有理數(shù)的除法人教版數(shù)學七年級教案(精選18篇)

字號:

    教案的編寫應該有明確的教學目標,符合學生的認知特點。如何編寫一份優(yōu)秀的教案是教師備課工作中的重要問題。在編寫教案時,你可以參考這些范文,并結合自己的實際情況進行改編和創(chuàng)新。
    有理數(shù)的除法人教版數(shù)學七年級教案篇一
    (1)正確理解乘方、冪、指數(shù)、底數(shù)等概念.
    (2)會進行有理數(shù)乘方的運算.
    2.過程與方法。
    通過對乘方意義的理解,培養(yǎng)學生觀察、比較、分析、歸納、概括的能力,滲透轉化思想.
    3.情感態(tài)度與價值觀。
    培養(yǎng)探索精神,體驗小組交流、合作學習的重要性.
    重、難點與關鍵。
    1.重點:正確理解乘方的意義,掌握乘方運算法則.
    2.難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算.
    3.關鍵:弄清底數(shù)、指數(shù)、冪等概念,注意區(qū)別-an與(-a)n的意義.
    教學過程。
    一、復習提問。
    1.幾個不等于零的有理數(shù)相乘,積的符號是怎樣確定的?
    答:幾個不等于零的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)確定,當負因數(shù)的個數(shù)為奇數(shù)時,積為負;當負因數(shù)的個數(shù)為偶數(shù)時,積為正.值觀:體驗小組交流,合作學習的重要性。
    有理數(shù)的除法人教版數(shù)學七年級教案篇二
    理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
    二、過程與方法。
    經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
    三、情感態(tài)度與價值觀。
    通過對有理數(shù)的學習,體會到數(shù)學與現(xiàn)實世界的緊密聯(lián)系。
    教學重難點及突破。
    在引入了負數(shù)后,本課對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習,使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
    教學準備。
    用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
    教學過程。
    四、課堂引入。
    2.舉例說明現(xiàn)實中具有相反意義的量。
    3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
    4.舉兩個例子說明+5與-5的區(qū)別。
    有理數(shù)的除法人教版數(shù)學七年級教案篇三
    1.通過與溫度計的類比,了解數(shù)軸的概念,會畫數(shù)軸。
    2.知道如何在數(shù)軸上表示有理數(shù),能說出數(shù)軸上表示有理數(shù)的點所表示的數(shù),知道任何一個有理數(shù)在數(shù)軸上都有唯一的點與之對應。
    過程方法。
    1.從直觀認識到理性認識,從而建立數(shù)軸概念。
    2.通過數(shù)軸概念的學習,初步體會對應的思想、數(shù)形結合的思想方法。
    3.會利用數(shù)軸解決有關問題。
    情感態(tài)度。
    通過對數(shù)軸的學習,體會到數(shù)形結合的思想方法,進而初步認識事物之間的聯(lián)系性。
    【教學重點】。
    1.數(shù)軸的概念。
    2.能將已知數(shù)在數(shù)軸上表示出來,說出數(shù)軸上已知點所表示的數(shù)。
    【教學難點】。
    從直觀認識到理性認識,從而建立數(shù)軸的概念。
    【情景引入】。
    1.小明感冒了,醫(yī)生用體溫計測量了他的體溫,并說:“37.8度?!?BR>    提疑:醫(yī)生為什么通過體溫計就可以讀出任意一個人的體溫?
    (體溫計上的刻度)。
    2.我們再一起去看看12月時祖國各地的自然風光和溫度情況(電腦分別顯示黑龍江、焦作、海南三個城市美麗的自然風光,溫度分別為-10°c,0°c,20°c)。
    提疑:那么要測量這種氣溫所需要的溫度計的刻度應該如何安排?需要用到哪些數(shù)?
    (正數(shù)、零、負數(shù))。
    3.請嘗試畫出你想像中的溫度計,并和其他同學交流,注意交流時要發(fā)表自己的見解。然后提問:請找出一支溫度計從外觀上具有哪些不可缺少的特征?(組織學生討論交流)學生可能會從不同的角度回答,教師給予必要的引導,總結出與數(shù)軸相對應的特點,如形狀是直的、0刻度、單位刻度。(電腦動態(tài)演示,將溫度計水平放置,抽象得出數(shù)軸圖形表示有理數(shù)-10,0,20的過程)從而引出課題------數(shù)軸。
    有理數(shù)的除法人教版數(shù)學七年級教案篇四
    學習目標:。
    1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算。
    2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.
