最新高中高一數(shù)學(xué)教案(優(yōu)質(zhì)21篇)

字號:

    教案能夠幫助教師提前預(yù)測學(xué)生可能遇到的問題,并制定相應(yīng)的解決方案。編寫一個(gè)完整的教案需要考慮教學(xué)方法和策略的運(yùn)用。以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
    高中高一數(shù)學(xué)教案篇一
    教學(xué)目的:
    (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法。
    (2)使學(xué)生初步了解“屬于”關(guān)系的意義。
    (3)使學(xué)生初步了解有限集、無限集、空集的意義。
    教學(xué)重點(diǎn):集合的基本概念及表示方法。
    教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示。
    一些簡單的集合。
    授課類型:新授課。
    課時(shí)安排:1課時(shí)。
    教具:多媒體、實(shí)物投影儀。
    內(nèi)容分析:
    高中高一數(shù)學(xué)教案篇二
    使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
    1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
    2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
    3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
    4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
    5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
    我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
    1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
    2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
    4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
    1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。
    2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
    3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
    兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
    1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
    2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學(xué)生思考。
    3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
    4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
    5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
    6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
    俗話說的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。
    總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!
    高中高一數(shù)學(xué)教案篇三
    一、指導(dǎo)思想:
    使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
    1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
    2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
    高一下學(xué)期數(shù)學(xué)教學(xué)計(jì)劃3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
    4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
    5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
    6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
    二、
    我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
    1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
    2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
    4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的.素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
    1)選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。
    2)通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
    3)在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
    1、基本情況:12班共66人,男生22人,女生44人;本班相對而言,數(shù)學(xué)尖子約3人,中上等生約10人,中等生約11人,中下生約20人,后進(jìn)生約12人。13班共59人,男生39人,女生20人;本班相對而言,數(shù)學(xué)尖子約12人,中上等生約12人,中等生約21人,中下生約7人,后進(jìn)生約7人。
    2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
    a)激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
    b)注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
    c)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
    d)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
    e)自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
    高中高一數(shù)學(xué)教案篇四
    (1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
    (2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
    (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
    (4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
    (1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
    (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
    (1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
    (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
    重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。
    (1)學(xué)法:觀察、思考、交流、討論、概括。
    (2)實(shí)物模型、投影儀四、教學(xué)思路。
    1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時(shí)給予評價(jià)。
    2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
    1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
    3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
    (1)有兩個(gè)面互相平行;
    (2)其余各面都是平行四邊形;
    (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
    5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
    6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
    7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
    8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
    9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
    1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
    2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
    3、課本p8,習(xí)題1.1a組第1題。
    5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
    由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
    課本p8練習(xí)題1.1b組第1題。
    課外練習(xí)課本p8習(xí)題1.1b組第2題。
    高中高一數(shù)學(xué)教案篇五
    2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。
    3會用代數(shù)方法求等函數(shù)的周期。
    4理解周期性的幾何意義。
    “周期函數(shù)的概念”,周期的求解。
    1、是周期函數(shù)是指對定義域中所有都有,即應(yīng)是恒等式。
    2、周期函數(shù)一定會有周期,但不一定存在最小正周期。
    例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示。
    (1)求該函數(shù)的周期;
    (2)求時(shí)鐘擺的高度。
    例2、求下列函數(shù)的周期。
    (1)(2)。
    總結(jié):(1)函數(shù)(其中均為常數(shù),且的周期t=xx)。
    (2)函數(shù)(其中均為常數(shù),且的周期t=xx)。
    例3、求證:的周期為。
    且
    總結(jié):函數(shù)(其中均為常數(shù),且的周期t=。
    例5、(1)求的周期。
    (2)已知滿足,求證:是周期函數(shù)。
    課后思考:能否利用單位圓作函數(shù)的圖象。
    高中高一數(shù)學(xué)教案篇六
    數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
    三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
    本節(jié)課的授課對象是本校高一(x)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
    (1)基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
    (4)個(gè)性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
    1、教學(xué)重點(diǎn):理解并掌握誘導(dǎo)公式。
    2、教學(xué)難點(diǎn):正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
    “授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析。
    數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。
    在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
    “現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點(diǎn),卻忽略了學(xué)生接受知識需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題。
    在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。
    本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
    高中高一數(shù)學(xué)教案篇七
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    一、知識歸納
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    二、例題討論
    一)利用方向角構(gòu)造三角形
    四)測量角度問題
    例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測站a.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
    高中高一數(shù)學(xué)教案篇八
    本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計(jì)算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
    本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.
