-3)+(+2)=-1。
教師:這兩個算式結(jié)果的'符號有何特點?
生答:兩個結(jié)果的符號都與第一個加數(shù)的符號相同。
學(xué)生的回答非常正確,而且是經(jīng)過仔細觀察后回答的,但我的本意是要把絕對值較大的數(shù)放在不同的位置讓學(xué)生來觀察、歸納的。這實際上是備課工作中的馬虎大意引起的,備課缺乏深度。備課以及課堂中要盡量避免人為地給學(xué)生帶來的錯誤導(dǎo)向。
3、教學(xué)語言單調(diào)、生硬缺乏啟發(fā)性、激勵性。
課堂上,我十分吝嗇“請”“請坐”及一些稱頌學(xué)生的語言,認為自己天天在說沒有必要,在一定程度上就變相抑制了學(xué)生的積極性,尤其是對差生而言,他們是進行課堂學(xué)習的“學(xué)困生”更需要我們的肯定和贊揚,每一次真心的贊揚可能都會給他們帶來一次新的進步。
教學(xué)語言是決定教學(xué)效果好壞的一個重要環(huán)節(jié)。教學(xué)語言活潑風趣、幽默可以活躍課堂氣氛,調(diào)動學(xué)生的學(xué)習熱情。常言道“親其師、信其道”,語言是讓學(xué)生對教師產(chǎn)生親切感的一個重要渠道。啟發(fā)性的語言能使學(xué)生順理成張的回答教師提出的問題,不需要繞太多的圈子,具有點石成金的功效。通俗易懂的語言可以讓學(xué)生學(xué)得輕松自然。激勵性的語言則幫助學(xué)生樹立學(xué)習信心、肯定了他們的學(xué)習成果,讓他們時時能找到自己的價值,尤其是對“學(xué)困生”更要讓他們找到自己身上的閃光點,提高他們的學(xué)習興趣,充分發(fā)揮語言評價的功效。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十三
有理數(shù)的加法與減法這節(jié)課,法則的生成很重要,所以在教學(xué)中我注重法則的生成過程,因為也剛剛寫了一篇博文就是注重數(shù)學(xué)知識的形成,對于法則,老師可以直接告訴答案,也可以和學(xué)生一起探討,研究得出法則,對于兩種教學(xué)方式,我采取更多的時間讓學(xué)生自己體會法則的生成,注重引導(dǎo)學(xué)生參與探索、歸納有理數(shù)加法法則的過程,主動獲取知識.這樣,學(xué)生在這節(jié)課上不僅學(xué)懂了法則,而且能感知到研究數(shù)學(xué)問題的一些基本方法.我在講完法則的'時候課程已經(jīng)進行了三十分鐘多一點,所以課上例題和練習才用了十分鐘,所以又用了習題課上了一節(jié),盡管上的比較慢,但是這種方案減少了應(yīng)用法則進行計算的練習,所以學(xué)生掌握法則的熟練程度可能稍差,這是教學(xué)中應(yīng)當注意的問題.但是,在后續(xù)的教學(xué)中學(xué)生將千萬次應(yīng)用“有理數(shù)加法法則”進行計算,故這種缺陷是可以得到彌補的.如果直接告訴答案削弱了得出結(jié)論的“過程”,失去了培養(yǎng)學(xué)生觀察、比較、歸納能力的一次機會。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十四
數(shù)學(xué)學(xué)習過程應(yīng)當是一個生動活潑的、主動的和富有個性的過程,而不能再是單一的、枯燥的,以被動聽講和練習為主的方式,它應(yīng)該是一個充滿生命力的過程。本節(jié)課在教學(xué)中以故事引入,在學(xué)生已有的知識經(jīng)驗建構(gòu)新知主動探索有理數(shù)加法交換律和結(jié)合律,從而引起他們學(xué)習的興趣,把他們被動地接受學(xué)習變成一種主動探索獲取知識的過程。
