數(shù)學建模論文(通用15篇)

字號:

    通過總結(jié),我們可以發(fā)現(xiàn)自己的優(yōu)點和不足,為未來的發(fā)展提供借鑒。寫總結(jié)時,我們應該保持思考的深度和廣度,不僅局限在表面的現(xiàn)象和問題,而是要深入分析其根本原因和內(nèi)在關系。沒有人能夠百分之百地做到完美,我們只需盡力而為就可以了。
    數(shù)學建模論文篇一
    信息化時代,數(shù)學科學與其他學科交叉融合,使得數(shù)學技術變成了一種普適性的關鍵技術。大學加強數(shù)學課程的應用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學生應用數(shù)學科學進行定量化、精確化思維的意識,學會創(chuàng)造性地解決問題的應用能力。數(shù)學建模課程將數(shù)學的基本原理、現(xiàn)代優(yōu)化算法以及程序設計知識很好地融合在一起,有助于培養(yǎng)學生綜合應用數(shù)學知識將現(xiàn)實問題化為數(shù)學問題,并進行求解運算的能力,激發(fā)學生對解決現(xiàn)實問題的探索欲望,強化數(shù)學課程本身的應用功能,凸顯數(shù)學課程的教育價值,適應大學數(shù)學課程以培養(yǎng)學生創(chuàng)新意識為宗旨的教育改革需要。
    大學傳統(tǒng)的數(shù)學主干課程,如高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學生的數(shù)學基礎、培養(yǎng)自學能力以及為后續(xù)課程的學習在基礎方面發(fā)揮奠基作用。但是,這種原有的教學模式重在突出培養(yǎng)學生嚴格的邏輯思維能力,而對數(shù)學的應用重視不夠,這使得學生即使掌握了較為高深的數(shù)學理論,卻并不能將其靈活應用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學應用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學教學模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學建模的思想方法融入到數(shù)學主干課程之中,在教學過程中引導學生將數(shù)學知識內(nèi)化為學生的應用能力,充分發(fā)揮數(shù)學建模思想在數(shù)學教學過程中的引領作用。數(shù)學課程教學改革要適應這一教學模式轉(zhuǎn)型需要,深入探究融入式教學模式的理論與方式,是推進數(shù)學教育改革的重要舉措。
    2.1理清數(shù)學建模思想方法與數(shù)學主干課程的關系。數(shù)學主干課程提供了大學數(shù)學的基礎理論與基本原理,將數(shù)學建模的思想方法有機地融入到數(shù)學主干課程中,不但可以有效地提升數(shù)學課程的應用功能,而且有利于深化學生對數(shù)學本原知識的理解,培養(yǎng)學生的綜合應用能力。深入研究數(shù)學主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學習形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學建模本身所承載的思想、方法與數(shù)學主干課程的內(nèi)容與邏輯關系,闡述數(shù)學建模思想方法對提高學生創(chuàng)新能力和對數(shù)學教育改革的重要意義,探索開展融入式教學及創(chuàng)新數(shù)學課程教學模式的有效途徑。
    2.2探索融入式教學模式提升數(shù)學主干課程應用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學建模的思想與方法。以學生能力訓練為主導,在培養(yǎng)深厚的數(shù)學基礎和嚴格的邏輯思維能力的基礎上,充分發(fā)揮數(shù)學建模思想方法對學生思維方式的培養(yǎng)功能和引導作用,培養(yǎng)學生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學知識應用于工程問題的創(chuàng)新能力。
    2.3建立數(shù)學建模思想方法融入數(shù)學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數(shù)學建模思想方法融入主干課程進行教學效果實踐驗證。設計相應的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。
    3.1改革課程教學內(nèi)容,滲透數(shù)學建模的思想方法。傳統(tǒng)的數(shù)學主干課程教學內(nèi)容,將數(shù)學看作嚴謹?shù)难堇[體系,教學過程中著力于對學生傳授大學數(shù)學的基礎知識,而對應用能力的培養(yǎng)卻重視不夠。使得本應能夠發(fā)揮應用功能的數(shù)學知識則淪為僵死的教條性數(shù)學原理,這失去了教學的活力。學生即使掌握了再高深的數(shù)學知識,仍難以學會用數(shù)學的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學數(shù)學課程教學內(nèi)容中,適當?shù)貪B透一些應用性比較廣泛的數(shù)學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數(shù)學基礎知識的掌握,同時理解數(shù)學原理所蘊涵的思想與方法。
    這樣,在解決實際問題的時候,學生就會有意識地從數(shù)學的角度進行思考,嘗試建立相應的數(shù)學模型并進行求解,拓展了數(shù)學知識的深度與廣度,提升了學生的數(shù)學應用能力四、結(jié)語數(shù)學建模是數(shù)學科學在科技、經(jīng)濟、軍事等領域廣泛應用的接口,是數(shù)學科學轉(zhuǎn)化成科學技術的重要途徑。在數(shù)學主干課程中融入數(shù)學建模的思想與方法,可以推動大學數(shù)學教育改革的深入發(fā)展,加深學生對相關知識的理解和掌握,有助于從思維方式上培養(yǎng)學生的創(chuàng)新意識與創(chuàng)新能力。
    此外,數(shù)學建模思想方法融入教學主干課程還涉及到許多問題,比如數(shù)學建模與計算技術如何有效結(jié)合以進行模擬仿真、融入式教學模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
    數(shù)學建模論文篇二
    數(shù)學建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應用領域越來越廣泛,人們身邊的數(shù)學內(nèi)容越來越豐富。強調(diào)數(shù)學應用及培養(yǎng)應用數(shù)學意識對推動素質(zhì)教育的實施意義十分巨大。數(shù)學建模在數(shù)學教育中的地位被提到了新的高度,通過數(shù)學建模解數(shù)學應用題,提高學生的綜合素質(zhì)。本文將結(jié)合數(shù)學應用題的特點,把怎樣利用數(shù)學建模解好數(shù)學應用問題進行剖析,希望得到同仁的幫助和指正。
    一、數(shù)學應用題的特點。
    我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學建模的方法將問題轉(zhuǎn)化為數(shù)學形式表示,從而獲得解決的.一類數(shù)學問題叫做數(shù)學應用題。數(shù)學應用題具有如下特點:
    第一、數(shù)學應用題的本身具有實際意義或?qū)嶋H背景。這里的實際是指生產(chǎn)實際、社會實際、生活實際等現(xiàn)實世界的各個方面的實際。如與課本知識密切聯(lián)系的源于實際生活的應用題;與模向?qū)W科知識網(wǎng)絡交匯點有聯(lián)系的應用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟、環(huán)境保護、實事政治等有關的應用題等。
    第二、數(shù)學應用題的求解需要采用數(shù)學建模的方法,使所求問題數(shù)學化,即將問題轉(zhuǎn)化成數(shù)學形式來表示后再求解。
    第三、數(shù)學應用題涉及的知識點多。是對綜合運用數(shù)學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
    第一層次:直接建模。
    根據(jù)題設條件,套用現(xiàn)成的數(shù)學公式、定理等數(shù)學模型,注解圖為:
    第二層次:直接建模??衫矛F(xiàn)成的數(shù)學模型,但必須概括這個數(shù)學模型,對應用題進行分析,然后確定解題所需要的具體數(shù)學模型或數(shù)學模型中所需數(shù)學量需進一步求出,然后才能使用現(xiàn)有數(shù)學模型。
    第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數(shù)學模型方能解決問題。
    第四層次:假設建模。要進行分析、加工和作出假設,然后才能建立數(shù)學模型。如研究十字路口車流量問題,假設車流平穩(wěn),沒有突發(fā)事件等才能建模。
    三、建立數(shù)學模型應具備的能力。
    從實際問題中建立數(shù)學模型,解決數(shù)學問題從而解決實際問題,這一數(shù)學全過程的教學關鍵是建立數(shù)學模型,數(shù)學建模能力的強弱,直接關系到數(shù)學應用題的解題質(zhì)量,同時也體現(xiàn)一個學生的綜合能力。
    1提高分析、理解、閱讀能力。
    2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學符號語言的能力。
    3增強選擇數(shù)學模型的能力。
    4加強數(shù)學運算能力。
    數(shù)學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
    數(shù)學建模論文篇三
    摘要:數(shù)學作為很多學科的計算工具,可以說是現(xiàn)代科學的基礎,要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,本文在數(shù)學建模思想概念和特點的基礎上,從計算機軟件、實際生活中的應用等方面,對其應用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗模型三個階段,對數(shù)學建模的方法,進行了深入的研究。
