比和比例數(shù)學(xué)教案范文(19篇)

字號(hào):

    教案是教師在教學(xué)過程中制定的一種有針對(duì)性的教學(xué)計(jì)劃。那么我們應(yīng)該如何編寫一份優(yōu)秀的教案呢?首先,我們需要明確教學(xué)目標(biāo),確定教學(xué)重點(diǎn)和難點(diǎn);然后,我們應(yīng)該合理選擇教學(xué)內(nèi)容,結(jié)合學(xué)生實(shí)際情況進(jìn)行設(shè)計(jì);此外,我們還應(yīng)該靈活運(yùn)用多種教學(xué)方法,激發(fā)學(xué)生的學(xué)習(xí)興趣和主動(dòng)性;最后,我們需要進(jìn)行教學(xué)評(píng)價(jià),及時(shí)調(diào)整教學(xué)策略,提高教學(xué)效果。以下是一些經(jīng)典教案的分享,歡迎大家參考借鑒。
    比和比例數(shù)學(xué)教案篇一
    1、通過自主嘗試學(xué)會(huì)解比例的方法,進(jìn)一步理解和掌握比例的基本性質(zhì)。2、能運(yùn)用解比例的方法解決實(shí)際問題?!窘虒W(xué)重點(diǎn)】掌握解比例的方法,學(xué)會(huì)解比例?!窘虒W(xué)難點(diǎn)】引導(dǎo)學(xué)生根據(jù)比例的基本性質(zhì),將比例改寫成兩個(gè)內(nèi)項(xiàng)的積等于兩個(gè)外項(xiàng)積的形式,即已學(xué)過的含有未知數(shù)的等式。
    教學(xué)重難點(diǎn)。
    【教學(xué)重點(diǎn)】掌握解比例的方法,學(xué)會(huì)解比例。
    【教學(xué)難點(diǎn)】引導(dǎo)學(xué)生根據(jù)比例的基本性質(zhì),將比例改寫成兩個(gè)內(nèi)項(xiàng)的積等于兩個(gè)外項(xiàng)積的形式,即已學(xué)過的含有未知數(shù)的等式。
    教學(xué)過程。
    一、創(chuàng)設(shè)情境。
    上節(jié)課我們學(xué)習(xí)了一些比例的意義,誰(shuí)能說一說。
    1、什么叫比例?
    表示兩個(gè)比相等的式子叫比例。
    2、比例的基本性質(zhì)是什么?
    在比例里,兩個(gè)外項(xiàng)的積等于兩個(gè)內(nèi)項(xiàng)的積。
    3、應(yīng)用比例的基本性質(zhì),判斷下面哪組中的兩個(gè)比可以組成比例。
    6︰10和9︰15()。
    20︰5和4︰1()。
    5︰1和6︰2()。
    4、根據(jù)比例的基本性質(zhì),將下列各比例改寫成其他等式。
    3:8=15:403×40=8×15。
    9/1.6=4.5/0.89×0.8=1.6×4.5。
    5、這節(jié)課我們學(xué)習(xí)有關(guān)比例的應(yīng)用的知識(shí),即學(xué)習(xí)解比例。(板書課題,)。
    二、引導(dǎo)探索,學(xué)習(xí)新知。
    1、自學(xué):什么是解比例?請(qǐng)看書第35頁(yè)。
    比例共有四項(xiàng),如果知道其中的任何三項(xiàng),就可以求出這個(gè)比例中的另外一個(gè)未知項(xiàng)。求比例中的未知項(xiàng),叫做解比例。解比例要根據(jù)比例的基本性質(zhì)來解。
    2、自主學(xué)習(xí)例2。
    出示思考題:
    思考:
    (1)、埃菲爾鐵搭模型的高與埃菲爾鐵搭的高度的比是1:10。
    也就是()的高度:()的高度=1:10。
    還有幾個(gè)項(xiàng)不知道?不知道的這個(gè)項(xiàng)我們把它叫做()項(xiàng)。
    小組內(nèi)討論解決問題,匯報(bào):。
    (1)把未知項(xiàng)設(shè)為x。
    (2)根據(jù)比例的意義列出比例:(x:320=1:10)。
    (3)指出這個(gè)比例的外項(xiàng)、內(nèi)項(xiàng),弄清知道哪三項(xiàng),求哪一項(xiàng)。
    (4)根據(jù)比例的基本性質(zhì)可以把它變成什么形式?
    (5)這變成了原來學(xué)過的什么?(方程。)。
    (6)讓學(xué)生自己在練習(xí)本上計(jì)算完整。課件出示計(jì)算過程。
    小結(jié):從剛才解比例的過程,可以看出,解比例可以根據(jù)比例的基本性質(zhì)把比例變成方程,然后用解方程的方法來求未知數(shù)x,所以解比例也要寫“解”字。
    解比例的步驟是:
    (1)、用比例的基本性質(zhì)把比例改寫成方程。
    (2)、應(yīng)用解方程的知識(shí)算出未知數(shù)。
    3、教學(xué)例3。
    出示例3:
    思考:
    (1)“這個(gè)比例與例2有什么不同?”(這個(gè)比例是分?jǐn)?shù)形式。)。
    (2)這種分?jǐn)?shù)形式的比例也能根據(jù)比例的基本性質(zhì),變成方程來求解嗎?
    討論:
    (1)解這種分?jǐn)?shù)形式的比例時(shí),要注意什么呢?
    (2)在這個(gè)比例里,哪些是外項(xiàng)?哪些是內(nèi)項(xiàng)?
    讓學(xué)生在課本上填出求解過程。解答后,讓他們說一說是怎樣解的。課件出示計(jì)算過程。
    課件出示:做一做,獨(dú)立完成后訂正。
    4、總結(jié)解比例的過程。
    剛才我們學(xué)習(xí)了解比例,大家回憶一下,解比例首先要做什么?(根據(jù)比例的基本性質(zhì)把比例變成方程。)。
    變成方程以后,再怎么做?(根據(jù)以前學(xué)過的解方程的方法求解。)。
    從上面的過程可以看出,在解比例的過程中哪一步是新知識(shí)?(根據(jù)比例的基本性質(zhì)把比例變成方程。)。
    三、鞏固應(yīng)用:。
    (一)、填空。
    1、解比例x:12=2:24第一步24x=12×2是根據(jù)()。
    2、把0、3:1、2=0、2:0、8可改寫成。
    ()×()=()×()。
    3、把4×5=10×2改寫成比例是():()=():()。
    4、若甲:乙=3:5,甲=30,則乙=()。
    5、在比例中,如果兩個(gè)內(nèi)項(xiàng)的積上36,其中一個(gè)外項(xiàng)是9,
    另一個(gè)外項(xiàng)是()。
    (二)、判斷下列的說法是否正確。
    1、含有未知數(shù)的比例也是方程。()。
    2、求比例中的未知項(xiàng)叫解比例。()。
    3、解比例的理論依據(jù)是比例的基本性質(zhì)。()。
    4、比就是比例,比例也是比。()。
    (三)、根據(jù)題意,先寫出比例,再解比例。
    1、8與x的比等于4與32的比。
    2、14與最小的質(zhì)數(shù)的比等于21與x的比。
    四、課堂總結(jié):
    今天你有什么收獲?指生說收獲。老師小結(jié)。
    比和比例數(shù)學(xué)教案篇二
    教學(xué)內(nèi)容:練習(xí)八的第59題。
    教學(xué)目的:通過練習(xí),使學(xué)生理解和掌握用正比例,反比例的知識(shí)解答應(yīng)用題的。
    方法。
    教學(xué)過程:
    1.什么叫成正比例的量?它的關(guān)系式是什么?