    3、培養(yǎng)語言表達能力.調動學習積極性,培養(yǎng)學習數(shù)學的興趣.
    學習重點:有理數(shù)乘法。
    學習難點:法則推導。
    教學方法:引導、探究、歸納與練習相結合。
    教學過程。
    一、學前準備。
    計算:
    (1)(一2)十(一2)。
    (2)(一2)十(一2)十(一2)。
    (3)(一2)十(一2)十(一2)十(一2)。
    (4)(一2)十(一2)十(一2)十(一2)十(一2)。
    猜想下列各式的值:
    (一2)×2(一2)×3。
    (一2)×4(一2)×5。
    二、探究新知。
    1、自學有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.
    2、觀察以上各式,結合對問題的研究,請同學們回答:
    (3)負數(shù)乘以正數(shù)積為__________數(shù),(4)負數(shù)乘以負數(shù)積為__________數(shù)。
    提出問題:一個數(shù)和零相乘如何解釋呢?
    有理數(shù)的除法人教版數(shù)學七年級教案篇五
    2.內容解析。
    有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學習有理數(shù)的除法、乘方的基礎,對后續(xù)代數(shù)學習是至關重要的.
    與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學已掌握的乘法運算的基礎上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結果應該是什么”的結論,從而使學生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質特征,也是乘法法則的核心.
    基于以上分析,可以確定本課的教學重點是兩個有理數(shù)相乘的符號法則.
    二、目標及其解析。
    1.目標。
    (1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
    (2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
    2.目標解析。
    達成目標(1)的標志是學生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結果.
    達成目標(2)的標志是學生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
    三、教學問題診斷分析。
    有理數(shù)的乘法與小學學習的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎,構造一組有規(guī)律的算式,先讓學生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應有……”為引導,讓學生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應有什么運算結果,并從積的符號和絕對值兩個角度總結出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
    本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
    四、教學過程設計。
    教師引導學生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
    設計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復習有關知識,為下面的教學做好準備,又滲透了分類討論思想.
    問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
    3×3=9,
    3×2=6,
    3×1=3,
    3×0=0.
    追問1:你認為問題要我們“觀察”什么?應該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
    如果學生仍然有困難,教師給予提示:
    (1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
    (2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
    設計意圖:構造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
    教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應該從0遞減3而得-3.
    追問2:根據(jù)這個規(guī)律,下面的兩個積應該是什么?
    3×(-2)=,
    3×(-3)=.
    練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規(guī)律.
    設計意圖:讓學生自主構造算式,加深對運算規(guī)律的理解.
    先讓學生觀察、敘述、補充,教師再總結:都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
    設計意圖:先得到一類情況的結果,降低歸納概括的難度,同時也為后面的學習奠定基礎.
    問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
    3×3=9,
    2×3=6,
    1×3=3,
    0×3=0.
    鼓勵學生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
    設計意圖:為得到負數(shù)乘正數(shù)的結論做準備;培養(yǎng)學生的模仿、概括的能力.
    追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應各填什么數(shù)?
    (-1)×3=,
    (-2)×3=,
    (-3)×3=.
    練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規(guī)律.
    先讓學生觀察、敘述、補充,教師再總結:都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
    追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結論有什么共性?你能把它概括出來嗎?
    設計意圖:讓學生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
    問題4利用上面歸納的結論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
    (-3)×3=,
    (-3)×2=,
    (-3)×1=,
    (-3)×0=.
    追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
    (-3)×(-1)=,
    (-3)×(-2)=,
    (-3)×(-3)=.
    設計意圖:由學生自主探究得出負數(shù)乘負數(shù)的結論.因為有前面積累的豐富經(jīng)驗,學生能獨立完成.
    問題5總結上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
    學生獨立思考后進行課堂交流,師生共同完成,得出結論后再讓學生看教科書.
    學生獨立思考、回答.如果有困難,可先讓學生看課本第29頁有理數(shù)乘法法則后面的一段文字.
    設計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關鍵步驟.
    例1計算:
    (1)。
    ;(2)。
    ;(3)。
    學生獨立完成后,全班交流.
    教師說明:在(3)中,我們得到了。
    =1.與以前學習過的倒數(shù)概念一樣,我們說。
    與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
    追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
    設計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關系(反過來有-8=8×(―1)).