    引言。
    隨著自然科學的發(fā)展,利用數(shù)學等思想來解決實際問題,越來越受到人們的重視,數(shù)學作為一門歷史悠久的自然科學,是在實際應用的基礎上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,將實際的問題轉(zhuǎn)化成數(shù)學符號的表達方式,這樣才能夠通過數(shù)學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應用的需要,建立了一個相應的數(shù)學模型,這樣才能夠讓計算機來解決。
    數(shù)學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經(jīng)開始使用數(shù)學來解決實際問題,但是受到當時技術條件的限制,數(shù)學理論的水平比較低,只是利用數(shù)學來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學得到了極大的發(fā)展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學理論的基礎上,將電路的通和不通兩種狀態(tài),與數(shù)學的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學建模的理論還沒有形成,隨著計算機軟件技術的發(fā)展,人們逐漸的意識到數(shù)學建模的重要性,發(fā)現(xiàn)利用數(shù)學建模思想,可以解決很多實際的問題,而數(shù)學建模的概念,就是將遇到的實際問題,利用特定的數(shù)學符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學問題,可以利用數(shù)學的計算方法來解決。
    如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發(fā)展,出現(xiàn)了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數(shù)學就是其中最重要的一門學科,而且是其他學科的基礎,如物理學科中,數(shù)學就是一個計算的工具,由此可以看出數(shù)學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學建模顯然更加科學,現(xiàn)在數(shù)學建模已經(jīng)成為了一門獨立的學科,很多高校中都開設了這門課程,為了培養(yǎng)學生們利用數(shù)學解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學建模大賽,采用開放式的參賽方式,對學生們的數(shù)學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
    2.1計算機軟件中數(shù)學建模思想的應用。
    通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學模型,如在早期的計算機程序設計中,受到當時計算機技術水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學模型,然后將這個模型轉(zhuǎn)化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
    經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數(shù)學理論,來解決實際問題,在學習數(shù)學知識的過程中,很多學生會認為,數(shù)學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關的學科相比,選擇數(shù)學專業(yè)的學生很少,而數(shù)學建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學,并利用數(shù)學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學建模等現(xiàn)代科學,研究的時間比較短,導致目前我國很少會利用數(shù)學建模來解決實際問題,相比之下,發(fā)達國家在很多領域中,經(jīng)常會用到數(shù)學建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學模型,然后按照這個建立的模型來處理。
    從本質(zhì)上來說,數(shù)學是在實際應用的基礎上,逐漸形成的一門學科,但是受到當時技術水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學知識,隨著自然科學的發(fā)展,對數(shù)學的應用越來越多,而數(shù)學自身理論的發(fā)展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發(fā)展,數(shù)學變成了一種計算的工具,因此數(shù)學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學的應用達到了一個極限,人們在數(shù)學和物理的基礎上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學計算,還不能解決實際的問題,但是計算機語言和軟件技術的.發(fā)展,使其在很多領域得到了應用,在計算的基礎上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學模型的過程,由此可以看出,數(shù)學建模思想應用的第二階段中,主要是以現(xiàn)代計算機等電子設備的方式,來解決實際的問題。
    3.1分析問題。
    數(shù)學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學符號,如果能夠直接用數(shù)學語言來進行描述,那么就可以容易的建立相應的數(shù)學模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復雜,其中很多都無法直接用數(shù)學語言來描述,這就增加了數(shù)學建模的難度。由此可以看出,分析問題作為數(shù)學建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學模型,同時對數(shù)學模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學模型協(xié)同來解決一個問題。
    在分析實際問題后,就要用數(shù)學符號來描述要解決的問題,這是建立數(shù)學模型的準備環(huán)節(jié),要想利用數(shù)學來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學語言,然后才能夠通過計算的方式解決,而數(shù)學模型的過程,就是在描述完成后,建立相應的數(shù)學表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學建模的基礎。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學知識外,也可以結(jié)合其他學科的知識,尤其是現(xiàn)在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學建模的難度越來越大,從近些年全國數(shù)學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
    在數(shù)學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數(shù)學模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數(shù)學模型的建立,具有非常重要的意義。
    4結(jié)語。
    通過全文的分析可以知道,對于數(shù)學理論的應用,從很久之前就已經(jīng)開始了,但是數(shù)學建模思想的出現(xiàn),卻是隨著計算機技術的發(fā)展,逐漸形成的一門學科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學模型完成的任務,只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。
    數(shù)學建模論文篇四
    運籌學與數(shù)學建模2門課程聯(lián)系密切,在運籌學教學中,適當融入數(shù)學建模思想,能大幅度提高學生應用數(shù)學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設計等方面進行了探索與實踐.教學實踐表明,將數(shù)學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
    數(shù)學建模論文篇五
    第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側(cè)裝訂。
    第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內(nèi)容見本規(guī)范第3、4頁。
    第三條,論文第三頁為摘要專用頁(含標題和關鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數(shù)字從“1”開始連續(xù)編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。
    第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內(nèi));正文之后是論文附錄(頁數(shù)不限)。
    第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。
    第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。