    2.什么叫成反比例的量?它的關(guān)系式是什么?
    3.做練習(xí)八的第5題:判斷下面每題中的兩種量成什么比例關(guān)系。
    教師:上節(jié)課我們學(xué)習(xí)了用正比例、反比例的意義和判斷來解應(yīng)用題,今天我們要通過練習(xí),進(jìn)一步理解和掌握用正比例、反比例意義和判斷來解答應(yīng)用題的方法。
    1.做練習(xí)八的第6題。
    讓學(xué)生口頭列出比例式,教師板書出來。
    教師小結(jié):像這道題,問題雖然變了,但題中基本數(shù)量關(guān)系沒有變。曬出的`鹽和海水的噸數(shù)成正比例關(guān)系,解答這樣的應(yīng)用題的關(guān)鍵:一是要正確判斷相關(guān)聯(lián)的兩種量是成什么比例,二是要找準(zhǔn)相關(guān)聯(lián)的量中相對(duì)應(yīng)的數(shù):
    2.做練習(xí)八的第7、8題。
    集體訂正后,指名講一講是怎樣想的。
    3.做練習(xí)八的第9題。
    做題前,提示學(xué)生選用哪三個(gè)數(shù)據(jù)都可以,但所敘述的事情要符合實(shí)際情況。訂正時(shí),如果學(xué)生在編題中的語(yǔ)言不規(guī)范,要注意糾正。
    比和比例數(shù)學(xué)教案篇三
    請(qǐng)同學(xué)們看一看我們教室有多大,它的長(zhǎng)和寬大約是多少米。(長(zhǎng)大約8米,寬大約6米。)如果我們要繪制教室的平面圖,若是按實(shí)際尺寸來繪制,需要多大的圖紙?可能嗎?如果要畫中國(guó)地圖呢?于是,人們就想出了一個(gè)聰明的辦法:在繪制地圖和其他平面圖的時(shí)候,把實(shí)際距離按一定的比例縮小,再畫在圖紙上,有時(shí)也把一些尺寸比例小的物體(如機(jī)器零件等)的實(shí)際距離擴(kuò)大一定的倍數(shù),再畫在圖紙上。不管是哪種情況,都需要確定圖上距離和實(shí)際距離的比。這就是比例的知識(shí)在實(shí)際生活中的`一種應(yīng)用。今天我們就來學(xué)習(xí)這方面的知識(shí)。
    1.什么是比例尺(自學(xué)書上內(nèi)容,學(xué)生交流匯報(bào))。
    出示圖例1。
    在繪制地圖和其它平面圖的時(shí)候,需要把實(shí)際距離按一定的比縮?。ɑ驍U(kuò)大),再畫在圖紙上。這時(shí),就要確定圖上距離和相對(duì)應(yīng)的實(shí)際距離的比。一幅圖的圖上距離和實(shí)際距離的比,叫做這幅圖的比例尺。
    讓學(xué)生看圖。
    我們經(jīng)常在地圖上看到的比例尺有這兩種:1:100000000是數(shù)值比例尺,有時(shí)也可以寫成:1/,表示圖上距離1厘米相當(dāng)于實(shí)際距離100000000厘米。
    還有一種是線段比例尺(看北京地圖),表示地圖上1厘米的距離相當(dāng)于地面上50km的實(shí)際距離。
    出示圖例2。
    在生產(chǎn)中,有時(shí)由于機(jī)器零件比較小,需要把實(shí)際距離擴(kuò)大一定的倍數(shù)以后,再畫在圖紙上。下面就是一個(gè)彈簧零件的制作圖紙。
    比和比例數(shù)學(xué)教案篇四
    1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
    2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
    教學(xué)重點(diǎn):反比例的意義。
    教學(xué)難點(diǎn):正確判斷兩種量是否成反比例。
    一導(dǎo)入新課。
    1.讓學(xué)生說一說成正比例的兩種量的變化規(guī)律。
    回答要點(diǎn):
    (1)兩種相關(guān)聯(lián)的量;
    (2)一個(gè)量增加,另一個(gè)量也相應(yīng)增加;一個(gè)量減少,另一個(gè)量也相應(yīng)減少;
    (3)兩個(gè)量的比值一定。
    2.舉例說明。
    如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。
    理由:
    (1)每袋大米質(zhì)量一定,大米的.總質(zhì)量隨著袋數(shù)的變化而變化;
    (2)大米的袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)。
    減少,大米的總質(zhì)量也相應(yīng)減少;
    (3)總質(zhì)量與袋數(shù)的比值一定。
    所以,大米的袋數(shù)與總質(zhì)量成正比例。
    板書:
    3.揭示課題。
    今天,我們一起來學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時(shí),這兩種量成反比例呢?
    板書課題:成反比例的量。
    比和比例數(shù)學(xué)教案篇五
    學(xué)生發(fā)現(xiàn):時(shí)間變化,路程也隨著變化,路程和時(shí)間是兩種相關(guān)聯(lián)的量。(補(bǔ)充板書)。
    (二)探索兩個(gè)變量之間的關(guān)系。
    1、談話:請(qǐng)同學(xué)們進(jìn)一步觀察表中的數(shù)據(jù),找一找這兩種量的變化有什么規(guī)律?
    啟發(fā)學(xué)生從“變化”中去尋找“不變”。
    學(xué)生可能會(huì)從不同的角度去尋找規(guī)律。
    2、教師可根據(jù)交流的實(shí)際情況,及時(shí)引導(dǎo)學(xué)生通過計(jì)算確認(rèn)這一規(guī)律,并有意識(shí)地從后一種角度突出這一規(guī)律。
    如果學(xué)生發(fā)現(xiàn)不了上述規(guī)律,可引導(dǎo)學(xué)生寫出幾組相對(duì)應(yīng)的路程與時(shí)間的比,并求出比值。
    路程。
    根據(jù)學(xué)生的回答,教師板書關(guān)系式:時(shí)間=速度(一定)。
    4、教師對(duì)兩種量之間的關(guān)系作具體說明:當(dāng)路程和對(duì)應(yīng)時(shí)間的比的比值總是一定,也就是速度一定時(shí),我們就說行駛的路程和時(shí)間成正比例,行駛的路程和時(shí)間是成正比例的量。
    (板書:路程和時(shí)間成正比例)。
    反問:在什么條件下行駛的路程和時(shí)間呈正比例?
    比和比例數(shù)學(xué)教案篇六
    教學(xué)目標(biāo):
    1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;。
    2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);。
    3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;。
    4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;。
    5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力。
    教學(xué)重點(diǎn):
    教學(xué)用具:直尺。
    教學(xué)方法:小組合作、探究式。
    教學(xué)過程:
    我們?cè)谛W(xué)學(xué)過反比例關(guān)系。例如:當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例。
    即vt=;。
    當(dāng)矩形面積s一定時(shí),長(zhǎng)a與寬b成反比例,即ab=。
    從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
    (s是常數(shù))。
    (s是常數(shù))。
    一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù)。
    如上例,當(dāng)路程s是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積s是常數(shù)時(shí),長(zhǎng)a是寬b的反比例函數(shù)。
    在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論。
    解:列表。
    說明:由于學(xué)生第一次接觸反比例函數(shù),無(wú)法推測(cè)出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫點(diǎn)描圖。
    一般地反比例函數(shù)(k是常數(shù))的圖象由兩條曲線組成,叫做雙曲線。
    3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
    前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí)。
    顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證。
    (1)的圖象在第一、三象限.可以擴(kuò)展到k=0時(shí)的情形,即k=0時(shí),雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限的討論與此類似。
    抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程。
    (2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小;。
    從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì)。從列表中也可以看出這樣的變化趨勢(shì)。有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小。由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小。
    同樣可以推出的圖象的性質(zhì)。
    (3)函數(shù)的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子。同理,抽象出圖象的性質(zhì)。
    函數(shù)的圖象性質(zhì)的討論與次類似。
    4、小結(jié):
    本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中。
    5、布置作業(yè)習(xí)題13.81-4。
    比和比例數(shù)學(xué)教案篇七
    知識(shí)與技能目標(biāo):使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
    能力目標(biāo):經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
    情感與態(tài)度目標(biāo):體會(huì)反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點(diǎn)。
    重點(diǎn):理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
    難點(diǎn):掌握反比例的特征,能夠正確判斷反比例關(guān)系。
    (一)復(fù)習(xí)猜想導(dǎo)入,引出問題。
    1、成正比例的量有什么特征?什么叫正比例關(guān)系?