    設計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學的應用價值.
    小結、布置作業(yè)。
    請同學們帶著下列問題回顧本節(jié)課的內容:
    (2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
    (3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
    (4)你能舉例說明符號法則“負負得正”的合理性嗎?
    設計意圖:引導學生從知識內容和學習過程兩個方面進行小結.
    作業(yè):教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
    五、目標檢測設計。
    1.判斷下列運算結果的符號:
    (1)5×(-3);。
    (2)(-3)×3;。
    (3)(-2)×(-7);。
    (4)(+0.5)×(+0.7).
    2計算:
    (1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
    (4)。
    ;(5)0×(-6);(6)8×。
    設計意圖:檢測學生對有理數(shù)乘法法則的理解情況.
    有理數(shù)的除法人教版數(shù)學七年級教案篇六
    三、情感態(tài)度與價值觀。
    體會數(shù)學與現(xiàn)實生活的聯(lián)系,提高學生學習數(shù)學的興趣、
    教學重點、難點與關鍵。
    1、重點:有理數(shù)加減法統(tǒng)一為加法運算,掌握有理數(shù)加減混合運算、
    2、難點:省略括號和加號的加法算式的運算方法、
    投影儀、
    四、教學過程。
    一、復習提問,引入新課。
    1、敘述有理數(shù)的加法、減法法則、
    2、計算、
    (1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
    (4)(—8)—6;(5)5—14、
    五、新授。
    我們已學習了有理數(shù)加、減法的運算,今天我們來研究怎樣進行有理數(shù)的加減混合運算、
    六、鞏固練習。
    1、課本第24頁練習、
    (1)題是已寫成省略加號的代數(shù)和,可運用加法交換律、結合律、
    原式=1+3—4—0。5=0—0。5=—0。5。
    (2)題運用加減混合運算律,同號結合、
    原式=—2。4—4。6+3。5+3。5=—7+7=0。
    (3)題先把加減混合運算統(tǒng)一為加法運算、
    原式=(—7)+(—5)+(—4)+(+10)。
    =—7—5—4+10(省略括號和加號)。
    =—16+10。
    =—6。
    七、課堂小結。
    八、作業(yè)布置。
    1、課本第25頁第26頁習題1、3第5、6、13題、
    九、板書設計:
    第四課時。
    1、把有理數(shù)加減混合運算轉化為加法后,常用加法交換律和結合律使計算簡便、
    歸納:加減混合運算可以統(tǒng)一為加法運算、
    用式子表示為a+b—c=a+b+(—c)、
    2、隨堂練習。
    3、小結。
    4、課后作業(yè)。
    十、課后反思。
    本課教學反思。
    本節(jié)課主要采用過程教案法訓練學生的聽說讀寫。過程教案法的理論基礎是交際理論,認為寫作的過程實質上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學生指導,更正其錯誤,幫助學生完成寫作各階段任務。課堂是寫作車間,學生與教師,學生與學生彼此交流,提出反饋或修改意見,學生不斷進行寫作,修改和再寫作。在應用過程教案法對學生進行寫作訓練時,學生從沒有想法到有想法,從不會構思到會構思,從不會修改到會修改,這一過程有利于培養(yǎng)學生的寫作能力和自主學習能力。學生由于能得到教師的及時幫助和指導,所以,即使是英語基礎薄弱的同學,也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學生寫作興趣,增強了寫作的自信心。
    這個話題很容易引起學生的共鳴,比較貼近生活,能激發(fā)學生的興趣,在教授知識的同時,應注意將本單元情感目標融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡能為后續(xù)學習打下基礎。此教案設計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
    在此教案過程中,應注重培養(yǎng)學生的自學能力,通過輔導學生掌握一套科學的學習方法,才能使學生的學習積極性進一步提高。再者,培養(yǎng)學生的學習興趣,增強教案效果,才能避免在以后的學習中產生兩極分化。
    在教案中任然存在的問題是,學生在“說”英語這個環(huán)節(jié)還有待提高,大部分學生都不愿意開口朗讀課文,所以復述課文便尚有難度,對于這一部分學生的學習成績的提高還有待研究。