    教法建議
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導(dǎo)學(xué)生猜想出
    (2)從算術(shù)平方根的意義引入.
    2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
    (1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
    (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
    (第1課時(shí))
    1.掌握二次根式的性質(zhì)
    2.能夠利用二次根式的性質(zhì)化簡二次根式
    3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
    對比、歸納、總結(jié)
    1.重點(diǎn):理解并掌握二次根式的性質(zhì)
    2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
    1課時(shí)
    五、教b具學(xué)具準(zhǔn)備
    投影儀、膠片、多媒體
    復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主
    一、導(dǎo)入新課
    我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
    問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
    二、新課
    計(jì)算下列各題,并回答以下問題:
    (1);(2);(3);
    1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
    3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
    高中高一數(shù)學(xué)教案篇九
    1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
    (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
    (2)能從數(shù)和形兩個(gè)角度認(rèn)識單調(diào)性和奇偶性.
    (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
    2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
    3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
    (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
    (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
    (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
    (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
    (1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.
    (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
    函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
    高中高一數(shù)學(xué)教案篇十
    (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;。
    (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;。
    (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;。
    (5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;。
    (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
    二、教學(xué)重點(diǎn)難點(diǎn):
    重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.
    三、教學(xué)過程。
    1.新課導(dǎo)入。
    在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實(shí),同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
    初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)。
    學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學(xué)議論結(jié)果,答案是肯定的.)。
    教師提問:什么是命題?
    (學(xué)生進(jìn)行回憶、思考.)。
    概念總結(jié):對一件事情作出了判斷的語句叫做命題.
    (教師肯定了同學(xué)的回答,并作板書.)。
    由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
    (教師利用投__,和學(xué)生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
    初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.
    2.講授新課。
    (片刻后請同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.
    判斷一個(gè)語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如中含有變量,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
    (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
    “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
    對“或”的理解,可聯(lián)想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一個(gè)是成立的,即且;也可以且;也可以且.這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
    對“且”的理解,可聯(lián)想到集合中“交集”的概念.中的“且”,是指“”、“這兩個(gè)條件都要滿足的意思.
    對“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題對應(yīng)于集合,則命題非就對應(yīng)著集合在全集中的補(bǔ)集.
    命題可分為簡單命題和復(fù)合命題.
    不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
    由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
    (4)命題的表示:用,,,,……來表示.
    (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
    我們接觸的復(fù)合命題一般有“或”、“且”、“非”、“若則”等形式.
    給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
    對于給出“若則”形式的復(fù)合命題,應(yīng)能找到條件和結(jié)論.
    在判斷一個(gè)命題是簡單命題還是復(fù)合命題時(shí),不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
    3.鞏固新課。
    例2判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
    (1);。
    (2)0.5非整數(shù);。
    (3)內(nèi)錯角相等,兩直線平行;。
    (4)菱形的對角線互相垂直且平分;。
    (5)平行線不相交;。
    (6)若,則.
    (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
    例3寫出下表中各給定語的否定語(用課件打出來).
    若給定語為。
    等于。
    大于。
    是
    都是。
    至多有一個(gè)。
    至少有一個(gè)。
    至多有#formatimgid_0#個(gè)。
    其否定語分別為。
    分析:“等于”的否定語是“不等于”;。
    “大于”的否定語是“小于或者等于”;。
    “是”的否定語是“不是”;。
    “都是”的否定語是“不都是”;。
    “至多有一個(gè)”的否定語是“至少有兩個(gè)”;。
    “至少有一個(gè)”的否定語是“一個(gè)都沒有”;。
    “至多有個(gè)”的否定語是“至少有個(gè)”.
    (如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)。
    置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開.)。
    4.課堂練習(xí):第26頁練習(xí)1,2.
    5.課外作業(yè):第29頁習(xí)題1.61,2.
    高中高一數(shù)學(xué)教案篇十一
    (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.。
    重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.。
    1.新課導(dǎo)入。
    初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)。
    學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學(xué)議論結(jié)果,答案是肯定的.)。
    教師提問:什么是命題?