    2、在生活中兩個(gè)相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識(shí),學(xué)生大膽猜測(cè),對(duì)反比例的意義展開合理的猜想。由此導(dǎo)入新課。
    達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。
    (二)共同探索,總結(jié)方法。
    1、明確這節(jié)課的學(xué)習(xí)目標(biāo):
    (1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
    (2)經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。
    2、情境導(dǎo)入,學(xué)習(xí)探究。
    (1)我們先來看一個(gè)實(shí)驗(yàn)。
    高度(厘米)302015105。
    底面積(平方厘米)1015203060。
    體積(立方厘米)。
    提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
    (2)學(xué)生討論交流。
    (3)引導(dǎo)學(xué)生回答:表中的兩個(gè)量是高度和底面積。
    高度擴(kuò)大,底面積反而縮?。桓叨瓤s小,底面積反而擴(kuò)大。
    每?jī)蓚€(gè)相對(duì)應(yīng)的數(shù)的乘積都是300.
    (4)計(jì)算后你又發(fā)現(xiàn)了什么?
    每?jī)蓚€(gè)相對(duì)應(yīng)的數(shù)的乘積都是300,乘積一定。
    教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。
    教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。
    (5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個(gè)什么樣的式子表示?板書:x×y=k(一定)。
    小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的`量是否成反比例,關(guān)鍵是什么?
    (6)歸納總結(jié)反比例的意義。
    (7)比較歸納正反比例的異同點(diǎn)。
    達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識(shí)的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識(shí),進(jìn)行深化拓展,歸納總結(jié)。
    (三)運(yùn)用方法,解決問題。
    1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。
    2、課后做一做每天運(yùn)的噸數(shù)和運(yùn)貨的天數(shù)成反比例關(guān)系嗎?為什么?
    3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。
    達(dá)成目標(biāo):學(xué)生利用對(duì)反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會(huì)分析并進(jìn)行判斷。
    (四)反饋鞏固,分層練習(xí)。
    判斷下面每題中的兩個(gè)量是不是成反比例,并說明理由。
    (1)路程一定,速度和時(shí)間。
    (2)小明從家到學(xué)校,每分走的速度和所需時(shí)間。
    (3)平行四邊形面積一定,底和高。
    (4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
    (5)小明拿一些錢買鉛筆,單價(jià)和購(gòu)買的數(shù)量。
    達(dá)成目標(biāo):使學(xué)生體會(huì)到數(shù)學(xué)來源于現(xiàn)實(shí)生活,又服務(wù)于現(xiàn)實(shí)生活的特點(diǎn),體現(xiàn)數(shù)學(xué)的應(yīng)用性。
    (五)課堂總結(jié),提升認(rèn)識(shí)。
    比和比例數(shù)學(xué)教案篇八
    1.知識(shí)與技能:認(rèn)識(shí)比例,知道比例的的內(nèi)項(xiàng)和外項(xiàng),理解和掌握比例的基本性質(zhì),會(huì)判斷兩個(gè)比能否組成比例。
    2.過程與方法:通過自主探究、合作交流、觀察、比較,培養(yǎng)學(xué)生分析、比較、抽象和概括的能力,經(jīng)歷認(rèn)識(shí)比例和比例的基本性質(zhì)的過程。
    3.情感態(tài)度與價(jià)值觀:體會(huì)國(guó)旗中隱含的數(shù)學(xué)規(guī)律,豐富關(guān)于國(guó)旗的知識(shí),培養(yǎng)學(xué)生愛國(guó)旗、愛祖國(guó)的情感。
    比和比例數(shù)學(xué)教案篇九
    使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
    經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
    體會(huì)反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點(diǎn)。
    理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
    掌握反比例的特征,能夠正確判斷反比例關(guān)系。
    1、成正比例的量有什么特征?什么叫正比例關(guān)系?
    2、在生活中兩個(gè)相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識(shí),學(xué)生大膽猜測(cè),對(duì)反比例的意義展開合理的猜想。由此導(dǎo)入新課。
    達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。
    1、明確這節(jié)課的學(xué)習(xí)目標(biāo):
    (1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
    (2)經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。
    2、情境導(dǎo)入,學(xué)習(xí)探究。
    (1)我們先來看一個(gè)實(shí)驗(yàn)。
    高度(厘米)302015105。
    底面積(平方厘米)1015203060。
    體積(立方厘米)。
    提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
    (2)學(xué)生討論交流。
    (3)引導(dǎo)學(xué)生回答:表中的兩個(gè)量是高度和底面積。
    高度擴(kuò)大,底面積反而縮??;高度縮小,底面積反而擴(kuò)大。
    每?jī)蓚€(gè)相對(duì)應(yīng)的數(shù)的乘積都是300.
    (4)計(jì)算后你又發(fā)現(xiàn)了什么?
    每?jī)蓚€(gè)相對(duì)應(yīng)的數(shù)的乘積都是300,乘積一定。
    教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。
    教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。
    (5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個(gè)什么樣的式子表示?板書:x×y=k(一定)。
    小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的量是否成反比例,關(guān)鍵是什么?
    (6)歸納總結(jié)反比例的意義。
    (7)比較歸納正反比例的異同點(diǎn)。
    達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識(shí)的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識(shí),進(jìn)行深化拓展,歸納總結(jié)。
    1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。
    2、課后做一做每天運(yùn)的噸數(shù)和運(yùn)貨的天數(shù)成反比例關(guān)系嗎?為什么?
    3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。
    達(dá)成目標(biāo):學(xué)生利用對(duì)反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會(huì)分析并進(jìn)行判斷。
    判斷下面每題中的兩個(gè)量是不是成反比例,并說明理由。
    (1)路程一定,速度和時(shí)間。
    (2)小明從家到學(xué)校,每分走的速度和所需時(shí)間。
    (3)平行四邊形面積一定,底和高。
    (4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
    (5)小明拿一些錢買鉛筆,單價(jià)和購(gòu)買的數(shù)量。
    達(dá)成目標(biāo):使學(xué)生體會(huì)到數(shù)學(xué)來源于現(xiàn)實(shí)生活,又服務(wù)于現(xiàn)實(shí)生活的特點(diǎn),體現(xiàn)數(shù)學(xué)的應(yīng)用性。
    比和比例數(shù)學(xué)教案篇十
    生:長(zhǎng)方形。
    師:我們以前測(cè)量過教室的長(zhǎng)、寬各是多少?