數(shù)學(xué)與人和現(xiàn)實生活之間是有著緊密的聯(lián)系的,把貼近學(xué)生熟悉的,現(xiàn)實生活,引入教學(xué),不斷溝通生活中的數(shù)學(xué)與教科書的聯(lián)系使生活和數(shù)學(xué)融為一體,是“新課標”所倡導(dǎo)的理念之一。本課教學(xué)時的最大特點是讓學(xué)生體會生活中的數(shù)學(xué),有益于學(xué)生理解數(shù)學(xué)、熱愛數(shù)學(xué),從而把數(shù)學(xué)當成自己發(fā)展的重要動力源泉。
本節(jié)課中如何更有效地調(diào)動“弱勢群體”的積極性,是我們進一步要探討的方向。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十五
一、問題的引入:在問題的引入上。新課標規(guī)定應(yīng)從實際情景入手,并且使學(xué)生能夠?qū)栴}產(chǎn)生強烈的求知欲。我采用了敵軍對我軍進行小規(guī)模軍事偵察的問題,使學(xué)生處在一個指揮官的角色。對問題提出解決的辦法,并且在對學(xué)生提出的各種情況,作出實際的操作,使學(xué)生明白數(shù)學(xué)在解決實際問題中的應(yīng)用。我感覺在問題的引入上問題過于簡單,使學(xué)生思考的范圍過于局限。沒有出現(xiàn)比較熱烈的學(xué)習氣氛。所以問題的引入應(yīng)加大深度,應(yīng)具有一定的挑戰(zhàn)性。
二、問題的探索:在問題的探索上,我采用了一個小人在坐標軸上來回行走,產(chǎn)生一種動態(tài)效果,使學(xué)生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時間和空間的條件下,親身參加探索發(fā)現(xiàn),主動的獲取知識和技能。但在整個的實施過程中出現(xiàn)了一些問題,比如:在法則的得出上學(xué)生的總結(jié)出現(xiàn)了一些問題,我再處理時由于怕時間不夠充裕所以學(xué)生出現(xiàn)的問題我給作出了解答,其實這里應(yīng)由學(xué)生自己來解決,這樣對學(xué)生能力的提高非常有幫助。
三、習題的配備:整個習題的配備大致是按從易到難的順序排列的,面向全體學(xué)生,采用多種形式,使不同層次的學(xué)生都有所得,并且采用循序漸進的方法,使學(xué)生對加法法則的理解進一步的加強。在講解完例題后,讓學(xué)生互相提問,以促使學(xué)生積極踴躍的參與到教學(xué)活動中來,創(chuàng)造一種輕松的學(xué)習氛圍。在最后的習題配備上,讓學(xué)生對兩個加數(shù)及和之間的關(guān)系作出判斷,并且對各種情況作出討論,達到本節(jié)課的一個高潮。促使學(xué)生的思路得到進一步的加強。但我總體感覺習題的量不夠充足,學(xué)生的練習機會較少。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十六
1.同號相加,取相同符號,并把絕對值相加。
2.絕對值不等的異號相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
4.相反數(shù)相加結(jié)果一定得0。
注意。
一是確定結(jié)果的符號;二是求結(jié)果的絕對值.在進行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有0.從而確定用那一條法則。在應(yīng)用過程中,一定要牢記“先符號,后絕對值”,熟練以后就不會出錯了.多個有理數(shù)的加法,可以從左向右計算,也可以用加法的運算定律計算,但是在下筆前一定要思考好,哪一個要用定律哪一個要從左往右計算.