    有理數(shù)的除法人教版數(shù)學七年級教案篇七
    一、指導思想:
    人教版七年級數(shù)學上冊教學計劃,本班學生剛剛完成小學六年的學習,升入初一,也就是我們現(xiàn)在所說的七年級。通過調閱小六畢業(yè)會考成績冊和試卷,發(fā)現(xiàn)本班學生的數(shù)學成績不甚理想。從學生作答來看,基礎知識不扎實,計算能力較差,思路不靈活,缺乏創(chuàng)新思維能力,尤其是解難題的能力低下。總體上來看,低分很多,兩極分化較為嚴重。
    二、情況分析:
    學生情況分析:
    全面貫徹黨的十七大教育方針,以七年能數(shù)學教學大綱為標準,堅決完成《初中數(shù)學新課程標準》提出的各項基本教學目標。制定人教版七年級數(shù)學上冊教學計劃,根據(jù)學生的實際情況,從生活入手,結合教材內容,精心設計教學方案。通過本學期數(shù)學課堂教學,夯實學生的基礎,提高學生的基本技能,培養(yǎng)學生學習數(shù)學知識和運用數(shù)學知識的能力,幫助學生初步建立數(shù)學思維模式。最終圓滿完成七年級上冊數(shù)學教學任務。
    三、教學目標。
    人教版七年級數(shù)學上冊教學計劃知識與技能目標:認識有理數(shù)和代數(shù)式,掌握有理數(shù)的各種性質和運算法則,初步學會使用代數(shù)式探究數(shù)量之間的關系。認識基本幾何圖形,掌握基本基本作圖能力和的技巧。過程與方法目標:學會抽取實際問題中的數(shù)學信息,發(fā)展幾何思維模式。培養(yǎng)學生的觀察和思維能力,尤其是自主探索的能力。情感與態(tài)度目標:培養(yǎng)學生學習數(shù)學的興趣,認識數(shù)學源自生活實踐,最終回歸生活。班級教學目標:優(yōu)秀率:15%,合格率80%。
    四、教材分析。
    第一章、有理數(shù):本章主要學習有理數(shù)的基本性質及運算。本章重點內容是有理數(shù)的概念,性質和運算。本章的難點在于理解有理數(shù)的基本性質、運算法則,并將它們應用到解決實際問題和計算中。
    第二章、整式的加減:本章主要是學習單項式和多項式的加減運算。本章重點內容是單項式、多項式、同類項的概念;合并同類項及去括號的法則及整式的加減運算。本章難點在于理解合并同類項和去括號的法則。
    第三章、一元一次方程:本章主要學習一元一次方程的概念、等式的基本性質、一元一次方程的解法及應用。本章重點內容是理解等式的基本性質;掌握解一元一次方程的一般步驟;列方程解決實際問題的基本思路。本章難點在于解一元一次方程,并利用一元一次方程解決簡單的實際問題。
    第四章、圖形認識初步:本章主要學習線段和角有關的性質。本章的重點是區(qū)別直線、射線、線段,角的有關性質和計算;理解互為余角、互為補角的性質及應用。本章的難點在于線段和角的有關計算。
    五、教學措施。
    1、人教版七年級數(shù)學上冊教學計劃,認真研讀新課程標準,潛心鉆研教材,根據(jù)新課程標準,結合學生實際情況,進行針對性的備課,精心設置課堂教學內容和模式。上好每一堂課,閱好每一份試卷,搞好每一節(jié)輔導,組織好每一次測驗。
    2、開展豐富多彩的課外活動,課外調查,向學生介紹數(shù)學家、數(shù)學史、數(shù)學趣題,喻教于樂,激發(fā)學生的學習興趣,挖掘學生的潛能,培養(yǎng)數(shù)學特長生。
    3、開展分層教學實驗,使不同的學生學到不同的知識,使人人能學到有用的知識,使不同的人得到不同的發(fā)展,獲得成功感,使優(yōu)生更優(yōu),差生逐漸趕上。
    有理數(shù)的除法人教版數(shù)學七年級教案篇八
    1.1正數(shù)和負數(shù)(2)。
    教學目標:
    教學重點:
    深化對正負數(shù)概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復習引入:
    學生思考并討論.
    (數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
    二、講解新課。
    度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結。
    引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設計:
    有理數(shù)的除法人教版數(shù)學七年級教案篇九
    學習過程:
    一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
    1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
    2.加法的交換律:
    兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.
    3.加法的結合律:
    有理數(shù)的除法人教版數(shù)學七年級教案篇十
    學習目標:。
    1、理解加減法統(tǒng)一成加法運算的意義.
