數(shù)學(xué)教案因式分解(模板13篇)

字號:

    一個好的教案應(yīng)該具備條理清晰、邏輯嚴(yán)謹(jǐn)、具有可操作性等特點。教案的時間安排要合理,在教學(xué)過程中充分利用教學(xué)時間并注意控制進(jìn)度。早期教案示范是提高教師教學(xué)能力和素質(zhì)的有效途徑。
    數(shù)學(xué)教案因式分解篇一
    會應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力。
    2、過程與方法。
    經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性。
    3、情感、態(tài)度與價值觀。
    培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值。
    1、重點:利用平方差公式分解因式。
    2、難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。
    3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來。
    采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的'牽引下,推進(jìn)自己的思維。
    一、觀察探討,體驗新知。
    【問題牽引】。
    請同學(xué)們計算下列各式。
    (1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
    【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
    (1)(a+5)(a—5)=a2—52=a2—25;
    (2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
    【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律。
    1、分解因式:a2—25;2、分解因式16m2—9n。
    【學(xué)生活動】從逆向思維入手,很快得到下面答案:
    (1)a2—25=a2—52=(a+5)(a—5)。
    (2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
    【教師活動】引導(dǎo)學(xué)生完成a2—b2=(a+b)(a—b)的同時,導(dǎo)出課題:用平方差公式因式分解。
    平方差公式:a2—b2=(a+b)(a—b)。
    評析:平方差公式中的字母a、b,教學(xué)中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。
    二、范例學(xué)習(xí),應(yīng)用所學(xué)。
    【例1】把下列各式分解因式:(投影顯示或板書)。
    (1)x2—9y2;(2)16x4—y4;
    (3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
    (5)m2(16x—y)+n2(y—16x)。
    【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
    【教師活動】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請5位學(xué)生上講臺板演。
    【學(xué)生活動】分四人小組,合作探究。
    解:(1)x2—9y2=(x+3y)(x—3y);
    (5)m2(16x—y)+n2(y—16x)。
    =(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
    數(shù)學(xué)教案因式分解篇二
    原式變形后,利用完全平方公式變形,計算即可得到結(jié)果.
    此題考查了因式分解的應(yīng)用,熟練掌握平方差公式及完全平方公式是解本題的關(guān)鍵.
    22.已知等式配方后,利用非負(fù)數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長.
    此題考查了因式分解的應(yīng)用,熟練掌握完全平方公式是解本題的關(guān)鍵.
    23.原式利用平方差公式分解得到結(jié)果,即可做出判斷.
    此題考查了因式分解的應(yīng)用,熟練掌握平方差公式是解本題的關(guān)鍵.
    24.本題考查了分式的化簡求值,解答此題的關(guān)鍵是把分式化到最簡,然后代值計算.先將分式的分母分解因式,再約分,然后將已知變形為代入原式即可求解.
    數(shù)學(xué)教案因式分解篇三
    “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
    因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
    2、教學(xué)目標(biāo)。
    (1)會推導(dǎo)乘法公式。
    (2)在應(yīng)用乘法公式進(jìn)行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
    (3)會用提公因式法、公式法進(jìn)行因式分解。
    (4)了解因式分解的一般步驟。
    (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
    3、重點、難點和關(guān)鍵。
    重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進(jìn)行因式分解。
    難點:正確運用乘法公式;正確分解因式。
    關(guān)鍵:正確理解乘法公式和因式分解的意義。
    3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負(fù)擔(dān).。
    2.1平方差公式1課時。
    2.2完全平方公式2課時。
    初中優(yōu)秀......
    初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!下面是小編為......
    數(shù)學(xué)教案因式分解篇四
    1、知識與能力:
    1)進(jìn)一步鞏固相似三角形的知識.
    2)能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量河寬問題)等的一些實際問題.
    2.過程與方法:
    經(jīng)歷從實際問題到建立數(shù)學(xué)模型的過程,發(fā)展學(xué)生的抽象概括能力。
    3.情感、態(tài)度與價值觀:
    1)通過利用相似形知識解決生活實際問題,使學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活。
    2)通過對問題的探究,培養(yǎng)學(xué)生認(rèn)真踏實的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
    (三)教學(xué)重點、難點和關(guān)鍵。
    重點:利用相似三角形的知識解決實際問題。
    難點:運用相似三角形的判定定理構(gòu)造相似三角形解決實際問題。
    關(guān)鍵:將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識來進(jìn)行解答。
    數(shù)學(xué)教案因式分解篇五
    1.會求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過對圖象的分析,進(jìn)一步探究反比例函數(shù)的增減性.
    【過程與方法】。
    經(jīng)歷觀察、分析、交流的過程,逐步提高運用知識的能力.