    第七條,引用別人的成果或其他公開的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻,并在正文引用處予以標注。
    第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對論文增加其他要求。
    第九條,參賽隊應按照《全國大學生數(shù)學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關的支撐材料。
    第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。
    第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開渠道找到的相關資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。
    第十二條,不符合本格式規(guī)范的論文將被視為違反競賽規(guī)則,可能被取消評獎資格。
    第十三條,本規(guī)范的解釋權屬于全國大學生數(shù)學建模競賽組委會。
    說明:
    (1)本科組參賽隊從a、b題中任選一題,??平M參賽隊從c、d題中任選一題。
    (2)賽區(qū)可自行決定是否在競賽結(jié)束時收集參賽論文的紙質(zhì)版,但對于送全國評閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會保存,不必提交給全國組委會)。
    (3)賽區(qū)評閱前將紙質(zhì)版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區(qū)評閱編號”(由各賽區(qū)規(guī)定編號方式),“賽區(qū)評閱紀錄”表格可供賽區(qū)評閱時使用(由各賽區(qū)自行決定是否使用)。評閱后,賽區(qū)對送全國評閱的論文在第二頁建立“送全國評閱統(tǒng)一編號”(編號方式由全國組委會規(guī)定),然后送全國評閱。
    數(shù)學建模論文篇六
    摘要:運籌學與數(shù)學建模2門課程聯(lián)系密切,在運籌學教學中,適當融入數(shù)學建模思想,能大幅度提高學生應用數(shù)學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設計等方面進行了探索與實踐.教學實踐表明,將數(shù)學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
    1運籌學教學中融入數(shù)學建模思想的必要性。
    2數(shù)學建模思想融入運籌學的教學改革。
    3運籌學教學中融入數(shù)學建模思想的教學改革成效。
    4結(jié)束語。
    數(shù)學建模論文篇七
    高校數(shù)學教育是高等教育的基礎學科,占據(jù)重要的一席之地。如何改變學生對數(shù)學枯燥乏味的學習狀態(tài),讓學生輕松愉快地參與到數(shù)學學習中,是當前高校數(shù)學教學者面臨的一個重要課題。在高校數(shù)學教學中開展數(shù)學建模競賽,不僅能培養(yǎng)學生的創(chuàng)新思維,還能有效提高提高學生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學的應用能力。本文對高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)進行了分析闡述,并對此進行了一定的思考。
    數(shù)學建模是一種融合數(shù)學邏輯思想的思考方法,通過運用抽象性的數(shù)學語言和數(shù)學邏輯思考方法,創(chuàng)造性的解決數(shù)學問題。當前很多高校中開始引入數(shù)學建模思想來加強學生創(chuàng)新能力的培養(yǎng),可以使學生的邏輯思維能力和運用數(shù)學邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學建模教師組織學生開始參與美國的數(shù)學建模大賽,促進了數(shù)學建模思維的快速發(fā)展。直到1992中國首屆數(shù)學建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
    2.1數(shù)學建模競賽自主性較強。自主性首先體現(xiàn)在在數(shù)學建模過程中學生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學建模競賽的組織形式呈現(xiàn)多元化特點,組織制度上也較為靈活多樣,數(shù)學建模主要側(cè)重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學建模頗為重視,參賽隊伍、參賽學生的質(zhì)量一直處于上升狀態(tài),數(shù)學模型也日漸合理科學,學生團隊在國際數(shù)學建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓日益加強。數(shù)學建模競賽對學生數(shù)學知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓的時間很長,培訓內(nèi)容也很豐富,為數(shù)學建模競賽取得好成績奠定了堅實的基礎。
    3.1學生的團隊協(xié)作能力和意識得到增強。數(shù)學建模競賽的團隊組織形式活潑自由,通常采用學生組隊模式開展,數(shù)學建模競賽隊伍形成一個團結(jié)戰(zhàn)斗的整體,代表著不僅僅是學校的聲譽,還一定程度上展示著國家的形象。經(jīng)過長時間的培訓,對數(shù)學模型的研究和分析,根據(jù)學生訓練中的優(yōu)勢和特長,進行合理科學的小組分工,讓學生快速高效地完成整個數(shù)學建模,在建模過程中學生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學建模取得最大效用,學生的團隊協(xié)作能力和意識得到鍛煉,責任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數(shù)學建模方面的發(fā)展。
    3.2高校學生參賽積極性高漲。近年來大學生數(shù)學建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學的應用能力提升。
    3.3高校學生數(shù)學邏輯思維能力和靈活運用知識的能力得到提升。數(shù)學建模競賽充滿著刺激性和挑戰(zhàn)性,是學生各方面綜合能力的一個展示。在數(shù)學建模競賽中,學生不僅要需要扎實豐厚的數(shù)學知識儲備,還需要具備清晰的數(shù)學邏輯思維和語言表達能力。同時要有機智的臨場發(fā)揮能力和應變能力,不怯場、不驚慌,有充分的思想準備,能輕松應對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數(shù)學模型的含義和設計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學生的數(shù)學邏輯思維和語言表達能力及靈活運用數(shù)學知識的能力有一個較大的提升。
    3.4學生的自學能力和意志力得到鍛。數(shù)學建模競賽對參賽學生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力。可以說數(shù)學建模過程中,有許多高深的知識難于理解,有的日常學習過程中根本接觸不到,需要數(shù)學建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的`理解分析去摸索,探尋數(shù)學建模所需要的基礎知識,無疑這對學生的自學能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學習數(shù)學建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。
    3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復雜的數(shù)學建模訓練,高校學生信息收集與處理復雜問題的能力得到培養(yǎng)鍛煉,學生數(shù)量觀念得到增強,能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學的嚴謹推導也使學生養(yǎng)成認真細心、一絲不茍的習慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復雜問題,有效解決數(shù)學疑難,數(shù)學理論能更好第應用于實踐,數(shù)學素養(yǎng)進一步得到提升。
    綜上所述,高校學生數(shù)學建模競賽的開展,能較高地提升學生的創(chuàng)新能力和綜合素養(yǎng),團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學建模競賽,使學生的綜合素質(zhì)得到發(fā)展和鍛煉。學校用重視和鼓勵全體學生參與數(shù)學建模競賽,通過競賽實現(xiàn)學生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
    [1]趙剛.高校數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
    [2]陳羽,徐小紅,房少梅.數(shù)學建模實踐及其對培養(yǎng)學生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
    [3]趙建英.數(shù)學建模競賽對高校創(chuàng)新人才培養(yǎng)的促進作用分析[j].科技展望,20xx(08)5.
    [4]畢波,杜輝.關于高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
    數(shù)學建模論文篇八