    2、會將有理數(shù)的加減混合運算轉化為有理數(shù)的加法運算.
    3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
    教學方法:講練相結合。
    教學過程。
    1、一架飛機作特技表演,起飛后的高度變化如下表:
    高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
    記作+4.5千米—3.2千米+1.1千米—1.4千米。
    請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
    2、你是怎么算出來的,方法是。
    1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
    2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
    如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
    =(-20)+(+3)+(+5)+(-7)先把減法轉化為加法。
    =-20+3+5-7再把加號記在腦子里,省略不寫。
    可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
    4、師生完整寫出解題過程。
    1、解決引例中的問題,再比較前面的方法,你的感覺是。
    2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
    3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
    1、小結:說說這節(jié)課的收獲。
    2、p241、2。
    3、計算。
    1)27—18+(—7)—322)。
    五、作業(yè)。
    1、p2552、p26第8題、14題。
    有理數(shù)的除法人教版數(shù)學七年級教案篇十一
    1.1正數(shù)和負數(shù)(2)。
    教學目標:
    教學重點:
    深化對正負數(shù)概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復習引入:
    學生思考并討論.
    (數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
    二、講解新課。
    度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結。
    引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設計:
    有理數(shù)的除法人教版數(shù)學七年級教案篇十二
    2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大小;。
    3.使學生初步了解數(shù)形結合的思想方法,培養(yǎng)學生相互聯(lián)系的觀點。
    教學建議。
    一、重點、難點分析。
    本節(jié)的重點是初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與上點的對應關系。的概念包含兩個內容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.
    二、知識結構。
    有了,數(shù)和形得到了初步結合,這有利于對數(shù)學問題的研究,數(shù)形結合是理解數(shù)學、學好數(shù)學的重要思想方法,本課知識要點如下表:
    定義。
    三要素。
    應用。
    數(shù)形結合。
    規(guī)定了原點、正方向、單位長度的直線叫。
    原點。
    正方向。
    單位長度。
    幫助理解有理數(shù)的概念,每個有理數(shù)都可用上的點表示,但上的點并非都是有理數(shù)。
    比較有理數(shù)大小,上右邊的數(shù)總比左邊的數(shù)要大。
    在理解并掌握概念的基礎之上,要會畫出,能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù),要知道所有的有理數(shù)都可以用上的點表示,會利用比較有理數(shù)的大小。
    三、教法建議。
    小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關,但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
    關于有理數(shù)與上的點的對應關系,應該明確的是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應的關系。根據(jù)幾個有理數(shù)在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數(shù)的對應關系及其應用,逐步滲透數(shù)形結合的思想。
    四、的相關知識點。
    1.的概念。
    (1)規(guī)定了原點、正方向和單位長度的直線叫做.
    這里包含兩個內容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的.
    (2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù).
    以是理解有理數(shù)概念與運算的重要工具.有了,數(shù)和形得到初步結合,數(shù)與表示數(shù)的圖形(如)相結合的思想是學習數(shù)學的重要思想.另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小.因此,應重視對的學習.
    2.的畫法。
    (1)畫直線(一般畫成水平的)、定原點,標出原點“o”.
    (2)取原點向右方向為正方向,并標出箭頭.
    (3)選適當?shù)拈L度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
    (4)標注數(shù)字時,負數(shù)的次序不能寫錯,如下圖。
    3.用比較有理數(shù)的大小。
    (1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。
    (2)由正、負數(shù)在上的位置可知:正數(shù)都有大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。
    (3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“”的寫法,正確應寫成“”。
    五、定義的理解。
    1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.
    2.所有的有理數(shù),都可以用上的點表示.例如:在上畫出表示下列各數(shù)的點(如圖2).
    a點表示-4;b點表示-1.5;。
    o點表示0;c點表示3.5;。
    d點表示6.
    從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負數(shù)在上的位置,可以知道:
    正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).
    因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用,表示是正數(shù);反之,知道是正數(shù)也可以表示為。
    同理,,表示是負數(shù);反之是負數(shù)也可以表示為。
    3.正常見幾種錯誤。
    1)沒有方向。
    2)沒有原點。
    3)單位長度不統(tǒng)一。
    有理數(shù)的除法人教版數(shù)學七年級教案篇十三
    (1)能用代數(shù)式表示實際問題中的數(shù)量關系.
    (2)理解單項式、單項式的次數(shù),系數(shù)等概念,會指出單項式的次數(shù)和系數(shù).