    (生:長(zhǎng)大約8米,寬大約6米。)。
    師:請(qǐng)大家在方格紙上畫出我們教室的平面圖。(生畫師巡視)。
    (以談話的形式,從學(xué)生熟悉的教室入手,讓學(xué)生先估計(jì)教室的長(zhǎng)和寬,再嘗試畫出教室的平面圖,這樣既復(fù)習(xí)了上節(jié)課圖形的放縮知識(shí),又為下面的學(xué)習(xí)做好準(zhǔn)備。)。
    師:大家畫的圖是長(zhǎng)8米,寬6米嗎?(不是)誰(shuí)來說說是怎么畫的?(展示生的作品)。
    (學(xué)生的答案可能有:長(zhǎng)方形長(zhǎng)8厘米,寬6厘米。或者是長(zhǎng)4厘米,寬3厘米。)。
    師:同樣畫的'都是我們的教室,卻不一樣大,大家贊成誰(shuí)的畫法(故意)?為什么?
    (觀點(diǎn)一:都可以,因?yàn)檫@兩個(gè)圖的比都是4:3。
    觀點(diǎn)二:這兩種畫法一樣,但畫的大小不一樣,一個(gè)面積是54平方厘米,一個(gè)是6平方厘米。)。
    師:是啊,這兩個(gè)平面圖,別人一看會(huì)知道我們教室的大概形狀,但我們的教室不可能是長(zhǎng)8厘米、寬6厘米,也不可能是長(zhǎng)4厘米、寬3厘米,你能想個(gè)辦法,讓別人也知道我們教室有多大嗎?(生動(dòng)腦想、動(dòng)手寫)。
    引導(dǎo)學(xué)生匯報(bào):
    (1)直接寫上“教室面積大約50平方米?!?BR>    (2)在圖上標(biāo)出“長(zhǎng)8米、寬6米。”
    (3)標(biāo)上“1厘米=1米”。
    (4)1厘米怎么能等于1米呢?我認(rèn)為可以寫“1厘米相當(dāng)于1米。”
    (激發(fā)了學(xué)生的探究欲,激活了學(xué)生的思維,促使學(xué)生去動(dòng)腦、動(dòng)手、動(dòng)口,探索解決問題的辦法,同時(shí)讓學(xué)生體會(huì)了比例尺產(chǎn)生的必要性。)。
    師:看來同學(xué)們很愛動(dòng)腦筋,遇到問題會(huì)想辦法。其實(shí)這個(gè)問題里面就藏著我們今天所要學(xué)習(xí)的新知識(shí)。(板書課題:比例尺)。
    讓生自學(xué)課本第30頁(yè)什么是比例尺?
    集體交流什么是比例尺,比例尺其實(shí)是一個(gè)比,注意誰(shuí)是前項(xiàng)誰(shuí)是后項(xiàng)。師根據(jù)生的回答板書:圖上距離:實(shí)際距離=比例尺或分?jǐn)?shù)形式。
    (引導(dǎo)學(xué)生利用手中的素材,讓學(xué)生自己尋找、發(fā)現(xiàn)和觀察比例尺,從而對(duì)學(xué)生進(jìn)行學(xué)習(xí)方法的指導(dǎo)。)。
    讓生說出自已畫的兩幅圖的比例尺各是多少,是如何計(jì)算的。師根據(jù)生的回答板書相應(yīng)比例尺。
    2、讓學(xué)生議一議可以怎樣理解比例尺所代表的意義。
    圖上的1厘米表示實(shí)際的多少?(注意單位要統(tǒng)一)。
    實(shí)際距離是圖上距離的多少倍?把圖上距離擴(kuò)大多少倍就是實(shí)際距離?
    圖上距離是實(shí)際距離的多少分之一?把實(shí)際距離縮小多少倍就是圖上距離?
    圖上距離相當(dāng)于多少份?實(shí)際距離相當(dāng)于多少份?
    比和比例數(shù)學(xué)教案篇十一
    1、完成第63頁(yè)的“練一練”。
    先讓學(xué)生獨(dú)立思考并作出判斷,再要求說明判斷理由。你是怎樣判斷的?
    2、做練習(xí)十三第1~3題。
    第1題讓學(xué)生按題目要求先各自算一算、想一想,再組織討論和交流。
    第2題先讓學(xué)生獨(dú)立進(jìn)行判斷,再指名說判斷的理由。
    第3題要先讓學(xué)生說說題目要求我們把已知的正方形按怎樣的比放大,放大后正方形的邊長(zhǎng)各是幾厘米,再讓學(xué)生在圖上畫一畫。
    填好表格后,組織學(xué)生討論,明確:只有當(dāng)兩種相關(guān)聯(lián)的量的比值一定時(shí),它們才能成正比例。
    比和比例數(shù)學(xué)教案篇十二
    教科書第63頁(yè)的例2,“練一練”和練習(xí)十三的第4、5題。
    1。能用“描點(diǎn)法”畫出表示正比例關(guān)系的圖像,幫助學(xué)生初步認(rèn)識(shí)正比例的圖像,進(jìn)一步認(rèn)識(shí)成正比例的量的變化規(guī)律。
    2。使學(xué)生能根據(jù)具有正比例關(guān)系的一個(gè)量的數(shù)值看圖估計(jì)另一個(gè)量的數(shù)值。初步體會(huì)正比例圖像的實(shí)際應(yīng)用,進(jìn)一步培養(yǎng)觀察能力和估計(jì)能力。
    3。使學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)與日常生活的密切聯(lián)系,養(yǎng)成積極主動(dòng)地參與學(xué)習(xí)活動(dòng)的'習(xí)慣。
    能認(rèn)識(shí)正比例關(guān)系的圖像。
    利用正比例關(guān)系的圖像解決實(shí)際問題。
    多媒體。
    一、復(fù)習(xí)激趣。
    1、判斷下面兩種量能否成正比例,并說明理由。
    數(shù)量一定,總價(jià)和單價(jià)。
    和一定,一個(gè)加數(shù)和另一個(gè)加數(shù)。
    比值一定,比的前項(xiàng)和后項(xiàng)。
    二、探究新知。
    1、出示例1的表格。
    根據(jù)表中列出的兩種量,在黑板上分別畫出橫軸和縱軸。
    你能根據(jù)表中的每組數(shù)據(jù),在方格圖中找一找相應(yīng)的點(diǎn),并依次描出這些點(diǎn)嗎?
    2、學(xué)生嘗試畫出正比例的圖像。
    3、展示、糾錯(cuò)。
    每個(gè)點(diǎn)都應(yīng)該表示路程和時(shí)間的一組對(duì)應(yīng)數(shù)值。
    4、回答例2圖像下面的問題,重點(diǎn)弄清:
    (1)說出每個(gè)點(diǎn)表示的含義。
    (2)為什么所描的點(diǎn)在一條直線上?
    (3)你能根據(jù)時(shí)間(路程)估計(jì)所對(duì)應(yīng)的路程(時(shí)間)嗎?你是怎么看的?
    借助直觀的圖像理解兩種量同時(shí)擴(kuò)大或縮小的變化規(guī)律。
    三、鞏固延伸。
    1、完成練一練。
    小玲打字的個(gè)數(shù)和所用的時(shí)間成正比例嗎?為什么?
    根據(jù)表中的數(shù)據(jù),描出打字?jǐn)?shù)量和時(shí)間所對(duì)應(yīng)的點(diǎn),再把它們按順序連起來。
    估計(jì)小玲5分鐘打了多少個(gè)字?打750個(gè)字要多少分鐘?