    【情感態(tài)度】。
    提高學(xué)生的觀察、分析能力和對圖形的感知水平.
    【教學(xué)重點】。
    會求反比例函數(shù)的解析式.
    【教學(xué)難點】。
    反比例函數(shù)圖象和性質(zhì)的運用.
    教學(xué)過程。
    一、情景導(dǎo)入,初步認(rèn)知。
    【教學(xué)說明】復(fù)習(xí)上節(jié)課的內(nèi)容,同時引入新課.
    二、思考探究,獲取新知。
    1.思考:已知反比例函數(shù)y=的圖象經(jīng)過點p(2,4)。
    (1)求k的值,并寫出該函數(shù)的表達(dá)式;。
    (2)判斷點a(-2,-4),b(3,5)是否在這個函數(shù)的圖象上;。
    分析:
    (1)題中已知圖象經(jīng)過點p(2,4),即表明把p點坐標(biāo)代入解析式成立,這樣能求出k,解析式也就確定了.
    (2)要判斷a、b是否在這條函數(shù)圖象上,就是把a、b的坐標(biāo)代入函數(shù)解析式中,如能使解析式成立,則這個點就在函數(shù)圖象上.否則不在.
    (3)根據(jù)k的正負(fù)性,利用反比例函數(shù)的性質(zhì)來判定函數(shù)圖象所在的象限、y隨x的值的變化情況.
    【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.
    2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問題:
    (1)k的取值范圍是k0還是k0?說明理由;。
    (2)如果點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點,試比較y1,y2的大小.分析:
    (1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.
    (2)因為點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點且-30,-20.所以點a、b都位于第三象限,又因為-3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.
    【教學(xué)說明】通過觀察圖象,使學(xué)生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.
    數(shù)學(xué)教案因式分解篇六
    會應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
    2.過程與方法。
    經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性.
    3.情感、態(tài)度與價值觀。
    培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值.
    重、難點與關(guān)鍵。
    1.重點:利用平方差公式分解因式.
    2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.
    3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
    教學(xué)方法。
    采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.
    教學(xué)過程。
    一、觀察探討,體驗新知。
    【問題牽引】。
    請同學(xué)們計算下列各式.
    (1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
    【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
    (1)(a+5)(a-5)=a2-52=a2-25;。
    (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
    【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
    1.分解因式:a2-25;2.分解因式16m2-9n.
    【學(xué)生活動】從逆向思維入手,很快得到下面答案:
    (1)a2-25=a2-52=(a+5)(a-5).
    (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
    【教師活動】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時,導(dǎo)出課題:用平方差公式因式分解.
    平方差公式:a2-b2=(a+b)(a-b).
    評析:平方差公式中的字母a、b,教學(xué)中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
    二、范例學(xué)習(xí),應(yīng)用所學(xué)。
    【例1】把下列各式分解因式:(投影顯示或板書)。
    (1)x2-9y2;(2)16x4-y4;。
    (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
    (5)m2(16x-y)+n2(y-16x).
    【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
    【教師活動】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請5位學(xué)生上講臺板演.
    【學(xué)生活動】分四人小組,合作探究.
    解:(1)x2-9y2=(x+3y)(x-3y);。
    (5)m2(16x-y)+n2(y-16x)。
    =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
    數(shù)學(xué)教案因式分解篇七
    “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
    因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
    2、教學(xué)目標(biāo)。
    (1)會推導(dǎo)乘法公式。
    (2)在應(yīng)用乘法公式進(jìn)行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
    (3)會用提公因式法、公式法進(jìn)行因式分解。
    (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
    3、重點、難點和關(guān)鍵。
    重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進(jìn)行因式分解。
    難點:正確運用乘法公式;正確分解因式。
    關(guān)鍵:正確理解乘法公式和因式分解的意義。
    3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負(fù)擔(dān).。
    2.1平方差公式1課時。
    2.2完全平方公式2課時。
    2.3用提公因式法進(jìn)行因式分解1課時。
    數(shù)學(xué)教案因式分解篇八
    因式分解這部分的內(nèi)容是八年級數(shù)學(xué)第一學(xué)期重難點,因因式分解與乘法公式是相反方向的變形,故結(jié)合著單項式*多項式的整式乘法講授什么是因式分解及提公因式法。
    提取公因式進(jìn)行因式分解關(guān)鍵在于正確找到公因式。如何找公因式?