    講授法、談話法、討論法。
    【教學重點】。
    單項式的有關概念。
    【教學難點】。
    負系數(shù)的確定以及準確確定一個單項式的次數(shù)。
    【課前準備】。
    教師準備教學用課件。
    【教學過程】。
    一、新課引入。
    教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:
    1.青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答下列問題:
    (1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
    分析:(1)根據(jù)速度、時間和路程之間的關系:路程=速度×時間.列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米).
    (2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米).
    (3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米.
    思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎上教師引導學生分析怎樣列式.
    上述的3個問題中的數(shù)量關系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡.
    kb2.下面,我們再來看幾個用含字母的式子表示數(shù)量關系的問題.
    用含有字母的式子填空,看看列出的式子有什么特點.
    (1)邊長為a的正方體的表面積為______,體積為_______.
    (2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元.
    (3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米.
    (4)數(shù)n的相反數(shù)是_______.
    教師課堂巡視,關注中下程度的學生,及時引導,學生探究交流.
    上面各問題的代數(shù)式分別是:6a2,a3,2.5x,vt,-n.
    觀察上面各式中運算有什么共同特點?
    上面各式中,數(shù)字與字母之間,字母與字母之間都是乘法運算,它們都是數(shù)字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
    像上面這樣,只含有數(shù)與字母的積的式子叫做單項式.單獨的一個數(shù)或一個字母也是單項式.如:-2,a,,都是單項式,而,1+x都不是單項.
    單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù),例如:6a2的系數(shù)是6,a3的系數(shù)是1,-n的系數(shù)是-1,-的系數(shù)是-.
    單項式表示數(shù)字與字母相乘時,通常把數(shù)字寫成前面,當一個單項式的系數(shù)是1或-1時通常省略不寫.
    一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).例如,2.5x中字母x的指數(shù)是1,2.5x是一次單項式;vt中字母v與t的指數(shù)和是2,vt是二次單項式,-ab2c中字母a、b、c的指數(shù)和是4,-ab2c是4次單項式.
    有理數(shù)的除法人教版數(shù)學七年級教案篇十四
    一、選擇題:(本題共24分,每小題3分)。
    在下列各題的四個備選答案中,只有一個答案是正確的,請你把正確答案前的字母填寫在相應的括號中.
    1.若一個數(shù)的倒數(shù)是7,則這個數(shù)是().
    a.-7b.7c.d.
    2.如果兩個等角互余,那么其中一個角的度數(shù)為().
    a.30°b.45°c.60°d.不確定。
    3.如果去年某廠生產的一種產品的產量為100a件,今年比去年增產了20%,那么今年的產量為()件.
    a.20ab.80ac.100ad.120a。
    4.下列各式中結果為負數(shù)的是().
    a.b.c.d.
    5.如圖,已知點c是線段ab的中點,點d是cb的中點,那么下列結論中錯誤的是().
    a.ac=cbb.bc=2cdc.ad=2cdd.
    6.下列變形中,根據(jù)等式的性質變形正確的是().
    a.由,得x=2。
    b.由,得x=4。
    c.由,得x=3。
    d.由,得。
    7.如圖,這是一個馬路上的人行橫道線,即斑馬線的示意圖,請你根據(jù)圖示判斷,在過馬路時三條線路ac、ab、ad中最短的是().
    a.acb.abc.add.不確定。
    8.如圖,有一塊表面刷了紅漆的立方體,長為4厘米,寬為5厘米,高為3厘米,現(xiàn)在把它切分為邊長為1厘米的小正方形,能夠切出兩面刷了紅漆的正方體有()個.
    a.48b.36c.24d.12。
    二、填空題:(本題共12分,每空3分)。
    9.人的大腦約有100000000000個神經(jīng)元,用科學記數(shù)法表示為.
    10.在鐘表的表盤上四點整時,時針與分針之間的夾角約為度.
    11.一個角的補角與這個角的余角的差等于度.
    12.瑞士的教師巴爾末從測量光譜的數(shù)據(jù),,,…中得到了巴爾末公式,請你按這種規(guī)律寫出第七個數(shù)據(jù),這個數(shù)據(jù)為.
    三、解答題:(本題共30分,每小題5分)。
    13.用計算器計算:(結果保留3個有效數(shù)字)。
    14.化簡:
    15.解方程。
    16.如示意圖,工廠a與工廠b想在公路m旁修建一座共用的倉庫o,并且要求o到a與o到b的距離之和最短,請你在m上確定倉庫應修建的o點位置,同時說明你選擇該點的理由.