    2、練習(xí)十三第4題。
    先看一看、想一想,再組織討論和交流。要求學(xué)生說出估計(jì)的思考過程。
    3、練習(xí)十三第5題。
    先獨(dú)立填表,再根據(jù)表中的數(shù)據(jù)描出長(zhǎng)度和總價(jià)所對(duì)應(yīng)的點(diǎn),把它們按順序連起來。
    組織討論和交流。
    4、你能根據(jù)生活實(shí)際,設(shè)計(jì)出兩種成正比例量關(guān)系的一組數(shù)據(jù)嗎?
    根據(jù)表中的數(shù)據(jù),描出所對(duì)應(yīng)的點(diǎn),再把它們按順序連起來。
    同桌之間相互提出問題并解答。
    四、反思。
    這節(jié)課你學(xué)會(huì)了什么?你有哪些收獲?還有哪些疑問?
    五、作業(yè)。
    完成《練習(xí)與測(cè)試》相關(guān)作業(yè)。
    板書設(shè)計(jì)。
    比和比例數(shù)學(xué)教案篇十三
    知識(shí)目標(biāo)使學(xué)會(huì)解比例的方法,進(jìn)一步理解和掌握比例的基本性質(zhì)。
    能力目標(biāo)聯(lián)系的生活實(shí)際創(chuàng)設(shè)情境,體現(xiàn)解比例在生產(chǎn)生活中的廣泛應(yīng)用。
    情感目標(biāo)利用所學(xué)知識(shí)解決生活中的問題,進(jìn)一步培養(yǎng)綜合運(yùn)用知識(shí)的能力及情度、價(jià)值觀的發(fā)展。
    重點(diǎn)使學(xué)會(huì)解比例的方法,進(jìn)一步理解和掌握比例的基本性質(zhì)。
    難點(diǎn)體現(xiàn)解比例在生產(chǎn)生活中的廣泛應(yīng)用。
    教學(xué)過程。
    一、舊知鋪墊。
    1、什么叫做比例?
    3、比例有幾種表示形式?
    二、探索新知。
    1、出示埃菲爾鐵掛圖。
    2、出示例題。
    (1)、讀題。
    (2)、從這道題里,你們獲得了哪些信息?
    (3)、在這信息里,關(guān)鍵理解哪里?(埃菲爾鐵模型與埃菲爾鐵塔的高度比是1:10)。
    (4)、這句話什么意思?(就是埃菲爾鐵塔模型的高度:埃菲爾鐵塔的高度=1:10)(板書)。
    (5)、還有一個(gè)條件是什么?(埃菲爾鐵塔的高是320米)。
    (6)、我們把這個(gè)條件換到我們的這個(gè)關(guān)系中,就是(板書:埃菲爾鐵塔的高度:320=1:10)。
    (7)、這道題怎么列比例式解答呢?請(qǐng)同學(xué)們想想,想出來的同學(xué)請(qǐng)舉手。
    (8)、根據(jù)學(xué)生的反饋板書:“解:設(shè)埃菲爾鐵塔模型的高度設(shè)為x米”,把這個(gè)x代入這個(gè)數(shù)學(xué)模式中就組成了一個(gè)比例式(板書x:320=1:10)。
    (9)、這樣在組成比例的四個(gè)項(xiàng)中,我們知道其中的幾個(gè)項(xiàng)?還有幾個(gè)項(xiàng)不知道?
    (10)、不知道的這個(gè)項(xiàng),我們來給它起個(gè)名字,好不好?叫做什么?(板書:未知項(xiàng))。
    (11)、指著x:320=1:10,問:“這個(gè)未知項(xiàng)是多少呢?那怎么辦?”誰(shuí)上來做做?(指名板演)。
    (12)、為什么可以寫成這樣的等式呢?10x=320×1(根據(jù)比例的基本性質(zhì))。
    (13)、對(duì)了,把上面的比例式改寫成下面這樣一個(gè)等式,就是應(yīng)用了比例的基本性質(zhì)。應(yīng)用比例的基本性質(zhì),把比例式改寫成了一個(gè)等式,這個(gè)等式還是一個(gè)什么樣的等式呀?(含有未知數(shù)的等式)。
    (14)、這樣含有未知數(shù)的等式,叫做方程。那么求出方程中的未知數(shù)就叫做什么?(解方程)那么在這個(gè)比例式中,我們知道了任意三項(xiàng),要求出其中一項(xiàng)的過程又叫做什么?(解比例)出示比例的意義。
    (15)、我們解出的答案對(duì)不對(duì)呢?怎么知道?可以怎樣檢驗(yàn)?(把結(jié)果代入題目中看看對(duì)應(yīng)的比的比值是不是能成比例.)。
    (16)這道題還有其他的解法嗎?(引導(dǎo)學(xué)生從比例的意義上來解。
    2、教學(xué)例3。
    過渡:我們知道比例還有另一種表示形式,當(dāng)是=這樣形式的時(shí)候,又該怎么解呢?
    (1)、出示例3,問:這題與剛剛那個(gè)比例有哪些不同?
    (2)、解這種比例時(shí),要注意些什么呢?(找出比例的外項(xiàng)、內(nèi)項(xiàng))。
    (3)、在這個(gè)比例里,哪些是外項(xiàng)?哪些是內(nèi)項(xiàng)?
    (4)、解答(提問:你們是怎么解答的?)、檢驗(yàn)。
    (5)、=。
    總結(jié)這節(jié)課主要學(xué)習(xí)了什么內(nèi)容?
    作業(yè)布置教材43頁(yè)5題。
    板書設(shè)計(jì)解比例。
    例3、解比例=。
    解:2.4=1.5×6。
    =×。
    比和比例數(shù)學(xué)教案篇十四
    問題:。
    你們還記得一次函數(shù)圖象與性質(zhì)嗎?
    設(shè)計(jì)意圖。
    通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生復(fù)習(xí)一次函數(shù)圖象的知識(shí),激發(fā)學(xué)生參與課堂學(xué)習(xí)的熱情,為學(xué)習(xí)反比例函數(shù)的圖象奠定基礎(chǔ)。
    師生形為:
    教師提出問題。學(xué)生思考、交流,回答問題。教師根據(jù)學(xué)生活動(dòng)情況進(jìn)行補(bǔ)充和完善。
    活動(dòng)2。
    問題:
    例2畫出反比例函數(shù)y=與y=-的圖象。
    (教師先引導(dǎo)學(xué)生思考,示范畫出反比例函數(shù)y=的圖象,再讓學(xué)生嘗試畫出反比例函數(shù)y=-的圖象。)。
    設(shè)計(jì)意圖:
    通過畫反比例函數(shù)的圖象使學(xué)生進(jìn)一步了解用描點(diǎn)的方法畫函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎(chǔ),同時(shí)也培養(yǎng)了學(xué)生動(dòng)手操作能力。
    師生形為:
    學(xué)生可以先自己動(dòng)手畫圖,相互觀摩。
    在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:
    1學(xué)生能否順利進(jìn)行三種表示方法的相互轉(zhuǎn)換:
    2是否熟悉作出函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;。
    3在動(dòng)手作圖的過程中,能否勤于動(dòng)手,樂于探索。
    比較y=、y=-的圖象有什么共同特征?它們之間有什么關(guān)系?
    (由學(xué)生觀察思考,回答問題,并使學(xué)生了解反比例函數(shù)的圖象是一種雙曲線。)。
    設(shè)計(jì)意圖:
    學(xué)生通過觀察比較,總結(jié)兩個(gè)反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標(biāo)系中的位置。在活動(dòng)中,讓學(xué)生自己去觀察、類比發(fā)現(xiàn),過程讓學(xué)生自己去感受,結(jié)論讓學(xué)生自己去總結(jié),實(shí)現(xiàn)學(xué)生主動(dòng)參與、探究新知的目的。
    師生形為:
    學(xué)生分組針對(duì)問題結(jié)合畫出的圖象分類討論,歸納總結(jié)反比例函數(shù)圖象的共同點(diǎn),為后面性質(zhì)的探索打下基礎(chǔ)。
    教師參與到學(xué)生的討論中去,積極引導(dǎo)。
    活動(dòng)3。
    問題:
    你能發(fā)現(xiàn)它們的共同特征以及不同點(diǎn)嗎?