減法。
法則。
有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。其中:兩變:減法運算變加法運算,減數(shù)變成它的相反數(shù)做加數(shù)。一不變:被減數(shù)不變。可以表示成:a-b=a+(-b)。
乘法。
法則。
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘。例:(-5)×(-3)=15(-6)×4=-24。
(2)任何數(shù)同0相乘,都得0。例:0×1=0。
(4)幾個數(shù)相乘,有一個因數(shù)為0時,積為0。例:3×(-2)×0=0。
(5)乘積為1的兩個有理數(shù)互為倒數(shù)(reciprocal)。(乘積為-1的互為負倒數(shù))例如,—3與—1/3,—3/8與—8/3。
除法。
法則。
(1)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。(注意:0沒有倒數(shù))。
(2)兩數(shù)相除,同號為正,異號為負,并把絕對值相除。
(3)0除以任何一個不等于0的數(shù),都等于0。
注意:
0在任何條件下都不能做除數(shù)。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十七
有理數(shù)的加法與減法這節(jié)課,法則的生成很重要,所以在教學(xué)中我注重法則的生成過程,因為也剛剛寫了一篇博文就是注重數(shù)學(xué)知識的形成,對于法則,老師可以直接告訴答案,也可以和學(xué)生一起探討,研究得出法則,對于兩種教學(xué)方式,我采取更多的時間讓學(xué)生自己體會法則的生成,注重引導(dǎo)學(xué)生參與探索、歸納有理數(shù)加法法則的過程,主動獲取知識。
這樣,學(xué)生在這節(jié)課上不僅學(xué)懂了法則,而且能感知到研究數(shù)學(xué)問題的一些基本方法。我在講完法則的時候課程已經(jīng)進行了三十分鐘多一點,所以課上例題和練習才用了十分鐘,所以又用了習題課上了一節(jié),盡管上的比較慢,但是這種方案減少了應(yīng)用法則進行計算的練習,所以學(xué)生掌握法則的熟練程度可能稍差,這是教學(xué)中應(yīng)當注意的問題。但是,在后續(xù)的教學(xué)中學(xué)生將千萬次應(yīng)用“有理數(shù)加法法則”進行計算,故這種缺陷是可以得到彌補的。如果直接告訴答案削弱了得出結(jié)論的“過程”,失去了培養(yǎng)學(xué)生觀察、比較、歸納能力的一次機會。
有理數(shù)的加法數(shù)學(xué)七年級教案篇十八
1、知識目標:借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性,會判斷一個數(shù)是正數(shù)還是負數(shù)。
2、能力目標:能應(yīng)用正負數(shù)表示生活中具有相反意義的量。
3、情感態(tài)度:讓學(xué)生了解有關(guān)負數(shù)的歷史、體會負數(shù)與實際生活的聯(lián)系。教學(xué)重難點。
重點:理解有理數(shù)的意義。
難點:能用正負數(shù)表示生活中具有相反意義的量。
教學(xué)過程。
一、創(chuàng)設(shè)情境、提出問題。
某班舉行知識競賽,評分標準是:答對一題加1分,答錯一題扣1分,不回答得0分;每個隊的基礎(chǔ)分均為0分。兩個隊答題情況見書上第23頁。
二、分析探索、問題解決。
分組討論扣的分怎樣表示?
用前面學(xué)的數(shù)能表示嗎?
數(shù)怎么不夠用了?
引出課題。
講授正數(shù)、負數(shù)、有理數(shù)的定義。
用負數(shù)表示比“0”低的數(shù),如:-10,讀作負10,表示比0低10分的數(shù)。啟發(fā)學(xué)生再從生活中例舉出用負數(shù)表示具有相反意義的數(shù)。
三、鞏固練習。
1、用正數(shù)或負數(shù)表示下列各題中的數(shù)量:
(2)球賽時,如果勝2局記作+2,那么-2表示______;。
(3)若-4萬表示虧損4萬元,那么盈余3萬元記作______;。
(4)+150米表示高出海平面150米,低于海平面200米應(yīng)記作______.
分析:用正、負數(shù)可分別表示具有相反意義的量,通常高于海平面的高度用正數(shù)表示,低于海平面的高度用負數(shù)表示;完全相反的兩個方向,一個方向定為用正數(shù)表示,則另一個方向用負數(shù)表示;如運進與運出,收入與支出,盈利與虧損,買進與賣出,勝與負等都是具有相反意義的量。
2、下面說法中正確的是().
a.“向東5米”與“向西10米”不是相反意義的量;
b.如果汽球上升25米記作+25米,那么-15米的意義就是下降-15米;
c.如果氣溫下降6℃記作-6℃,那么+8℃的意義就是零上8℃;。
d.若將高1米設(shè)為標準0,高1.20米記作+0.20米,那么-0.05米所表示的高是0.95米。
三、小結(jié)回顧、納入體系。
學(xué)生交流回顧、討論總結(jié),教師補充如下:
概念:正數(shù)、負數(shù)、有理數(shù)。
分類:有理數(shù)的分類:兩種分法。
應(yīng)用:有理數(shù)可以用來表示具有相反意義的量。

