八年級數(shù)學(xué)分式的運算教案(精選18篇)

字號:

    教案的不斷優(yōu)化和改進是教師職業(yè)發(fā)展的重要方向。編寫教案時要根據(jù)學(xué)生的不同學(xué)習(xí)水平和興趣特點,采用多種教學(xué)手段和方法。隨著教學(xué)改革的不斷深入,編寫優(yōu)秀的教案已經(jīng)成為教師的一項基本素質(zhì)。
    八年級數(shù)學(xué)分式的運算教案篇一
    2.“六?一”兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用2500元購進一批兒童玩具,上市后很快脫銷,接著又用4500元購進第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了10元.
    (1)求第一批玩具每套的進價是多少元?
    八年級數(shù)學(xué)分式的運算教案篇二
    分式約分:將分子、分母中的公因式約去,叫做分式的約分。分式約分的根據(jù)是分式的基本性質(zhì),即分式的分子、分母都除以同一個不等于零的整式,分式的值不變。
    約分的方法和步驟包括:
    (1)當(dāng)分子、分母是單項式時,公因式是相同因式的最低次冪與系數(shù)的最大公約數(shù)的積;
    (2)當(dāng)分子、分母是多項式時,應(yīng)先將多項式分解因式,約去公因式。
    2、通分:根據(jù)分式的基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通。
    分式通分:將幾個異分母的分式化成同分母的分式,這種變形叫分式的通分。
    (3)通分后的各分式的分母相同,通分后的各分式分別與原來的分式相等;
    (4)通分和約分是兩種截然不同的變形、約分是針對一個分式而言,通分是針對多個分式而言;約分是將一個分式化簡,而通分是將一個分式化繁。
    注意:
    (1)分式的約分和通分都是依據(jù)分式的基本性質(zhì);
    (2)分式的變號法則:分式的分子、分母和分式本身的符號,改變其中的任何兩個,分式的值不變。
    (3)約分時,分子與分母不是乘積形式,不能約分、
    3、求最簡公分母的方法是:
    (1)將各個分母分解因式;
    (2)找各分母系數(shù)的最小公倍數(shù);
    (3)找出各分母中不同的因式,相同因式中取次數(shù)最高的,滿足(2)(3)的因式之積即為各分式的最簡公分母(求最簡公分母在分式的加減運算和解分式方程時起非常重要的作用)。
    1、分式的加減法法則:
    (1)同分母的分式相加減,分母不變,把分子相加;
    (2)異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法則進行計算。
    2、分式的乘除法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。
    4、分式的混合運算順序,先算乘方,再算乘除,最后算加減,有括號先算括號里面的。
    5、對于分式化簡求值的題型要注意解題格式,要先化簡,再代人字母的值求值。
    八年級數(shù)學(xué)分式的運算教案篇三
    1.理解同分母分式與異分母分式加減法的運算法則,體會類比思想.
    2.能運用同分母分式和異分母分式加減運算法則進行運算,體會化歸思想.
    異分母分式的加減運算.
    一師一優(yōu)課一課一名師(設(shè)計者:)。
    一、創(chuàng)設(shè)情景,明確目標(biāo)。
    同學(xué)們還記得分?jǐn)?shù)是如何進行加減法運算的嗎?(找同學(xué)敘述)。
    現(xiàn)在我們看下面兩個問題:
    請按兩個問題的要求列出代數(shù)式,請觀察兩個代數(shù)式有何特征,如何對這類代數(shù)式進行運算,這就是我們今天所要探究的內(nèi)容.
    二、自主學(xué)習(xí),指向目標(biāo)。
    1.自學(xué)教材第139至140頁.
    2.學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分.
    三、合作探究,達成目標(biāo)。
    活動一:
    1.讓學(xué)生觀察課本p140頁思考,并讓學(xué)生敘述分?jǐn)?shù)加減法法則.
    2.類似分?jǐn)?shù)加減法運算法則,推廣可得分式的加減法法則,你能敘述嗎?
    展示點評:同分母的分式相加減,分母________,把分子相________.
    異分母的分式相加減,先________,變?yōu)開_______分式,再加減.