    每個(gè)函數(shù)的圖象分別位于哪幾個(gè)象限?
    在每一個(gè)象限內(nèi),y隨x的變化如何變化?
    由學(xué)生分小組討論,觀察思考后進(jìn)行分析、歸納,得到反比例函數(shù)y=的性質(zhì):
    形狀:反比例函數(shù)的圖象是由兩支雙曲線組成的.因此稱反比例函數(shù)的圖象為雙曲線;。
    任意一組變量的乘積是一個(gè)定值,即xy=k.
    (注意:雙曲線的兩個(gè)分支都不會(huì)與x軸,y軸相交。)。
    學(xué)生通過對(duì)反比例函數(shù)圖象進(jìn)行觀察、分析,總結(jié)出了反比例函數(shù)的性質(zhì),使學(xué)生明白性質(zhì)的可靠性;通過對(duì)函數(shù)圖象的位置與k值符號(hào)關(guān)系的探討,以及反比例函數(shù)的兩個(gè)分支在相應(yīng)的象限內(nèi),y隨x值的增大(或減小)而增大(或減小)的探討,有利于加深學(xué)生對(duì)性質(zhì)的理解和掌握;使學(xué)生經(jīng)歷從特殊到一般的過程,體驗(yàn)知識(shí)產(chǎn)生、形成的過程,逐步達(dá)到培養(yǎng)學(xué)生抽象概括能力和激發(fā)求知欲望;同時(shí)通過對(duì)反比例函數(shù)增減性的討論,對(duì)學(xué)生進(jìn)行辯證唯物主義思想教育.
    設(shè)計(jì)意圖:
    拓展練習(xí)是為了讓學(xué)生靈活運(yùn)用反比例函數(shù)性質(zhì)解決問題,學(xué)生在研究問題的特點(diǎn)時(shí),能夠緊扣性質(zhì)進(jìn)行分析,達(dá)到理解并掌握性質(zhì)的目的.
    師生形為:
    學(xué)生獨(dú)立思考完成。
    教師巡視,引導(dǎo)學(xué)困生完成任務(wù)。
    問題:
    本節(jié)課學(xué)習(xí)了哪些知識(shí)?在知識(shí)應(yīng)用過程中需要注意什么?你有什么收獲?
    比和比例數(shù)學(xué)教案篇十五
    反思整節(jié)課,體現(xiàn)了學(xué)生自主探究,從生活情境出發(fā),真正解放了學(xué)生,既關(guān)注了學(xué)生的學(xué)習(xí)過程,又使學(xué)生在交流評(píng)價(jià)過程中情感、態(tài)度、價(jià)值觀等方面獲得豐富的體驗(yàn),較好的體現(xiàn)了事先的教學(xué)設(shè)想,感觸較深。
    這部分內(nèi)容是在教學(xué)過比和比例的知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的,著重使學(xué)生理解正比例的意義。比例是建立在比的關(guān)系的基礎(chǔ)上的,所以必須讓學(xué)生回顧明確什么是是比和比值。兩個(gè)數(shù)相除叫做這兩個(gè)數(shù)的比。所得的商叫做比值。比有兩種寫法,一種是比號(hào)寫法,另一種是用分?jǐn)?shù)寫法。只有比值一樣的兩個(gè)比才能組成比例。從內(nèi)容上看,“成正比例的量”這一內(nèi)容,在整個(gè)小學(xué)階段是一個(gè)較抽象的概念,他不僅要讓學(xué)生理解其意義,還要學(xué)會(huì)判斷兩種是否是成正比例的量,同時(shí)還要理解用字母公式來表示正比例關(guān)系,要滲透給學(xué)生一些函數(shù)的思想,為以后初中學(xué)習(xí)打下基礎(chǔ)。根據(jù)教材和內(nèi)容的特點(diǎn),我選擇了師生互動(dòng),以教師的“引”為主導(dǎo),學(xué)生為主體,讓學(xué)生在互動(dòng)交流中去理解成正比例的量這一概念。首先,讓學(xué)生弄清什么叫“兩種相關(guān)聯(lián)”的量,我引導(dǎo)學(xué)生去從表格中去發(fā)現(xiàn)時(shí)間和路程兩種量的變化情況,在變化中發(fā)現(xiàn):路程隨著時(shí)間的變化而變化的,同時(shí)引導(dǎo)學(xué)生初步感知成正比例的兩種量的變化方向性。其次,我進(jìn)一步引導(dǎo)學(xué)生考慮:路程隨著時(shí)間的變化而變化,在這一變化過程中,有什么規(guī)律呢?學(xué)生看了春游路程和時(shí)間表中之后,發(fā)現(xiàn)路程和時(shí)間比的比值是一樣的,都是500米。讓學(xué)生理解相對(duì)應(yīng)的路程和時(shí)間的比的比值都是500米,從而突破了正比例關(guān)系的第二個(gè)難點(diǎn)。兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比會(huì)一定。把學(xué)生對(duì)成正比例量的意義的理解成一系統(tǒng)。由于學(xué)生還是第一次接觸這一概念,之后,例2的學(xué)習(xí)還是讓學(xué)生對(duì)比例1來自己理解數(shù)量和總價(jià)的正比例關(guān)系。最后,在兩個(gè)例題學(xué)習(xí)的基礎(chǔ)上總結(jié)出成正比例量的意義,把這意義從局部的路程和時(shí)間、數(shù)量和總價(jià)推廣到其他數(shù)量之間的關(guān)系。然后,老師例子說明,并且請(qǐng)學(xué)生互動(dòng)找例子。
    不足之處是在練習(xí)方面,學(xué)生找不到哪些數(shù)量成正比例時(shí)應(yīng)讓學(xué)生討論,每個(gè)正比例關(guān)系都應(yīng)讓學(xué)生互相說一說,這樣或許會(huì)懂得更多。
    比和比例數(shù)學(xué)教案篇十六
    1、使學(xué)生進(jìn)一步認(rèn)識(shí)正、反比例的意義,了解正反比例的區(qū)別和聯(lián)系,更好的把握正、反比例概念的本質(zhì)。
    2、進(jìn)一步加深學(xué)生對(duì)正、反比例意義的理解,使他們能夠從整體上把握各種量之間的比例關(guān)系,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。
    進(jìn)一步認(rèn)識(shí)正、反比例的意義,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。
    實(shí)物投影。
    一、復(fù)習(xí)。
    要求學(xué)生說出成正反比例量的關(guān)鍵,根據(jù)學(xué)生回答板書關(guān)系式。
    2、判斷下面各題中的兩種量是不是成比例,成什么比例。
    (1)圓錐的體積和底面積。
    (2)用銅制成的零件的體積和質(zhì)量。
    (3)一個(gè)人的身高和體重。
    (4)互為倒數(shù)的兩個(gè)數(shù)。
    (5)三角形的底一定,它的`面積和高。
    (6)圓的周長(zhǎng)和直徑。
    (7)被除數(shù)一定,商和除數(shù)。
    二、練習(xí)。
    完成練習(xí)十三9~13題。
    1、第9題。
    觀察每個(gè)表中的數(shù)據(jù),討論表下的問題。要注意啟發(fā)學(xué)生根據(jù)表數(shù)據(jù)的變化規(guī)律,寫出相應(yīng)的數(shù)量關(guān)系式,再進(jìn)行判斷。
    2、第10題。
    (1)看圖填寫表格。
    (2)求出這幅圖的比例尺,再根據(jù)圖像特點(diǎn)判斷圖上距離和實(shí)際距離成什么比例,也可以根據(jù)相關(guān)的計(jì)算結(jié)果作出判斷。要讓學(xué)生認(rèn)識(shí)到:同一幅地圖的比例尺一定,所以這幅圖的圖上距離和實(shí)際距離成正比例。
    (3)啟發(fā)學(xué)生運(yùn)用有關(guān)比例尺的知識(shí)進(jìn)行解答。
    3、第11題。
    填寫表格,組織學(xué)生對(duì)兩個(gè)問題進(jìn)行比較,進(jìn)一步突出成反比例量的特點(diǎn)。
    4、第12題。
    引導(dǎo)學(xué)生說說每題中的哪兩種量是變化的,這兩種量中,一種量變化,另一種量也隨著變化,能不能用相應(yīng)的數(shù)量關(guān)系式表示這種變化的規(guī)律。
    5、第13題。
    讓學(xué)生小組進(jìn)行討論,教師指導(dǎo)有困難的學(xué)生。
    三、補(bǔ)充練習(xí)。
    1、a與b成正比例,并且在a=1。。時(shí),b的對(duì)應(yīng)值是0。15。
    (1)a與b的關(guān)系式是a/b=()。
    (2)當(dāng)a=2。5時(shí),b的對(duì)應(yīng)值是()。
    (3)當(dāng)b=9。2時(shí),a的對(duì)應(yīng)值是()。
    2、甲、乙兩人步行速度的比為5:6,從a地到b地,甲走12小時(shí),乙要走幾小時(shí)?