    拓展知識。
    有理數(shù)的除法人教版數(shù)學七年級教案篇十五
    1知識與技能:
    使學生理解和掌握整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。
    2過程與方法:
    通過觀察、操作、討論的活動,使學生經(jīng)歷探究口算方法的全過程。
    3情感態(tài)度與價值觀:
    讓學生感受數(shù)學與生活的聯(lián)系,培養(yǎng)學生用數(shù)學知識解決簡單實際問題的能力。
    教學重難點。
    1教學重點:
    掌握用整十數(shù)除的口算方法。
    2教學難點:
    理解用整十數(shù)除的口算算理。
    教學工具。
    多媒體設備。
    教學過程。
    1復習引入。
    口算。
    20×3=7×50=6×3=。
    20×5=4×9=8×60=。
    24÷6=8÷2=12÷3=。
    42÷6=90÷3=3000÷5=。
    2新知探究。
    1.教學例1。
    有80面彩旗,每班分20面,可以分給幾個班?
    (1)提出問題,尋找解決問題的方法。
    師:從中你能獲取什么數(shù)學信息?
    師:怎樣解決這個問題?
    (2)列式80÷20。
    (3)學生獨立探索口算的方法。
    師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。
    學生匯報:
    預設學生可能會有以下兩種口算方法:
    a.因為20×4=80,所以80÷20=4這是想乘算除。
    b.因為8÷2=4,所以80÷20=4這是根據(jù)計數(shù)單位的組成。
    為什么可以不看這個“0”?(80÷20可以想“8個十里面有幾個二十?”)。
    這樣我們就把除數(shù)是整十數(shù)的轉化為我們已經(jīng)學過的表內除法。
    (4)師小結:
    同學們有的用乘法算除法的,也有用表內除法來想的,都很好,那么你喜歡哪種方法呢?
    把你喜歡的方法說給同桌聽。
    (5)檢查正誤。
    師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)。
    (6)用剛學會的方法再次口算,并與同桌交流你的想法。
    40÷2020÷1060÷3090÷30。
    (7)探究估算的方法。
    出示:83÷20≈80÷19≈。
    師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。
    生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。
    師:誰想把你的方法跟大家說一說。
    預設:83接近于80,80除以20等于4,所以83除以20約等于4。
    19接近于20,80除以20等于4,所以80除以19約等于4。
    2.教學例2。
    (1)創(chuàng)設情境引出問題。
    師:誰會解決這個問題?
    150÷50。
    (2)小組討論口算方法。
    (3)你是怎么這樣快就算出的呢?
    a.因為15÷5=3,所以150÷50=3。
    b.因為3個50是150,所以150÷50=3。
    這一題跟剛才分彩旗的口算方法有不同嗎?
    都是運用想乘算除和表內除法這兩種方法來口算的。
    師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。
    口算練習:150÷30240÷80300÷50540÷90。
    3.估算。
    (1)探計估算的方法。
    師:你能知道題目要求我們做什么嗎?
    你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。
    (2)誰想把你的方法跟大家說一說。
    (3)總結方法:把被除數(shù)和除數(shù)都看作與原數(shù)比較接近的整十數(shù)再用口算方法算。
    (4)判斷估算是否正確:122÷60=2349÷50≈8為什么不正確?
    3鞏固提升。
    1.獨立口算。
    觀察每道題,怎樣很快說出下面除法算式的商?
    如果估算的話把誰估成多少。
    2.算一算、說一說。
    (1)除數(shù)不變,被除數(shù)乘幾,商也乘幾。
    (2)被除數(shù)不變,除數(shù)乘幾,商反而除以幾。
    3.解決問題。
    (1)一共要寄240本書,每包40本。要捆多少包?
    你能找到什么條件、問題。你會解決嗎?
    240÷40=6(包)。
    答:要捆6包。
    (2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。
    出示條件:一共有120個小故事,每天看1個故事。
    問題:看完這本書大約需要幾個月?
    問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?
    120÷30=4(個)。
    答:看完這本書大約需要4個月。
    課后小結。
    這節(jié)課你有什么收獲?還有什么問題?
    本節(jié)課學習了整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。
    板書。
    口算除法。
    有80面彩旗,每班分20面,可以分給幾個班?