    八年級數(shù)學(xué)分式的運算教案篇四
    這一課是在學(xué)生已經(jīng)初步了解小括號意義,會用小括號進行計算的基礎(chǔ)上進行教學(xué)的。上完了整節(jié)課之后,我對自己這節(jié)課做了如下反思:
    一、教學(xué)的成功之處。
    1、在本節(jié)課中又增加了中括號這一內(nèi)容,致使計算起來又多了幾分煩瑣性。所以在教學(xué)設(shè)計時由淺入深,讓學(xué)生在層層深入中,走進新知、學(xué)習(xí)新知。
    2、本堂課很好的利用了,讓學(xué)生能夠清楚明白的知道老師的要求,而且在一定程度上也引起來學(xué)生學(xué)習(xí)的興趣。
    二、教學(xué)中的不足之處。
    1、對教學(xué)過程中可能會出現(xiàn)的情況沒有完全設(shè)想清楚。在上課之前我把很多情況都設(shè)想了一遍,但是忽略了同學(xué)之間有不同層次。比如在指名上臺板演的環(huán)節(jié),有一個同學(xué)出現(xiàn)了我之前并沒有預(yù)想到的問題,雖然我也隨機應(yīng)變,把該更改的更改的過來了,但是,這件事也提醒了我,在以后的教學(xué)過程中,一定要注意有層次的教學(xué),不能忽略掉每個可能會出現(xiàn)的問題。
    2、對學(xué)生動手做出現(xiàn)的狀況估計不足。很多同學(xué)在老師講課的時候都很清楚明白,但是一旦要求他自己動手做的時候,都會出現(xiàn)這樣那樣的問題。沒有考慮到學(xué)生動手做的時候有沒有真正掌握。
    三、整改的措施。
    1、注重學(xué)生動手操作能力的培養(yǎng)在本節(jié)課中,學(xué)生在知識方面好像已經(jīng)掌握得非常牢固,但是實際在他們動手操作的時候卻不盡如人意,這就提醒了我,在以后的教學(xué)中,不僅要灌輸學(xué)生知識,更重要的是注重學(xué)生操作能力的培養(yǎng)。
    2、在備課過程中應(yīng)充分考慮到多種情況在今天上課的過程中,由于在課前沒有對可能出現(xiàn)的狀況估計全面,導(dǎo)致學(xué)生出現(xiàn)意想不到的狀況的時候有一瞬間的不知所措。因此在日后的教學(xué)過程中,我要多多預(yù)設(shè)一些上課可能出現(xiàn)的狀況,這樣才能更好的教學(xué),也才能更及時的解決學(xué)生在學(xué)習(xí)過程中出現(xiàn)的問題。
    將本文的word文檔下載到電腦,方便收藏和打印。
    八年級數(shù)學(xué)分式的運算教案篇五
    分式的運算法則包括了約分、分式的加減乘法法則和異分母分式的加減法法則這三大要領(lǐng)。
    1.約分:
    把一個分式的分子和分母的公因式約去的過程為約分。
    2.分式的乘法法則:
    兩個分式相乘,用分子的積作為積的分子,分母的積作為積的分母。
    兩個分式相除,把除式的分子和分母顛倒位置(除數(shù)的倒數(shù))后再與被除式相乘。
    3. 分式的加減法法則:
    同分母的分式相加減,分母不變,把分子相加減。
    4.異分母分式的加減法法則:
    異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算。
    初中學(xué)的分式內(nèi)容其實很簡單,如x/y是分式,還有x(y+2)/y也是分式,計算的要求也不高。
    八年級數(shù)學(xué)分式的運算教案篇六
    在教學(xué)中努力推進九年義務(wù)教育,落實新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。
    通過數(shù)學(xué)課的教學(xué),使學(xué)生切實學(xué)好從事現(xiàn)代化建設(shè)和進一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所必需的數(shù)學(xué)基本知識和基本技能;努力培養(yǎng)學(xué)生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。
    二、學(xué)情分析
    八年級是初中學(xué)習(xí)過程中的關(guān)鍵時期,學(xué)生基礎(chǔ)的好壞,直接影響到將來是否能升學(xué)。優(yōu)生不多,思想不夠活躍,有少數(shù)學(xué)生不上進,思維跟不上。要在本期獲得理想成績,老師和學(xué)生都要付出努力,充分發(fā)揮學(xué)生是學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
    三、本學(xué)期教學(xué)內(nèi)容分析
    本學(xué)期教學(xué)內(nèi)容共計六章。
    第一章《三角形的證明》
    本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進一步體會證明的必要性。
    第二章《一元一次不等式和一元一次不等式組》
    本章通過具體實例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應(yīng)用;通過具體實例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應(yīng)。
    第三章《圖形的平移與旋轉(zhuǎn)》
    本章將在小學(xué)學(xué)習(xí)的基礎(chǔ)上進一步認識平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認識并欣賞平移,中心對稱在自然界和現(xiàn)實生活中的應(yīng)用。
    第四章《分解因式》
    本章通過具體實例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實質(zhì),最后學(xué)習(xí)分解因式的幾種基本方法。
    第五章《分式與分式方程》
    本章通過分?jǐn)?shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運算法則,并在此基礎(chǔ)上學(xué)習(xí)分式的化簡求值、解分式方程及列分式方程解應(yīng)用題,能解決簡單的實際應(yīng)用問題。
    第六章《平行四邊形》
    本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實驗等幾何發(fā)現(xiàn)之旅,享受證明之美。
    四、主要措施
    1、面向全體學(xué)生。