    比和比例數(shù)學(xué)教案篇十七
    結(jié)合豐富的實(shí)例,認(rèn)識(shí)反比例。能根據(jù)反比例的意義,判斷兩個(gè)相關(guān)聯(lián)的量是不是成反比例。利用反比例解決一些簡(jiǎn)單的生活問題,感受反比例關(guān)系在生活中的廣泛應(yīng)用。
    認(rèn)識(shí)反比例,能根據(jù)反比例的意義判斷兩個(gè)相關(guān)聯(lián)的量是不是成反比例。
    1、什么是正比例的量?
    2、判斷下面各題中的兩種量是否成正比例?為什么?
    (1)工作效率一定,工作時(shí)間和工作總量。
    (2)每頭奶牛的產(chǎn)奶量一定,奶牛的頭數(shù)和產(chǎn)奶總量。
    (3)正方形的邊長(zhǎng)和它的面積。
    利用反義詞來導(dǎo)入今天研究的課題。今天研究?jī)煞N量成反比例關(guān)系的變化規(guī)律。
    情境(一)
    認(rèn)識(shí)加法表中和是12的直線及乘法表中積是12的曲線。
    情境(二)
    情境(三)
    寫出關(guān)系式:每杯果汁量×杯數(shù)=果汗總量(一定)
    5、以上兩個(gè)情境中有什么共同點(diǎn)?
    反比例意義
    引導(dǎo)小結(jié):
    活動(dòng)四:想一想
    p26頁(yè)第1、2、3題
    關(guān)系式:x×y=k(一定)
    課后反思:
    學(xué)生活動(dòng)
    學(xué)生自由回答,相互補(bǔ)充。
    學(xué)生觀察,弄清題意。
    引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個(gè)加數(shù)隨另一個(gè)加數(shù)的變化而變化;乘法表中積是12,一個(gè)乘數(shù)隨另一個(gè)乘數(shù)的變化而變化。
    獨(dú)立觀察,思考同桌交流,用自己的語(yǔ)言表達(dá)寫出關(guān)系式:速度×?xí)r間=路程(一定)觀察思考并用自己的語(yǔ)言描述變化關(guān)系乘積(路程)一定。
    你有什么發(fā)現(xiàn)?用自己的語(yǔ)言描述變
    都有兩種相關(guān)聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這
    兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的乘積是一定的。這兩種量之間是反比例關(guān)系。
    板書設(shè)計(jì)
    教學(xué)反思
    比和比例數(shù)學(xué)教案篇十八
    反比例。(教材第47頁(yè)例2)。
    1.使學(xué)生理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
    2.讓學(xué)生經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。
    引導(dǎo)學(xué)生總結(jié)出成反比例的量的特點(diǎn),進(jìn)而抽象概括出反比例的關(guān)系式。利用反比例的意義,正確判斷兩個(gè)量是否成反比例。
    投影儀。
    復(fù)習(xí)導(dǎo)入
    1.讓學(xué)生說說什么是正比例,然后用投影出示下面的題。
    下面各題中哪兩種量成正比例?為什么?
    (1)每公頃產(chǎn)量一定,總產(chǎn)量和公頃數(shù)。
    (2)一袋大米的重量一定,吃了的和剩下的。
    (3)修房屋時(shí),粉刷的面積和所需涂料的數(shù)量。
    教師:如果加工零件總數(shù)一定,每小時(shí)加工數(shù)和加工時(shí)間會(huì)成什么變化?關(guān)系怎樣?這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。
    1.教學(xué)例2。
    創(chuàng)設(shè)情境。
    教師:把相同體積的水倒入底面積不同的杯子,高度會(huì)怎樣變化?
    出示教材第47頁(yè)例2的情境圖和表格。
    請(qǐng)學(xué)生認(rèn)真觀察表中數(shù)據(jù)的變化情況,組織學(xué)生分小組討論:
    (1)水的高度和底面積變化有關(guān)系嗎?
    (2)水的高度是怎樣隨著底面積變化的?
    (3)水的高度和底面積的變化有什么規(guī)律?
    學(xué)生不難發(fā)現(xiàn):底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。
    教師板書配合說明這一規(guī)律:
    30×10=20×15=15×20=……=300
    教師根據(jù)學(xué)生的匯報(bào)說明:高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。
    2.歸納反比例的意義。
    組織學(xué)生小組內(nèi)討論:反比例的意義是什么?
    學(xué)生小組內(nèi)交流,指名匯報(bào)。
    教師總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
    3.用字母表示。
    學(xué)生探討后得出結(jié)果。
    x×y=k(一定)
    4.師:生活中還有哪些成反比例的量?
    在教師的引導(dǎo)下,學(xué)生舉例說明。如:
    (1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
    (2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。
    (3)長(zhǎng)方形的面積一定,長(zhǎng)和寬成反比例。
    5.組織學(xué)生將例1與例2進(jìn)行比較,小組內(nèi)討論:
    正比例與反比例的相同點(diǎn)和不同點(diǎn)有哪些?