    高校學生社團是一種具有共同興趣愛好的學生自發(fā)組織的開展一些藝術、娛樂和學術型的活動的團體。學生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學生提供了廣闊的舞臺,讓這些學生可以更好的發(fā)揮自己的才能,促進其更好的成才。全國大學生數(shù)學建模競賽是最早由教育部工業(yè)與數(shù)學應用學會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學建模競賽選拔人才,激發(fā)學生的學習興趣,學術性社團“數(shù)學建模協(xié)會”也就應運而生。數(shù)學建模協(xié)會的成立,可以更好的為學生提供一個展示自己的機會,可以增強學生對數(shù)學的學習興趣,培養(yǎng)學生應用數(shù)學解決實際問題的能力,激發(fā)學生的創(chuàng)新思維,為數(shù)學建模競賽選拔人才。本文主要以西安航空職業(yè)技術學院數(shù)學建模協(xié)會為例,探討高職數(shù)學建模社團活動開展的形式和意義。
    (一)數(shù)學建模社團有利于數(shù)學建模競賽的開展。高職數(shù)學建模協(xié)會為數(shù)學建模競賽搭建了一個平臺,是數(shù)學建模競賽強有力的后盾,數(shù)學建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學建模社團的作用,才能源源不斷的為數(shù)學建模提供人力和智力保障,才能更好的推動高職數(shù)學的學習氛圍。1、數(shù)學建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學建模,讓更多優(yōu)秀學生參加到數(shù)學建模競賽中。大學校園中有許多數(shù)學愛好者,他們對數(shù)學建模也有一定的認識,只要有參加數(shù)學建?;顒拥脑竿?,都可以利用數(shù)學建模協(xié)會招新的機會,加入數(shù)學建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學生邀請加入數(shù)學建模協(xié)會,對進一步擴大數(shù)學建模協(xié)會,夯實數(shù)學建模基礎,起著舉足輕重的作用。2、數(shù)學建模協(xié)會起著知識傳播的作用高職院校學生在校學習時間較短,學業(yè)較為繁重,課余時間較少,數(shù)學建模培訓的時間不足,無法讓學生在短時期內(nèi)掌握較多的數(shù)學建模相關知識。因此,利用數(shù)學建模協(xié)會活動可以開展數(shù)學建模課程的培訓工作,普及數(shù)學建模相關知識。采用“老帶新”的模式進行數(shù)學建模知識的普及。通過制定系統(tǒng)的培訓方案,在每年秋季競賽后,參加過競賽的同學對新入?yún)f(xié)會的成員可以進行初級培訓,為今后的競賽奠定基礎。3、數(shù)學建模社團起著選拔學生的作用每年數(shù)學建模競賽的隊員需要通過校內(nèi)賽等形式進行選拔,此時,數(shù)學建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機技術水平優(yōu)秀的學生就沒法參加數(shù)學建模競賽。為確保每一位有能力的學生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學生,以確保最優(yōu)優(yōu)秀的學生參加數(shù)學建模競賽。(二)數(shù)學建模社團有利于大學生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學建模社團屬于專業(yè)的學術性社團,成立的目的是為了參加全國大學生數(shù)學建模競賽,數(shù)學建模社團活動的趣味性和實踐性可以提高學生的學習興趣,培養(yǎng)學生自主學習的能力,增加學生參與競賽的熱情。社團活動中的培訓使學生可以更好的應對競賽,取得更好的成績。另外,競賽之余還可以進行其他領域的學術交流,比如計算機,經(jīng)濟,工程等領域,良好的交流氛圍激發(fā)學生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學建模社團是學生自發(fā)組織的服務學生的群體,除了學術研究之外,還可以進行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機會。比如,可以利用平時社團所學的知識,以團體的形式進行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學建模相關的微課等,進行一些微信群講座等等。這樣可以讓學生真正體會到數(shù)學的用處,達到學以致用的效果。(3)數(shù)學建模社團是學生自發(fā)組織的學術性社團,社團的組織機構(gòu)都是學生在擔任,社團的活動也都是學生在協(xié)調(diào)策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學術性的講座。因此,在學習的同時還鍛煉了他們的處事應變能力團隊合作的能力,可以說提高了學生的綜合素質(zhì)。
    (一)數(shù)學建模社團的管理形式。數(shù)學建模協(xié)會作為一個學生群體組織,需要好的制度和管理模式。以筆者所在學校為例,數(shù)學建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學術交流的,具體如下:1、學術交流面這個主要是通過“社團內(nèi)部進行學術交流活動”和“老帶新培訓”兩部分組成,內(nèi)部的交流活動主要是學生之間的相互溝通和交流,以及不定期的邀請指導教師和外校專家做一些數(shù)學建模報告。老帶新培訓是指社團主席團成員(一般是參加過前一年全國大學生數(shù)學建模競賽的學生)為新入社團的學生進行培訓,培訓的內(nèi)容基本上都是之前指導教師對他們集訓時的內(nèi)容,這種培訓方式可以提升社團成員的授課和理解問題的能力,對于在校大學生來說是一次很好的鍛煉。2、網(wǎng)絡交流面采用qq群,網(wǎng)絡空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學校的數(shù)學建模創(chuàng)新協(xié)會每一屆社團都有相應的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關注量也在800余人,微信平臺的建立可以更方面使大學生關注數(shù)學建模相關信息,尤其是對大一新生可以更多的取了解數(shù)學建模,擴大數(shù)學建模的受益面和影響力。力求在大學生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建?;顒訌V泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯(lián)誼會等交流活動,既可以豐富數(shù)學建模社團學生的知識面,又能促進數(shù)學知識的理解和吸收,通過與其他社團的聯(lián)誼,豐富了社團學生的業(yè)余生活,又能學習其他社團好的管理經(jīng)驗,促進社團管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學習,不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學生社團。(二)數(shù)學建模社團的特色活動。數(shù)學建模社團在開展學術活動和輔助教師進行競賽培訓的同時,還不定期的舉行一些活動,在提高學生學習興趣的同時也以擴大了數(shù)學建模的影響力。以筆者坐在學校為例,每年可以開展一系列的數(shù)學建?;顒?。比如,數(shù)學建模創(chuàng)新協(xié)會納新,數(shù)學建模創(chuàng)新協(xié)會趣味運動會,數(shù)學科技節(jié),趣味數(shù)學知識競賽,數(shù)學建模經(jīng)驗交流會,數(shù)學建模校內(nèi)賽,數(shù)學輔導周,數(shù)學建模專題講座。這些社團活動貫穿整個學年,不僅可以“由點及面、由淺入深”的對全國大學生數(shù)學建模競賽進行宣傳,在最大的范圍內(nèi),提升數(shù)學建模大賽的影響力及參與度,成效較好。而且讓枯燥的學術型社團變得豐富多彩,成為學生課后獲取知識的一種平臺,同時也是社團蓬勃發(fā)展的利器。
    總之,數(shù)學建模社團活動的開展,有利于培養(yǎng)學生的創(chuàng)新意識和思維,有利于激發(fā)了學生的學習興趣,有利于豐富學生的課后生活,有利于調(diào)動了學生參加學術型社團的積極性,同時也是高職院校組織參加數(shù)學建模競賽的強有力的后盾。
    [1]胡建茹,王搖娟.加強專業(yè)社團建設推進大學生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學學報:社會科學版,20xx(12)。
    [2]王珍娥,宋維,孫潔.數(shù)學社團建設的探索與實踐[j].機械職業(yè)教育,20xx(7)。
    [3]李湘玲,王泳興.大學生社團發(fā)展與創(chuàng)新型人才培養(yǎng)互動機制研究:以吉首大學為例[j].黑龍江教育,20xx(11)。
    [4]孫浩,葉正麟.西北工業(yè)大學數(shù)學建模創(chuàng)新教育之探索[j].高等數(shù)學研究,20xx(4)。
    作者:張?zhí)m單位:西安航空職業(yè)技術學院通識教育學院。
    數(shù)學建模論文篇九
    摘要:數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。
    一、新課的引入需要發(fā)揮教師的作用。
    教師在數(shù)學建模課堂上的引導作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導入會點燃學生學習的熱情、激發(fā)學生的學習興趣、喚起學生的好奇心,能把學生的注意力迅速集中到要學的知識上來。這對提高教學質(zhì)量、提高學生的學習效果起著不可估量的作用。同時,新課前的導入環(huán)節(jié)是對學生進行情感教育的最佳時刻。學生只有在教師的引導下才能夠體會到數(shù)學建模的價值、增強學好數(shù)學建模的信心。俗話說:“好的開始是成功的一半。”數(shù)學建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
    二、在教學任務的設計上需要發(fā)揮教師的作用。