    由于學(xué)生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學(xué)時,應(yīng)從大多數(shù)學(xué)生的實際出發(fā),并兼顧學(xué)習(xí)有困難的和學(xué)有余力的學(xué)生。對學(xué)習(xí)有困難的學(xué)生,要特別予以關(guān)心,及時采取有效措施,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,指導(dǎo)他們改進學(xué)習(xí)方法。幫助他們解決學(xué)習(xí)中的困難,使他們經(jīng)過努力,能夠達到大綱中規(guī)定的基本要求,對學(xué)有余力的學(xué)生,要通過講授選學(xué)內(nèi)容和組織課外活動等多種形式,滿足他們的學(xué)習(xí)愿望,發(fā)展他們的數(shù)學(xué)才能。
    2、重視改進教學(xué)方法,堅持啟發(fā)式,反對注入式。
    教師在課前先布置學(xué)生預(yù)習(xí),同時要指導(dǎo)學(xué)生預(yù)習(xí),提出預(yù)習(xí)要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學(xué)生課前完成,教學(xué)中教師應(yīng)幫助學(xué)生梳理新課知識,指出重點和易錯點,解答學(xué)生預(yù)習(xí)時遇到的問題,再設(shè)計提高題由學(xué)生進行嘗試,使學(xué)生在學(xué)習(xí)中體會成功,調(diào)動學(xué)習(xí)積極性,同時也可激勵學(xué)生自我編題。努力培養(yǎng)學(xué)生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實際問題上升為數(shù)學(xué)模型的能力,注意激勵學(xué)生的創(chuàng)新意識。
    3、 改革作業(yè)結(jié)構(gòu)減輕學(xué)生負擔(dān)。將學(xué)生按學(xué)習(xí)能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學(xué)生都能在原有基礎(chǔ)上提高。
    4、課后輔導(dǎo)實行流動分層。
    5、運用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
    6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的'非智力因素,彌補智力上的不足。
    7、開展課題的研究,課外調(diào)查,操作實踐,帶動班級學(xué)生學(xué)習(xí)數(shù)學(xué),同時發(fā)展這一部分學(xué)生的特長。
    8、進行個別輔導(dǎo),優(yōu)生提升能力,扎實打牢基礎(chǔ)知識;對學(xué)困生,一些關(guān)鍵知識,輔導(dǎo)他們過關(guān),為他們以后的發(fā)展鋪平道路。
    9、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣。
    四、教學(xué)進度
    第一章《三角形的證明》13課時
    1.1等腰三角形 4課時
    1.2直角三角形 2課時
    1.3線段的垂直平分線 2課時
    1.4角平分線 2課時
    復(fù)習(xí)小節(jié)與檢測 3課時
    第二章《一元一次不等式和一元一次不等式組》 12課時
    2.1 不等關(guān)系 1課時
    2.2 不等式的基本性質(zhì) 1課時
    2.3 不等式的解集 1課時
    2.4 一元一次不等式2課時
    2.5 一元一次不等式與一次函數(shù)2課時
    2.6 一元一次不等式組 2課時
    復(fù)習(xí)小節(jié) 與檢測 3課時
    第三章《圖形的平移與旋轉(zhuǎn)》 10課時
    3.1圖形的平移 3課時
    3.2圖形的旋轉(zhuǎn) 2 課時
    3.3中心對稱 1課時
    3.4簡單的圖形設(shè)計 1 課時
    復(fù)習(xí)小節(jié)與檢測 3課時
    期中考試復(fù)習(xí)2 課時
    第四章《分解因式》7課時
    4.1分解因式1課時
    4.2提公因式法 2課時
    4.3公式法 2課時
    4.4重心 2課時
    復(fù)習(xí)小節(jié)與檢測 2課時
    第五章《分式與分式方程》 11課時
    5.1認識分式 2課時
    5.2 分式的乘除法 1課時
    5.3分式的加減法 3課時
    5.4分式方程 3課時
    復(fù)習(xí)小節(jié)與檢測 2課時
    第六章《平行四邊形》 10課時
    4.1平行四邊形的性質(zhì) 2課時
    4.2特殊的平行四邊形的判定 3課時
    4.3三角形的中位線 1課時
    4.4多邊形的內(nèi)角和外角和 2課時
    復(fù)習(xí)小節(jié)與檢測 2課時
    八年級數(shù)學(xué)分式的運算教案篇七
    教學(xué)。
    目標(biāo)(含重點、難點)及。
    設(shè)置依據(jù)教學(xué)目標(biāo)。
    1、了解多面體、直棱柱的有關(guān)概念.2、會認直棱柱的側(cè)棱、側(cè)面、底面.。
    3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
    教學(xué)重點與難點。
    教學(xué)過程。
    內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。
    一、創(chuàng)設(shè)情景,引入新課。
    析:學(xué)生很容易回答出更多的答案。
    師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點概念:
    2.合作交流。
    師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
    學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
    學(xué)生活動:分小組討論。
    說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實例。(找出區(qū)別)。
    師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側(cè)棱互相平行且相等。
    4.學(xué)以至用。