    1、系數(shù)部分:各項系數(shù)的最大公約數(shù)作為公因式的系數(shù);
    2、字母部分:相同字母作為公因式的字母部分;
    3、相同字母指數(shù)部分:各項中相同字母指數(shù)中最低的一個作為相同字母的指數(shù)。
    找到公因式后,第一步,把各項都轉(zhuǎn)化成公因式與某個因式積的形式。
    第二步,提出公因式,且把各項剩余的部分用括號括起來作為一項。
    學(xué)生課堂板演中暴露的問題主要有:
    1、找不全公因式,或直接不會找公因式。
    2、提出公因式后,不知道接下來如何去做。
    我總結(jié)的原因主要有:
    1、思想上不重視,只是將它作為一個簡單的內(nèi)容來看,聽起來覺著會了,做起來就不容易了。
    2、最好結(jié)合例子說明提取公因式進(jìn)行因式分解的步驟。
    3、拿到題目先觀察各項特點,再動筆寫。
    數(shù)學(xué)教案因式分解篇九
    3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。
    4、應(yīng)用因式分解來解決一些實際問題。
    5、體驗應(yīng)用知識解決問題的樂趣。
    靈活運用因式分解解決問題。
    靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
    判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
    (7)。2πr+2πr=2π(r+r)因式分解。
    2、。規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。
    分解因式要注意以下幾點:(1)。分解的對象必須是多項式。
    (2)。分解的結(jié)果一定是幾個整式的乘積的形式。(3)。要分解到不能分解為止。
    4、強化訓(xùn)練。
    教學(xué)引入。
    師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進(jìn)行折疊處理。
    動畫演示:
    場景一:正方形折疊演示。
    師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
    [學(xué)生活動:各自測量。]。
    鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點。
    講授新課。
    找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
    動畫演示:
    場景二:正方形的性質(zhì)。
    師:這些性質(zhì)里那些是矩形的性質(zhì)?
    [學(xué)生活動:尋找矩形性質(zhì)。]。
    動畫演示:
    場景三:矩形的性質(zhì)。
    師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
    [學(xué)生活動;尋找菱形性質(zhì)。]。
    動畫演示:
    場景四:菱形的性質(zhì)。
    師:這說明正方形具有矩形和菱形的全部性質(zhì)。
    及時提出問題,引導(dǎo)學(xué)生進(jìn)行思考。
    師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
    [學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]。
    師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
    學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
    “有一組鄰邊相等的矩形叫做正方形。”
    “有一個角是直角的菱形叫做正方形?!?BR>    “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
    師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
    試一試把下列各式因式分解:。
    (1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。
    (3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+。
    例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應(yīng)用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應(yīng)用。
    2、20042+20xx被20xx整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。
    五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
    數(shù)學(xué)教案因式分解篇十
    因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
    通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
    1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
    2、通過公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。
    3、能運用提公因式法、公式法進(jìn)行綜合運用。
    4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
    靈活運用平方差公式進(jìn)行分解因式。
    平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
    數(shù)學(xué)教案因式分解篇十一
    1、會運用因式分解進(jìn)行簡單的多項式除法。
    二、教學(xué)重點與難點教學(xué)重點:
    教學(xué)重點。
    因式分解在多項式除法和解方程兩方面的應(yīng)用。
    教學(xué)難點:
    應(yīng)用因式分解解方程涉及較多的推理過程。
    三、教學(xué)過程。
    (一)引入新課。
    (二)師生互動,講授新課。
    一個小問題:這里的x能等于3/2嗎?為什么?
    想一想:那么(4x—9)(3—2x)呢?練習(xí):課本p162課內(nèi)練習(xí)。
    合作學(xué)習(xí)。
    等練習(xí):課本p162課內(nèi)練習(xí)2。
    (三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:
    (四)布置課后作業(yè)。
    作業(yè)本6、42、課本p163作業(yè)題(選做)。
    數(shù)學(xué)教案因式分解篇十二
    3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。
    4、應(yīng)用因式分解來解決一些實際問題。
    5、體驗應(yīng)用知識解決問題的樂趣。
    靈活運用因式分解解決問題。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
    判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
    (7).2πr+2πr=2π(r+r)因式分解。
    2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。
    分解因式要注意以下幾點:(1).分解的對象必須是多項式。
    (2).分解的結(jié)果一定是幾個整式的乘積的形式。(3).要分解到不能分解為止。
    4、強化訓(xùn)練。
    試一試把下列各式因式分解:
    (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
    (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應(yīng)用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應(yīng)用。
    2、20042+2004被2005整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。
    五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
    數(shù)學(xué)教案因式分解篇十三
    2、鞏固因式分解常用的三種方法。
    3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。
    4、應(yīng)用因式分解來解決一些實際問題。
    5、體驗應(yīng)用知識解決問題的樂趣。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
    判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
    (7).2πr+2πr=2π(r+r)因式分解。
    2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
    分解因式要注意以下幾點:(1).分解的對象必須是多項式.
    (2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
    4、強化訓(xùn)練。
    試一試把下列各式因式分解:。
    (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應(yīng)用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應(yīng)用。
    2、20042+2004被2005整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
    五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?