    數(shù)學建模課堂一般應采用任務型教學模式,是讓學生通過自主探究、合作學習、交流展示的方式完成一系列學習任務來達到特定的教學目標和學習目標。學生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設計質(zhì)量的高低。教師應通過設計一系列高質(zhì)量的問題把復雜的數(shù)學建模問題分解成若干簡單問題來引導學生更好地發(fā)揮其主動性。學生也只有在這些問題的正確引導下才能突破難點并向著學習目標努力,有效防止學生思考、探究、交流的內(nèi)容偏離學習目標等現(xiàn)象的出現(xiàn)。這些任務的制訂需要充分發(fā)揮教師的作用。
    三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用。
    建構(gòu)主義強調(diào)新知識是在學生已有知識的基礎上通過學生自身有意義的建構(gòu)獲得的。筆者認為,學生自主建構(gòu)知識應在教師的科學引導下進行。尤其是對于數(shù)學建模這樣高難度的知識更是這樣。失去了教師的科學引導,學生易產(chǎn)生疲倦感,久而久之會喪失學習數(shù)學建模的興趣和信心。因此,在新舊知識聯(lián)系點上應發(fā)揮教師的作用。教師應在準確掌握教學目標、難點的基礎上,充分考慮學生的認知能力、習慣、思維方式,通過有針對性的具體問題喚起學生對舊知識的回憶,再通過啟發(fā)性問題引導學生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領下學生自主建構(gòu)知識可以使學生少走彎路,從而使學生更加高效地自主探究、掌握新知識。
    四、在教學重點、難點上需要教師的引導。
    教學的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學生自主探究、小組合作學習的課堂教學模式中,數(shù)學建模教材的重點、難點學生往往把握不準、難以突破。這就需要教師科學引導學生主動去發(fā)現(xiàn)重點、突破難點。教師引導學生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導讓學生自己找到重點、并通過學生自己的思考、討論解決疑難問題。學生在教師的引導下通過自己的努力、討論解決了疑難后,學生會非常興奮,從而會越來越喜歡數(shù)學建模課。相反,在沒有教師引導的數(shù)學建模課堂中,學生經(jīng)常被困難嚇倒,從而對數(shù)學建模課產(chǎn)生畏懼感。由此可見,教師對學生的科學引導是學生學好數(shù)學建模必不可少的環(huán)節(jié)。在以學生為本、注重學生全面發(fā)展、提倡課堂中突出學生主體地位的背景下,教師的引導仍是數(shù)學建模課堂中不可缺失的要素。數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。
    數(shù)學建模論文篇十
    為了培養(yǎng)小學生良好的數(shù)學學習興趣,激發(fā)他們的數(shù)學潛能,教師需要采取必要的措施注重數(shù)學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關培養(yǎng)策略的過程中,教師應充分考慮小學生的性格特點,提高數(shù)學建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學生數(shù)學建模思想的培養(yǎng)策略進行初步的探討。
    作為小學數(shù)學教學中的重要組成部分,數(shù)學建模思想的滲透及相關教學活動的順利開展,有利于提高復雜數(shù)學問題的處理效率,保持數(shù)學課堂教學的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學生數(shù)學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現(xiàn)數(shù)學建模思想的有效培養(yǎng),促使小學生能夠在數(shù)學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關系,為后續(xù)教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發(fā)出學生們在數(shù)學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數(shù)學建模能力。
    通過對小學階段各種數(shù)學實踐教學活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數(shù)學建模教學活動的積極性。因此,為了使小學生數(shù)學建模思想培養(yǎng)能夠達到預期的效果,教師需要結(jié)合實際的教學內(nèi)容,建立必要的數(shù)學參考模型,提升學生對數(shù)學建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學模型的構(gòu)建。在這樣的教學過程中,學生可以加深對知識點的理解,實現(xiàn)數(shù)學建模思想的有效培養(yǎng)。
    加強小學生數(shù)學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數(shù)學思想的靈活運用,增強相關模型構(gòu)建的可靠性,促使學生在長期的數(shù)學學習中能夠不斷提高自身的數(shù)學能力,運用各種數(shù)學知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學生對角的分類及畫角相關知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應注重小學生數(shù)學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數(shù)學建模教學水平。
    總之,加強小學生數(shù)學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學生數(shù)學能力的有效鍛煉,確保相關的教學計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當前小學數(shù)學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數(shù)學建模思想培養(yǎng)策略,有利于滿足學生數(shù)學建模學習中的多樣化需求,為相關教學目標的順利實現(xiàn)提供可靠的保障。
    [1]童小艷.小學數(shù)學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).
    [2]白寧.先學而后教——小學生數(shù)學建模思想培養(yǎng)的捷徑[j].數(shù)學學習與研究,20xx(16).
    數(shù)學建模論文篇十一
    數(shù)學是在實際應用的需求中產(chǎn)生的,要描述一個實際現(xiàn)象可以有很多種方式,為了實際問題描述的更具邏輯性、科學性、客觀性和可重復性,人們采用一種普遍認為比較嚴格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學。數(shù)學建模則是架于數(shù)學理論和實際問題之間的橋梁,數(shù)學模型是對于現(xiàn)實生活中的特定對象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設,為了一個特定目的,運用數(shù)學工具,得到的一個數(shù)學結(jié)構(gòu),用來解釋現(xiàn)實現(xiàn)象,預測未來狀況。因此,數(shù)學建模就是用數(shù)學語言描述實際現(xiàn)象的過程。
    大部分的獨立院校的數(shù)學建模工作純在一定的問題,主要體現(xiàn)在以下幾個方面:(一)學生方面的問題。獨立院校的大部分學生的數(shù)學功底差,對數(shù)學的學習興趣不大,普遍認為數(shù)學的學習對自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學有關的數(shù)學建模,對數(shù)學建模競賽的興趣不大。在獨立院校中,參加數(shù)學建模競賽的大都是低年級的學生,而這些學生的數(shù)學知識結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學競賽并未獲得獎項后就不愿意再次參加。而高年級的同學忙于其他的就業(yè)、考研等壓力,無暇參加數(shù)學建模競賽的培訓。(二)教資方面的問題。首先。傳統(tǒng)的教學是知識為中心、以教師的講解為中心。數(shù)學建模的教學要求教師以學生為中心,培養(yǎng)學生學會學習的能力,發(fā)展學生的創(chuàng)新能力和創(chuàng)造能力。獨立院校外聘的老師常常對獨立院校的學生不夠了解,這直接影響到教學成果。其次,數(shù)學建模涉及的知識面廣,不但包括數(shù)學的各個分支,還包含了其他背景的專業(yè)知識。獨立院校的教師一部分是才從大學畢業(yè)不久的研究生,他們對于數(shù)學建模教學和競賽的培訓經(jīng)驗不足,科研能力不是很強,對數(shù)學的各個分支的把控能力不強,對其他專業(yè)的了解不夠全面。(三)教學實施方面的問題。大學生數(shù)學建模競賽的目的決不僅僅是獲獎,更重要的是通過參加大學生數(shù)學建模競賽活動,促進高校數(shù)學教學改革,起到培養(yǎng)全體學生能力、提高全體學生素質(zhì)的作用。獨立院校數(shù)學建模教學存在很多的問題。首先,大學數(shù)學建模教育在獨立院校中的普及性不夠。數(shù)學建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候?qū)W生的數(shù)學知識結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學建模的相關教材大都是為了數(shù)學建模競賽而編寫的,對于獨立院校的學生來說,這些教材的難度系數(shù)大,涉及的知識面廣,遠遠超過了學生的接受能力。