    出示例題。(先請學(xué)生單獨考慮,再作講解)。
    析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(xí)(學(xué)生練習(xí))。
    完成“課內(nèi)練習(xí)”
    三、小結(jié)回顧,反思提高。
    師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?
    合作交流后得到:重點直棱柱的有關(guān)概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
    板書設(shè)計。
    作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。
    八年級數(shù)學(xué)分式的運算教案篇八
    1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。
    2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。
    3、會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理。
    1、通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。
    2、通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的能力。
    通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。
    通過學(xué)習(xí),體會幾何證明的方法美。
    構(gòu)造逆命題,分析探索證明,啟發(fā)講解。
    1、教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用。
    2、教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理。
    (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理)。
    八年級數(shù)學(xué)分式的運算教案篇九
    1、了解方差的定義和計算公式。
    2、理解方差概念產(chǎn)生和形成過程。
    3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。
    重點:掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
    難點:理解方差公式。
    (一)知識詳解:
    方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。
    給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。
    (二)自主檢測小練習(xí):
    1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
    2、甲、乙兩組數(shù)據(jù)如下:
    甲組:1091181213107;
    乙組:7891011121112。
    分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。
    引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
    甲:9.10.10.13.7.13.10.8.11.8;
    乙:8.13.12.11.10.12.7.7.10.10;
    問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?
    (2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。
    歸納:方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
    (一)例題講解:
    金志強1013161412。
    提示:先求平均數(shù),然后使用公式計算方差。
    (二)小試身手。
    1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
    甲:7.8.6.8.6.5.9.10.7.4。
    乙:9.5.7.8.7.6.8.6.7.7。
    經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
    1、求下列數(shù)據(jù)的眾數(shù):
    (1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
    方差公式:
    提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。
    每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
    1、小爽和小兵在10次百米跑步練習(xí)中的成績?nèi)缦卤硭荆?單位:秒)。
    如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?
    必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊對應(yīng)部分習(xí)題。
    寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
    八年級數(shù)學(xué)分式的運算教案篇十
    1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。
    2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。
    算術(shù)平方根的概念。
    根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。
    這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
    1、提出問題:(書p68頁的問題)
    你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)
    這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值.