    學(xué)生交流、匯報(bào)后,引導(dǎo)學(xué)生歸納:
    相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。
    不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
    6.你還有什么疑問
    ?如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察教材第48頁(yè)“你知道嗎?”中的圖像。
    反比例關(guān)系也可以用圖像來表示,表示兩個(gè)量的點(diǎn)不在同一條直線上,點(diǎn)所連接起來的圖像是一條曲線,圖像特征不要求掌握。
    課堂作業(yè)
    1.教材第48頁(yè)的“做一做”。
    2.教材第51頁(yè)第9、10題。
    答案:1.(1)每天運(yùn)的噸數(shù)和所需的天數(shù)兩種量,它們是相關(guān)聯(lián)的量。
    (2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。
    (3)成反比例,因?yàn)槊刻爝\(yùn)的噸數(shù)變化,需要的天數(shù)也隨著變化,且它們的積一定。
    2.第9題:成反比例,因?yàn)槊科康娜萘颗c瓶數(shù)的乘積一定。
    第10題:5010012
    說一說成反比例關(guān)系的量的變化特征。
    課后作業(yè)
    1.完成練習(xí)冊(cè)中本課時(shí)的練習(xí)。
    2.教材51~52頁(yè)第8、14題。
    答案:
    2.第8題:成反比例,因?yàn)榻淌业拿娣e一定,而每塊地磚的面積與所需數(shù)量的乘積都等于教室的面積54m2。
    第14題:(1)斑馬和長(zhǎng)頸鹿的奔跑路程和奔跑時(shí)間成正比例。
    (2)分析:可以通過圖像直接估計(jì),先在橫軸上找到18分的位置,然后在兩個(gè)圖像中找到相應(yīng)的點(diǎn),再分別在豎軸上找到與這個(gè)點(diǎn)對(duì)應(yīng)的數(shù)值;也可以通過計(jì)算找到。
    解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
    從圖像中可以知道長(zhǎng)頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
    (3)斑馬跑得快。
    第3課時(shí)反比例
    兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
    用x和y表示兩種相關(guān)聯(lián)的量,x和y成反比例關(guān)系用字母表示為×y=k(一定)
    正比例與反比例的相同點(diǎn)和不同點(diǎn):
    相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。
    不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
    比和比例數(shù)學(xué)教案篇十九
    小學(xué)六年級(jí)的學(xué)生在學(xué)習(xí)正比例和反比例這部分內(nèi)容時(shí),尤其是在練習(xí)過程中容易混淆不清,經(jīng)常弄錯(cuò)。下面,本文從不同的角度幫助他們正確區(qū)分這兩者的關(guān)系,希望對(duì)他們的學(xué)習(xí)會(huì)有所幫助。
    一、正確認(rèn)識(shí)兩者的意義。
    正比例和反比例的意義教材中是安排在從p39到p47來進(jìn)行敘述講解的,且都是通過對(duì)實(shí)驗(yàn)中的數(shù)據(jù)進(jìn)行分析之后概括得出的結(jié)論,這樣學(xué)生相對(duì)易于接受。
    1.正比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系?!?BR>    2.反比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。”
    如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系可以用下面的關(guān)系式來表示:
    y/x=k(一定)或y=kx(k一定)。
    (二)反比例關(guān)系的表達(dá)式。
    如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系可以用下面的關(guān)系式來表示:
    x×y=k(k一定)或y=kx(k一定)。
    1.正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律。正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律是:同時(shí)擴(kuò)大,同時(shí)縮小,比值(或商)不變。
    例如:汽車每小時(shí)行駛的速度一定,所行的路程和所用的時(shí)間是否成正比例?
    完成該題練習(xí)時(shí),可以先寫出路程、速度和時(shí)間三者之間的關(guān)系式:速度=路程/時(shí)間,已知條件中速度為一定(即常量),根據(jù)“速度=路程/時(shí)間”這一關(guān)系式,結(jié)合正比例的意義,即可知道所行的路程和所用的時(shí)間是成正比例關(guān)系的。也就是說,當(dāng)速度一定時(shí),走的路程越多,所花費(fèi)的時(shí)間也越多,反之,亦然。換句話說,路程和時(shí)間是成倍增長(zhǎng)或縮小的。
    2.反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律。
    反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律是:一種量擴(kuò)大,另一種量縮小,一種量縮而另一種量則擴(kuò)大,積不變。
    例如:當(dāng)圖上距離一定時(shí),實(shí)際距離和比例尺是否成反比例?因?yàn)閷?shí)際距離×比例尺=圖上距離(一定),所以,實(shí)際距離和比例尺是成反比例的。
    1.在事物關(guān)系中都包含有三個(gè)量,(本網(wǎng)網(wǎng))即有兩個(gè)變量和一個(gè)常量(即定值)。
    2.在相關(guān)聯(lián)的兩個(gè)變量中,當(dāng)一個(gè)變量發(fā)生變化時(shí)(擴(kuò)大或縮?。?,則另一個(gè)變量也隨之發(fā)生變化。
    3.它們相對(duì)應(yīng)的兩個(gè)變量的積或商都是一定的(即常量)。
    也就是說,在正比例和反比例的兩個(gè)相關(guān)聯(lián)的變量中,均是一個(gè)量變化,另一個(gè)量也隨之變化。并且變化方式均屬于擴(kuò)大(乘以一個(gè)數(shù))或縮?。ǔ砸粋€(gè)數(shù))若干倍的變化。
    1.正比例的定量(或定值)是兩個(gè)變量中相對(duì)應(yīng)的兩個(gè)數(shù)(即變量)的比值(或商)。反比例的定量是兩個(gè)變量中相對(duì)應(yīng)的兩個(gè)數(shù)的積。
    2.當(dāng)用圖象來表示正比例或反比例中兩個(gè)變量之間的關(guān)系時(shí),所畫出來的圖象是不一樣的。正比例的圖象是一條傾斜的直線(又叫斜線)。反比例的圖象是一條曲線,且兩端永遠(yuǎn)不會(huì)與兩條軸線(即橫軸和縱軸或函數(shù)中所稱的x軸和y軸)相交。
    當(dāng)正比例中的x值(自變量的值)轉(zhuǎn)化為它的倒數(shù)時(shí),由正比例轉(zhuǎn)化為反比例;當(dāng)反比例中的x值(自變量的值)也轉(zhuǎn)化為它的倒數(shù)時(shí),則由反比例轉(zhuǎn)化為正比例。
    需要說明的是,教科書中在“正比例和反比例的意義”的講解中,并沒有指出正比例和反比例關(guān)系表達(dá)式中常量和變量的取值范圍。根據(jù)正比例的關(guān)系式y(tǒng)/x=k(一定)和反比例的關(guān)系x×y=k(k一定)可以知道,無(wú)論是正比例還是反比例,兩個(gè)變量x、y和常量k均不能為零。試想,在正比例y/x=k(一定)中,如果x為0,式子無(wú)意義;如果y為0,x不為0,則x的值是不確定的(這時(shí)候k的值為0),此時(shí)x和y就不存在正比例的說法了。同樣,在反比例x×y=k(k一定)中,如果x和y兩個(gè)變量中,只要其中一個(gè)為0或兩個(gè)都同時(shí)為0,則k的值都為0,x和y也無(wú)所謂反比例關(guān)系了。再說,如果x和y同時(shí)為0的話,那么x和y也不叫變量了,都不符合反比例的意義。所以,無(wú)論是正比例關(guān)系,還是反比例關(guān)系中,兩個(gè)變量x和y以及常量k都不能為0。
    因此,當(dāng)正比例或反比例關(guān)系中其中一個(gè)變量用字母表示時(shí),要求我們通過討論確定另一個(gè)變量的取值范圍的時(shí)候,我們就要注意正比例或反比例關(guān)系中兩個(gè)變量的取值絕對(duì)不能為零,否則,就失去意義了。
    【參考文獻(xiàn)】。
    1.盧江、楊剛主編,義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書小學(xué)六年級(jí)《數(shù)學(xué)》下冊(cè)[s],人民教育出版社出版。
    2.謝鼓平主編,小學(xué)六年級(jí)數(shù)學(xué)《教案與設(shè)計(jì)》[s],新疆青少年出版社出版。
    3.《貴州教育》[j]第3-4期合訂本第65頁(yè)中《小學(xué)數(shù)學(xué)畢業(yè)復(fù)習(xí)建議》(王艷)。