    (一)讓學生了解數(shù)學建模,培養(yǎng)學習數(shù)學建模的興趣。數(shù)學建模課程的開設有利于培養(yǎng)學生運用數(shù)學具體解決實際問題的能力,讓學生發(fā)現(xiàn)學習數(shù)學的用處,改變學生學習數(shù)學的態(tài)度,提高學習數(shù)學的能力,認識到數(shù)學的意義和價值。獨立院校學生的數(shù)學基礎雖然比較差,但是學生的動手能力強。學校可以在多開展數(shù)學建模的講座和課程,讓學生了解數(shù)學建模。同時多向?qū)W生宣傳數(shù)學建模的成果。(二)在教學內(nèi)容中滲透數(shù)學建模思想和方法。1.在日常數(shù)學教學中滲透數(shù)學建模的思想方法。傳統(tǒng)的數(shù)學教學重視的是知識的培養(yǎng)和傳輸,而忽視的是實際應用能力。教師的教學目標是使學生掌握數(shù)學理論知識。一般的教學方法是:教師引入相關的的基本概念,證明定理,推導公式,列舉例題,學生記住公式,套用公式,掌握解題方法與技巧。學生往往學習了不少的純粹的數(shù)學理論知識,卻不知道如何應用到實際問題中。數(shù)學建模課程與傳統(tǒng)數(shù)學課程相比差別較大,學校開設的數(shù)學建??邕x課及數(shù)學建模培訓班,對培養(yǎng)學生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學校開設的數(shù)學建模課程大多是選修課程,課時較少,參選的學生也有限,數(shù)學建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學中的很多內(nèi)容都與數(shù)學建模的思想有關,因此,在大學數(shù)學課程的教學過程中,教師應有意識地結(jié)合傳統(tǒng)的數(shù)學課程的特點,將數(shù)學建模的思想和內(nèi)容融入到數(shù)學課堂教學中。這樣既可以激發(fā)學生的學習興趣,又能很好的將突出數(shù)學建模的思想。2.數(shù)學建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學對專業(yè)知識的服務作用。數(shù)學建模與專業(yè)知識的結(jié)合,不僅可以讓學生認識到數(shù)學的重要作用,在專業(yè)知識學習中的地位,還可以培養(yǎng)學習數(shù)學知識的興趣,增強數(shù)學學習的凝聚力,同時加深對專業(yè)知識的理解。通過專業(yè)知識作為背景,學生更愿意嘗試問題的研究。在學習中遇到的專業(yè)問題也可以嘗試用數(shù)學建模的思想進行解決。這有利于提高學生的綜合能力的培養(yǎng)。3.分層次進行數(shù)學建模教育。大體說來獨立院校的數(shù)學建模課程的開設應該分成兩個階段:(1)第一階段:大學一年級,在這個階段,大部分學生對數(shù)學建模沒有了解,這時候適合開設一些數(shù)學建模的講座和活動,讓學生了解數(shù)學建模。同時,在日常的數(shù)學教學中選擇簡單的應用問題和改變后的數(shù)學建模題目,結(jié)合自身的專業(yè)知識進行講解,讓學生了解數(shù)學建模的一般含義?;痉椒ê筒襟E,讓學生具備初步的建模能力。(2)中級層次:大學二、三年級。在這個階段,學生基本具備了完整的數(shù)學結(jié)構(gòu),具有了基本的建模能力。這個時候應該開設數(shù)學建模專業(yè)課程,讓學生處理比較復雜的數(shù)學建模問題,讓學生自己去采集有用的信息,學會提出模型的假設,對數(shù)據(jù)和信息需進行整理、分析和判斷,并模型進行分析和評價,最終完成科技論文。
    (一)提高數(shù)學教師自身水平。在數(shù)學建模教學過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學建模教學能否達到預期的目的。數(shù)學建模的教學,不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實際問題的能力和豐富的數(shù)學建模實踐經(jīng)驗。而獨立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實踐經(jīng)驗。這就對獨立院校的的數(shù)學建模教學工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進行專業(yè)培訓學習和學術交流,參加各種學術會議、到名校去做訪問學者等等。同時可以多請著名的數(shù)學專家教授來到校園做建模學術報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態(tài)。青年教師還需要依據(jù)特定的教學內(nèi)容、教學對象和教學環(huán)境對自己的教學工作作出計劃、實施和調(diào)整以及反思和總結(jié)。青年數(shù)學教師還必須更新教育理念,改變傳統(tǒng)的教學理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應新的形勢,符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學建模教材使用也存在諸多不足之處。絕大部分高校教學建模課程采用的是理工類專業(yè)數(shù)學建模教材。這些教材主要涵蓋的數(shù)學模型的難度系數(shù)大。而獨立院校的學生的基礎薄弱,無法接收這些模型。在教學過程中,教師可以將具體的案例或是歷年的數(shù)學建模題目做為教學內(nèi)容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學生分組討論,提出對問題的新的理解和對魔性的認識,嘗試提出新的模型。(三)豐富建模活動。全面開展數(shù)學建?;顒邮菙?shù)學建模思想的最重要的形式,它既使課內(nèi)和課外知識相互結(jié)合,又可以普及建模知識與提高建模能力結(jié)合,可以培養(yǎng)學生利用數(shù)學知識分析和解決實際問題的能力,可以有效地提升了學生的數(shù)學綜合素質(zhì)。學??梢远ㄆ诘拈_展數(shù)學建模宣傳活動,擴大數(shù)學建模的知名度。學校還可以邀請有經(jīng)驗的專家和獲獎學生開展建模講座,提高對數(shù)學建模的重視,積極的組織建?;顒印嵺`證明,只有根據(jù)獨立院校的自身特點和培養(yǎng)目標,對數(shù)學建模課程的教學不斷進行改革,才能解決獨立院校數(shù)學建模課程教學的問題,才能真正的讓學生喜歡上數(shù)學,喜歡上數(shù)學建模。
    [1]李大潛.將數(shù)學建模思想融入數(shù)學主干課程[j].中國大學教育.20xx.
    [2]賈曉峰等.大學生數(shù)學建模競賽與高等學校數(shù)學改革[j].工科數(shù)學.20xx:162.
    [3]融入數(shù)學建模思想的高等數(shù)學教學研究[j].科技創(chuàng)新導報.20xx:162.
    作者:李雙單位:湖北文理學院理工學院。
    數(shù)學建模論文篇十二
    培養(yǎng)應用型人才是我國高等教育從精英教育向大眾教育發(fā)展的必然產(chǎn)物,也是知識經(jīng)濟飛速發(fā)展和市場對人才多元化需求的必然要求。隨著科學技術的不斷發(fā)展,各學科各領域?qū)嶋H問題的研究日益精確化與定量化,數(shù)學在科學研究與工程技術中的作用不斷增強,其應用的范圍幾乎覆蓋了所有學科分支,滲透到社會生活中的各個領域。前蘇聯(lián)數(shù)學家亞歷山大洛夫曾說過,“數(shù)學在其它科學中,在技術中,在全部生活實踐中都有廣泛的應用”。1993年,王梓坤院士發(fā)表的著名報告《今日數(shù)學及其應用》中也深刻指出:“現(xiàn)代世界國家間的競爭本質(zhì)上是高技術的競爭,而高技術本質(zhì)上是一種數(shù)學技術?!睌?shù)學是一門技術已經(jīng)成為人們的共識。數(shù)學技術離不開數(shù)學建模,數(shù)學建模是把數(shù)學作為工具,并應用它解決實際問題的一種活動,它是一個跨學科、跨專業(yè)、綜合性和應用性都非常強的過程,是數(shù)學應用的必由之路,是聯(lián)系數(shù)學與實際問題的橋梁,是數(shù)學在各個領域廣泛應用的媒介。因此,數(shù)學建模的過程是一個全而培養(yǎng)學生綜合素質(zhì)、提高學生各種能力的過程,數(shù)學建模是培養(yǎng)生產(chǎn)一線應用型人才的一條重要途徑。
    應用型人才是將專業(yè)知識和專業(yè)技能應用于社會實踐的專門人才是熟練掌握社會生產(chǎn)或社會活動一線的基礎知識和基本技能,主要從事一線生產(chǎn)的技術或?qū)iT人才社會對應用型人才的基本要求是具有基礎扎實,知識而寬,應用能力強,素質(zhì)高,有較強的創(chuàng)新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎理論,又能將所學知識應用于本行業(yè)相關技術領域,適應產(chǎn)業(yè)發(fā)展對應用型人才市場需求的不斷變化,還有接受繼續(xù)教育的基礎條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關的學科知識能力。
    隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統(tǒng)的“研究型”、“學術型”人才培養(yǎng)模式受到了嚴峻的挑戰(zhàn),因此,一些發(fā)達國家率先提出了“發(fā)展應用型大學”,“培養(yǎng)應用型人才”的口號。德國早在20世紀70年代就成立了應用科技大學,其應用型人才的培養(yǎng)特色鮮明,深受歡迎。美國的工程教育,英國的技術學院,日本的短期大學都以培養(yǎng)應用型人才而著稱。近年來,我國高等院校對應用型人才的培養(yǎng)取得了一定的進展,但仍然存在認識上的不足,培養(yǎng)方案和措施仍有許多不盡如人意的地方,應用型人才的培養(yǎng)模式還有待于進一步探索。通過多年的實踐和探索,根據(jù)應用型人才的特點和社會日益數(shù)字化,對應用型人才的要求以及數(shù)學在各行各業(yè)中的廣泛應用、數(shù)學建模在應用型人才培養(yǎng)中具有不可替代的重要作用。
    數(shù)學建模就是用數(shù)學語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數(shù)值計算等技術手段及相應的數(shù)學軟件求解,并利用所得的結(jié)果擬合實際問題。數(shù)學建模在應用型人才培養(yǎng)中的作用主要體現(xiàn)在以下幾個方面:。