    一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
    也就是,在等式=a (x0)中,規(guī)定x = .
    2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
    3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
    建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如表示25的算術(shù)平方根。
    4、例1求下列各數(shù)的算術(shù)平方根:
    (1)100;(2)1;(3) ;(4)0.0001
    p69練習(xí)1、2
    怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
    方法1:課本中的方法,略;
    方法2:
    可還有其他方法,鼓勵學(xué)生探究。
    問題:這個大正方形的邊長應(yīng)該是多少呢?
    大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
    建議學(xué)生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
    1、這節(jié)課學(xué)習(xí)了什么呢?
    2、算術(shù)平方根的具體意義是怎么樣的?
    3、怎樣求一個正數(shù)的算術(shù)平方根
    p75習(xí)題13.1活動第1、2、3題
    八年級數(shù)學(xué)分式的運算教案篇十一
    教學(xué)目標(biāo):
    1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。
    2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
    3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進一步發(fā)展學(xué)生的空間觀念,增強審美意識,培養(yǎng)學(xué)生積極進取的生活態(tài)度。
    重點與難點:
    重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設(shè)計。
    難點:分析典型圖案的設(shè)計意圖。
    疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖。
    教具學(xué)具準(zhǔn)備:
    提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
    教學(xué)過程設(shè)計:
    1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)。
    明確在欣賞了圖案后,簡單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。
    2、課本。
    1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
    評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。
    評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
    (二)課內(nèi)練習(xí)。
    (1)以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。
    (2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。
    (三)議一議。
    生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。
    (四)課時小結(jié)。
    本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。
    通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達到標(biāo)志的效果。)。
    進一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。
    八年級數(shù)學(xué)分式的運算教案篇十二
    1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
    2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
    3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進取心,體會數(shù)學(xué)的應(yīng)用價值.
    將實際問題中的等量 關(guān)系用分式方程表示
    找實際問題中的等量關(guān)系
    有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
    如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
    根據(jù)題意,可得方程___________________
    從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
    這 一問題中有哪些等量關(guān)系?
    如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
    根據(jù)題意,可得方程_ _____________________。
    學(xué)生分組探討、交流,列出方程.
    上面所得到的方程有什么共同特點?
    分母中含有未知數(shù)的方程叫做分式方程
    分式方程與整式方程有什么區(qū)別?
    (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
    本節(jié)課你學(xué)到了哪些知識?有什么感想?
    八年級數(shù)學(xué)分式的運算教案篇十三
    《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
    (一)知識目標(biāo):
    1、要求學(xué)生掌握正方形的概念及性質(zhì);
    2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;
    (二)能力目標(biāo):
    1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
    2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
    (三)情感目標(biāo):
    1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實際的良好學(xué)風(fēng);
    2、培養(yǎng)學(xué)生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
    該段學(xué)生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
    針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學(xué)方法。
    通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
    本節(jié)課重點是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。
    第一環(huán)節(jié):相關(guān)知識回顧。
    以提問的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
    第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
    1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
    2、正方形的性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進行例題講解。
    4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學(xué)生掌握的情況。
    第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認識到數(shù)學(xué)實質(zhì)是來源于生活并要服務(wù)于生活。
    5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實自己,達到理想中的完美。
    6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進一步鞏固有關(guān)正方形的知識。