    80÷20=。
    有理數(shù)的除法人教版數(shù)學七年級教案篇十六
    3.注意培養(yǎng)學生的運算能力.。
    教學重點和難點。
    重點:有理數(shù)的混合運算.。
    難點:準確地掌握有理數(shù)的運算順序和運算中的符號問題.。
    課堂教學過程設計。
    一、從學生原有認知結構提出問題。
    1.計算(五分鐘練習):
    (17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
    (24)3.4×104÷(-5).。
    加法交換律:a+b=b+a;
    加法結合律:(a+b)+c=a+(b+c);
    乘法交換律:ab=ba;
    乘法結合律:(ab)c=a(bc);
    乘法分配律:a(b+c)=ab+ac.
    二、講授新課。
    1.在只有加減或只有乘除的同一級運算中,按照式子的順序從左向右依次進行.。
    審題:(1)運算順序如何?
    (2)符號如何?
    有理數(shù)的除法人教版數(shù)學七年級教案篇十七
    多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
    及時了解、掌握常用的數(shù)學思想和方法。
    中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結合思想,運動思想,轉化思想,變換思想。
    有理數(shù)的除法人教版數(shù)學七年級教案篇十八
    1、大于0的數(shù)叫做正數(shù)(positivenumber)。
    2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)(negativenumber)。
    3、整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)(rationalnumber)。
    4、人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸(numberaxis)。
    5、在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
    6、一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue)。
    7、由絕對值的定義可知:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
    8、正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。
    9、兩個負數(shù),絕對值大的反而小。
    10、有理數(shù)加法法則。
    (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
    (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
    (3)一個數(shù)同0相加,仍得這個數(shù)。
    11、有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。
    12、有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
    13、有理數(shù)減法法則。
    減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
    14、有理數(shù)乘法法則。
    兩數(shù)相乘,同號得正,異號得負,并把絕對值向乘。
    任何數(shù)同0相乘,都得0。
    15、有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
    16、一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
    17、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
    18、一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
    19、有理數(shù)除法法則。
    除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
    20、兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
    21、求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponeht)。
    22、根據(jù)有理數(shù)的乘法法則可以得出。
    負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。
    顯然,正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
    23、做有理數(shù)混合運算時,應注意以下運算順序:
    (1)先乘方,再乘除,最后加減;。
    (2)同級運算,從左到右進行;。
    (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
    24、把一個大于10數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學計數(shù)法。
    25、接近實際數(shù)字,但是與實際數(shù)字還是有差別,這個數(shù)是一個近似數(shù)(approximatenumber)。
    26、從一個數(shù)的左邊的第一個非0數(shù)字起,到末尾數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字(significantdigit)。
    短時間提高數(shù)學成績的方法。
    1、查查在知識方面還能做那些努力。關鍵的是做好知識的準備,考前要檢查自己在初中學習的數(shù)學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。
    2、一定要對自己、對未來充滿信心,心態(tài)問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經(jīng)讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數(shù)學題,養(yǎng)兵千日,用兵一時,現(xiàn)在是收獲的時候,自己會取得好成績的。
    3、看完書后,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。
    數(shù)學學習方法。
    1、基礎很重要。
    是不是感覺數(shù)學都能考滿分的同學,連書都不用看,其實數(shù)學學霸更重視基礎。,數(shù)學公式,幾何圖形的性質,函數(shù)的性質等,都是數(shù)學學習的基礎,甚至可以說基礎的好壞,直接決定中考數(shù)學成績的高低。
    李現(xiàn)良表示,班里某位同學來找自己講題,其實題目并不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路?;A不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。
    2、錯題本很重要。
    在所有科目中,數(shù)學這個科目最重要錯題本學習法。李現(xiàn)良同學也特別提倡大家整理錯題,李現(xiàn)良對于錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對于一些徹底掌握的,可以做個標記,以后就不用再次復習,這樣錯題本使用起來就會效率更高。
    3、做題要多反思。
    數(shù)學學習要大量做題去鞏固,但做題不要只講究數(shù)量,更要講究質量,遇到經(jīng)典題,綜合性高的題目時,每道題寫完解答過程后,需要進行分析和反思,多問幾個為什么,這樣才能把題真正做透。
    4、把數(shù)學知識形成體系。
    數(shù)學學霸李現(xiàn)良表示,課本上的知識都是零散的,建議大家自己畫思維導圖把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。