    由于實際問題的'復雜性,在數(shù)學建模過程中要涉及到大量的數(shù)據(jù)收集和對數(shù)據(jù)的分析與處理,一個完整的建模過程一般要經(jīng)歷模型的假設、模型的建立與求解、算法的設計和計算機實現(xiàn)、對結(jié)果的分析與檢驗并將所得的結(jié)果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內(nèi)是很難完成的,這就注定了數(shù)學建模是一個團隊的集體行為,需要有師生之間、學生之間以及學生與社會之間的交流與合作。因此數(shù)學建模有利于提高學生的團隊合作精神,而團隊合作精神又是社會對應用型人才的基本要求。
    數(shù)學建模所面臨的數(shù)據(jù)是雜亂無章的,這就要求學生對這些數(shù)據(jù)進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結(jié),還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當?shù)臄?shù)學關系,從而組建一定的數(shù)學模型,再用所學的數(shù)學理論和方法去求解數(shù)學模型。在對實際問題中的數(shù)據(jù)進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據(jù)建模者對實際問題的理解、研究問題的目的以及數(shù)學背景來完成這個過程,應該說這是一個創(chuàng)造性的過程。另外,數(shù)學模型是對實際問題的近似刻畫,為了使建立的數(shù)學模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產(chǎn)生新的疑問,這個過程多次循環(huán)們復,學生的創(chuàng)新能力將不斷得到加強。創(chuàng)新能力也是社會對應用型人才的基本要求。
    一個完整的數(shù)學建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學生有較好的數(shù)學基礎和嚴密的邏輯推理能力,還要求學生對問題的實際背景有一定的了解,要求學生有廣博的知識和深厚的專業(yè)基礎,并能對這些知識進行融會貫通。數(shù)學建模面臨的數(shù)據(jù)}i-.}i是龐大而復雜的,對數(shù)據(jù)的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統(tǒng)化與具體化的過程。在這個過程中,學生的應變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質(zhì)不斷得到加強。綜合素質(zhì)和能力是應用型人才的基本特征和社會對應用型人才的起碼要求。
    從實際問題中抽象出來的數(shù)學模型一般很復雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復雜性而無多大的應用價值。所以數(shù)學模型的求解通常需要編寫算法,運用某些數(shù)學軟件利用計算機求其數(shù)值解,這就要求學生有較強的數(shù)學軟件應用能力和對計算機的實際操作能力。在操作的過程中,學生的動手能力和實踐能力自然而然得到提高。另外在數(shù)學建模中,需要進行調(diào)查研究,需要對有關的數(shù)據(jù)進行廣泛的采集和補充,這就是應用型人才培養(yǎng)中所強調(diào)的實踐性。
    數(shù)學建模本身就是綜合運用知識,解決實際問題的過程。數(shù)學建模中的很多典型案例,如“最優(yōu)捕魚策略”,“投資的收入和風險”,“車燈線光源的優(yōu)化設計”等就較好地突現(xiàn)了知識的應用性。數(shù)學建模是數(shù)學應用的必由之路,是聯(lián)系數(shù)學與實際問題的橋梁。一方面數(shù)學建模需要用數(shù)學語言、方法近似地刻畫要解決的實際問題,另一方面數(shù)學建模需要利用所得的結(jié)果擬合實際問題,所有這些都與應用型人才的突出特點和社會對應用型人才的要求是一致的。
    數(shù)學建模需要學生親自參與問題的研究與探索,數(shù)據(jù)的收集和補充需要學生的積極參與,數(shù)據(jù)的處理和模型的建立需要學生的主動參與,模型的求解需要學生獨立完成。數(shù)學建模一般需要綜合運用多方面的知識,需要了解相關問題的背景材料,需要對相關的數(shù)據(jù)進行合理的取舍和有效的篩選,有些知識和相關的資料需要學生自己去查詢,所有這些都為學生的自主學習提供了一個良好的“下臺。另外,數(shù)學建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學生語言表達能力的提高具有重要的作用。應用型人才的一個突出特點就是具有接受繼續(xù)教育的基礎條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關的學科知識能力,而自學能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎。
    應該說,數(shù)學建模的作用是多方面的,通過數(shù)學建模的訓練,學生獲得了參與研究探索的體驗,培養(yǎng)了收集、分析和利用信息的能力,學會了分享與合作,鍛煉了學生的意志力、洞察力、想象力、自學能力、語言的翻譯和表達能力以及綜合應用專業(yè)知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應用型人才培養(yǎng)所要達到的目標,也是與應用型人才培養(yǎng)模式的四個基本點是一致的。因此數(shù)學建模能將應用型人才的突出特征和社會對應用型人才的要求體現(xiàn)得淋漓盡致,它在應用型人才的培養(yǎng)中具有不可替代的重要作用。
    1.馬克思有一句名言,“一門科學只有成功地應用了數(shù)學時,才算真正達到了完善的地步”。不論是自然科學還是社會科學都需要數(shù)學,都蘊含數(shù)學。一門科學要成功地應用數(shù)學,必須對這門學科中的問題建立數(shù)學模型。因此,建議高等院校的各個專業(yè)都要不同程度地開設數(shù)學建模課程,并根據(jù)專業(yè)的不同要求選擇合適的數(shù)學建模內(nèi)容,真正做到“人人學有用的數(shù)學,人人做有用的數(shù)學,人人用有用的數(shù)學”。
    2.數(shù)學建模課程應增加實訓內(nèi)容,數(shù)學建模的學習應以實訓內(nèi)容為主。教師應根據(jù)學生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓題目,讓學生自己進行調(diào)查研究,自己收集數(shù)據(jù)、分析數(shù)據(jù)和處理數(shù)據(jù),模型的建立和求解要以學生為主體,并以論文的形式提交給教師,教師提供實時指導和幫助,對建模的結(jié)果進行有的放矢的點評,并將實訓內(nèi)容作為學生期末考評的主要內(nèi)容和重要依據(jù)。
    3.舉辦多種形式的數(shù)學建模競賽,豐富數(shù)學建模的教學內(nèi)容和教學方式,引進案例教學和專題講座,通過對典型案例的深入剖析,激發(fā)學生的學習興趣和積極性,培養(yǎng)學生的數(shù)學建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。
    數(shù)學建模論文篇十三
    摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學建模已經(jīng)成為應用數(shù)學知識解決日常問題的一個重要手段。本文通過簡述數(shù)學建模的方法與過程,以及應用數(shù)學建模解決實際經(jīng)濟問題的應用,展現(xiàn)的了數(shù)學學習的重要意義,以及數(shù)學在經(jīng)濟問題解決中的重要作用。
    經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學知識、應用數(shù)學建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
    數(shù)學建模,其實就是建立數(shù)學模型的簡稱,實際上數(shù)學建模可以稱之為解決問題的一種思考方法,借助數(shù)學工具應用已知的定理定義進行合理的運算,推導出一種理性的結(jié)果的過程。數(shù)學建模是可以聯(lián)系數(shù)學和外部世界的一個中介和橋梁,在工業(yè)設計、經(jīng)濟領域、工程建設等各個方面,運用數(shù)學的語言和方法進行問題的求解和推導,實際上,都是一種數(shù)學建模的過程。數(shù)學建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學模型的最終建立是一個反復驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設:根據(jù)建模目的,結(jié)合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數(shù)學語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當?shù)臄?shù)學工具,建立各個量(變量、常量)間的數(shù)學關系,化實際問題為數(shù)學語言;4.模型求解:對上述數(shù)學關系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗模型的合理性和適用性。
    二、經(jīng)濟問題數(shù)學模型的建立。
    經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設,精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數(shù)學知識建立完整的數(shù)學經(jīng)濟模型。
    三、建模舉例。
    四、結(jié)語。
    綜上所述,我們可以看到,數(shù)學建模在經(jīng)濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W習和思考。
    數(shù)學建模論文篇十四
    摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從小學數(shù)學教學過程中數(shù)學建模入手,對如何將數(shù)學建模運用到學生解題過程中進行了分析。
    數(shù)學建模是指利用數(shù)學模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學思維、數(shù)學方法解決各種數(shù)學問題。數(shù)學建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數(shù)學能力。這種方式能夠?qū)碗s的數(shù)學問題利用簡單的方式找到解決方案,是提高小學數(shù)學課堂效率及課堂質(zhì)量的有效手段。小學數(shù)學是小學學習中的重要課程之一,也是培養(yǎng)學生數(shù)學思維的重要階段。可以說,小學數(shù)學的學習是學生學習數(shù)學的關鍵,對今后的學習起到極大的影響。因此,對于小學數(shù)學教師來說,不斷的完善教學手段,提高數(shù)學課堂質(zhì)量是教學工作中的重中之重。而數(shù)學建模就是為了解決數(shù)學在生活中的實際問題,能夠讓學生感受到數(shù)學本身的魅力,培養(yǎng)他們的數(shù)學思維,提高數(shù)學學習能力,從而讓小學數(shù)學教學質(zhì)量也得到大幅度的提升。小學數(shù)學與數(shù)學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學建模運用在小學數(shù)學教學過程中,是每個小學數(shù)學教師都值得思考的問題。
    數(shù)學建模是為了解決數(shù)學中遇到的問題,數(shù)學本身特別是小學數(shù)學也是一門較貼近學生生活的學科。因此在數(shù)學學習中,教師要首先培養(yǎng)學生的數(shù)學學習意識,讓他們感受到數(shù)學與生活的緊密聯(lián)系,然后再引導學生用數(shù)學建模去解決遇到的問題。在這一過程中,數(shù)學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內(nèi)容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數(shù)學建模的方式,以達到培養(yǎng)他們的數(shù)學思維以及想象能力的目的。(二)在學生進行數(shù)學建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學學習的積極性,讓他們在數(shù)學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數(shù)學建模方法的熱情。
    二、提高學生想象力,用數(shù)學建模簡化問題。
    對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學學習中,如果能將想象力與數(shù)學學習結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學生這一特點,提高他們的想象力,然后再引導他們利用數(shù)學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數(shù)學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數(shù)學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
    三、選擇合適的題目作為建模案例。
    在數(shù)學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數(shù)學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數(shù)學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數(shù)學建模的能力。
    四、引導學生主動進行數(shù)學建模。
    在教師經(jīng)過反復的教學后,學生都已經(jīng)擁有了基本的數(shù)學建模知識,了解了數(shù)學建模過程,并且能夠在解題過程中簡單的使用數(shù)學建模。此時,教師在教學中就可以引導學生利用數(shù)學建模解決數(shù)學題目了。引導學生用數(shù)學建模方法解決數(shù)學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數(shù)學建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學建模水平,同時這樣的方式能夠讓數(shù)學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數(shù)學的學習興趣,提高數(shù)學解題能力。這種教學方法對于小學數(shù)學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數(shù)學課堂的教學效率和教學質(zhì)量。
    數(shù)學建模論文篇十五
    摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從初中數(shù)學教學過程中數(shù)學建模入手,對如何將數(shù)學建模運用到學生解題過程中進行了分析。
    數(shù)學建模是指利用數(shù)學模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學思維、數(shù)學方法解決各種數(shù)學問題。數(shù)學建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數(shù)學能力。這種方式能夠?qū)碗s的數(shù)學問題利用簡單的方式找到解決方案,是提高初中數(shù)學課堂效率及課堂質(zhì)量的有效手段。初中數(shù)學是初中學習中的重要課程之一,也是培養(yǎng)學生數(shù)學思維的重要階段??梢哉f,初中數(shù)學的學習是學生學習數(shù)學的關鍵,對今后的學習起到極大的影響。因此,對于初中數(shù)學教師來說,不斷的完善教學手段,提高數(shù)學課堂質(zhì)量是教學工作中的重中之重。而數(shù)學建模就是為了解決數(shù)學在生活中的實際問題,能夠讓學生感受到數(shù)學本身的魅力,培養(yǎng)他們的數(shù)學思維,提高數(shù)學學習能力,從而讓初中數(shù)學教學質(zhì)量也得到大幅度的提升。初中數(shù)學與數(shù)學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的.將數(shù)學建模運用在初中數(shù)學教學過程中,是每個初中數(shù)學教師都值得思考的問題。
    數(shù)學建模是為了解決數(shù)學中遇到的問題,數(shù)學本身特別是初中數(shù)學也是一門較貼近學生生活的學科。因此在數(shù)學學習中,教師要首先培養(yǎng)學生的數(shù)學學習意識,讓他們感受到數(shù)學與生活的緊密聯(lián)系,然后再引導學生用數(shù)學建模去解決遇到的問題。在這一過程中,數(shù)學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內(nèi)容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數(shù)學建模的方式,以達到培養(yǎng)他們的數(shù)學思維以及想象能力的目的。(二)在學生進行數(shù)學建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學學習的積極性,讓他們在數(shù)學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數(shù)學建模方法的熱情。
    二、提高學生想象力,用數(shù)學建模簡化問題。
    對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學學習中,如果能將想象力與數(shù)學學習結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)初中生這一特點,提高他們的想象力,然后再引導他們利用數(shù)學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的數(shù)學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數(shù)學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
    三、選擇合適的題目作為建模案例。
    在數(shù)學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數(shù)學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到初中數(shù)學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數(shù)學建模的能力。
    四、引導學生主動進行數(shù)學建模。
    在教師經(jīng)過反復的教學后,學生都已經(jīng)擁有了基本的數(shù)學建模知識,了解了數(shù)學建模過程,并且能夠在解題過程中簡單的使用數(shù)學建模。此時,教師在教學中就可以引導學生利用數(shù)學建模解決數(shù)學題目了。引導學生用數(shù)學建模方法解決數(shù)學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數(shù)學建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學建模水平,同時這樣的方式能夠讓數(shù)學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數(shù)學的學習興趣,提高數(shù)學解題能力。這種教學方法對于初中數(shù)學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數(shù)學課堂的教學效率和教學質(zhì)量。