    八年級數(shù)學(xué)分式的運算教案篇十四
    調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
    例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
    從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
    例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。
    將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
    一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
    例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
    解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
    又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
    解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
    所以這組數(shù)據(jù)的眾數(shù)是2和3。
    【規(guī)律方法小結(jié)】。
    (1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
    (2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。
    (3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
    (4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。
    探究交流。
    1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
    解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當(dāng)這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
    總結(jié):
    (1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
    (2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
    (3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
    (4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
    課堂檢測。
    基本概念題。
    1、填空題。
    (1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
    (4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
    基礎(chǔ)知識應(yīng)用題。
    2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
    (1)計算這10個班次乘車人數(shù)的平均數(shù);
    (2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
    八年級數(shù)學(xué)分式的運算教案篇十五
    整節(jié)課我設(shè)計了五個部分:
    1、由生活引入,激發(fā)學(xué)習(xí)興趣。
    2、動手操作,形象感知。
    3、觀察比較,探究規(guī)律。
    4、運用規(guī)律,自學(xué)例題。
    5、拓展與延伸。
    從課的開始,用學(xué)生身邊的事情引入,大大提高了學(xué)生學(xué)習(xí)的積極性,一下子把學(xué)生吸引住了。再通過學(xué)生自己動手折紙操作,不斷猜想,不斷驗證,再猜想,驗證,學(xué)生的自信心就會大增。我想,長此以往,學(xué)生慢慢就會從“能學(xué)習(xí)”轉(zhuǎn)化為“會學(xué)習(xí)了”。這節(jié)新授課的設(shè)計,目的是讓學(xué)生學(xué)會學(xué)習(xí),學(xué)會思考,學(xué)會創(chuàng)造,進而培養(yǎng)學(xué)生用數(shù)學(xué)的思想方法,思考并解決實際生活中所遇到的各種問題,這也是學(xué)生適應(yīng)未來生活必須的基本素質(zhì)。
    反思這節(jié)課的教學(xué),我想在驗證、交流環(huán)節(jié)學(xué)生們參與率需要提高,尤其是后進生普遍是無從下手,在交流時也不主動,很多學(xué)生還停留在一知半解的.狀態(tài)。在鞏固練習(xí)環(huán)節(jié)上,學(xué)生們練習(xí)的密度還不夠,畢竟回答問題的同學(xué)在少數(shù)。還可以給每生準(zhǔn)備一份練習(xí)紙,這樣能確保每位學(xué)生的練習(xí)量。
    八年級數(shù)學(xué)分式的運算教案篇十六
    進行《分式的加減法》的教學(xué)時,通過復(fù)習(xí)同分母異分母分?jǐn)?shù)的加減計算類比學(xué)習(xí)分式的加減運算以分式的通分(分母為異分母的情況)作為預(yù)備知識檢測,再到學(xué)生自主學(xué)習(xí)所完成的基礎(chǔ)練習(xí)題及熟練法則,通過讓學(xué)生板演計算過程后出現(xiàn)的問題(分子的加減,去括號問題及分式的最簡化等)給予講解及問題的討論。最后是課堂練習(xí)鞏固和小結(jié)作業(yè)布置。
    在授課結(jié)束后發(fā)現(xiàn)學(xué)生對于同分母的分式的加減運算掌握得比較好但是對于異分母的`分式加減就掌握得不是很理想,很多學(xué)生對于分式的通分還很不熟練,也有學(xué)生對于計算結(jié)果應(yīng)該為最簡分式理解不夠總是無法化到最簡的形式。
    分式的加減法上完后列舉了一道加減混合運算題,在講解時結(jié)合加減混合運算法則進行復(fù)習(xí),分式的加減混合運算不同的是分母或者分子當(dāng)中如果有出現(xiàn)可以因式分解的應(yīng)該先進行因式分解,異分母的分式應(yīng)先進行通分化為同分母再進行計算,除法應(yīng)轉(zhuǎn)化為乘法。并且計算的最終結(jié)果應(yīng)該為最簡分式的形式,在計算時應(yīng)先觀察分式的特點從而分析是不是可以結(jié)合乘法的分配律進行計算從而達到化繁為簡的目的。
    八年級數(shù)學(xué)分式的運算教案篇十七
    本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
    本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
    本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點撥、引導(dǎo),促進學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人.具體說明如下:
    學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過程,進行投影總結(jié).最后,由學(xué)生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.
    線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進行教學(xué),使學(xué)生進一步認識這兩個定理的區(qū)別和聯(lián)系.
    八年級數(shù)學(xué)分式的運算教案篇十八
    1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
    2、會求一組數(shù)據(jù)的極差.
    1、重點:會求一組數(shù)據(jù)的極差.
    2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點、
    從表中你能得到哪些信息?
    比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、
    這是不是說,兩個時段的氣溫情況沒有什么差異呢?
    根據(jù)兩段時間的氣溫情況可繪成的折線圖、
    觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、
    本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。
    問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識、問題3答案并不唯一,合理即可。