    (學(xué)生進(jìn)行回憶、思考.)。
    概念總結(jié):對一件事情作出了判斷的語句叫做命題.。
    (教師肯定了同學(xué)的回答,并作板書.)。
    (教師利用投影片,和學(xué)生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    2.講授新課。
    (片刻后請同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.。
    (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
    命題可分為簡單命題和復(fù)合命題.。
    (4)命題的表示:用p,q,r,s,……來表示.。
    (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
    對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
    3.鞏固新課。
    (1)5;
    (2)0.5非整數(shù);
    (3)內(nèi)錯角相等,兩直線平行;
    (4)菱形的對角線互相垂直且平分;
    (5)平行線不相交;
    (6)若ab=0,則a=0.。
    (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
    高中高一數(shù)學(xué)教案篇十二
    所謂三維目標(biāo)是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
    知識與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價(jià)、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
    過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識與能力目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
    情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動力系統(tǒng)?!扒楦小B(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識與能力、過程與方法目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會。
    三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
    高中高一數(shù)學(xué)教案篇十三
    2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
    3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
    3、雙曲線的漸進(jìn)線方程為、
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
    練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
    (1)過點(diǎn),離心率、
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
    4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
    將本文的word文檔下載到電腦,方便收藏和打印。
    高中高一數(shù)學(xué)教案篇十四
    3.能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
    一、預(yù)習(xí)檢查。
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
    3、雙曲線的漸進(jìn)線方程為.
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
    二、問題探究。
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
    練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
    (1)過點(diǎn),離心率.
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
    例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
    三、思維訓(xùn)練。
    1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
    4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
    四、知識鞏固。
    1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
    2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
    3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
    4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    高中高一數(shù)學(xué)教案篇十五
    教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
    教學(xué)過程:
    一、閱讀下列語句:
    1)全體自然數(shù)0,1,2,3,4,5,
    2)代數(shù)式.
    3)拋物線上所有的點(diǎn)。
    4)今年本校高一(1)(或(2))班的全體學(xué)生。
    5)本校實(shí)驗(yàn)室的所有天平。
    6)本班級全體高個(gè)子同學(xué)。
    7)著名的科學(xué)家。
    上述每組語句所描述的對象是否是確定的?
    二、1)集合:
    2)集合的元素:
    3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。
    三、集合中元素的'三個(gè)性質(zhì):
    四、元素與集合的關(guān)系:1)____________2)____________。
    五、特殊數(shù)集專用記號:
    4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。
    六、集合的表示方法:
    1)。
    2)。
    3)。
    七、例題講解:
    例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長,那么此三角形一定不是()。
    a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
    例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?
    1)地球上的四大洋構(gòu)成的集合;。
    2)函數(shù)的全體值的集合;。
    3)函數(shù)的全體自變量的集合;。
    4)方程組解的集合;。
    5)方程解的集合;。
    6)不等式的解的集合;。
    7)所有大于0且小于10的奇數(shù)組成的集合;。
    8)所有正偶數(shù)組成的集合;。
    例3、用符號或填空:
    1)______q,0_____n,_____z,0_____。
    2)______,_____。
    3)3_____,
    4)設(shè),,則。
    例4、用列舉法表示下列集合;。
    1.
    2.
    3.
    4.
    例5、用描述法表示下列集合。
    1.所有被3整除的數(shù)。
    2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。
    課堂練習(xí):。
    例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
    思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
    小結(jié):
    作業(yè)班級姓名學(xué)號。
    1.下列集合中,表示同一個(gè)集合的是()。
    a.m=,n=b.m=,n=。
    c.m=,n=d.m=,n=。
    2.m=,x=,y=,,.則()。
    a.b.c.d.
    3.方程組的解集是____________________.
    4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號是________________.
    5.設(shè)集合a=,b=,
    c=,d=,e=。
    其中有限集的個(gè)數(shù)是____________.
    6.設(shè),則集合中所有元素的和為。
    7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。
    8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
    若a=,試用列舉法表示集合b=。
    9.把下列集合用另一種方法表示出來:
    (1)(2)。
    (3)(4)。
    10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
    11.已知集合a=。
    (1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。
    (2)若a中至多只有一個(gè)元素,求a的取值集合。
    12.若-3,求實(shí)數(shù)a的值。
    【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
    高中高一數(shù)學(xué)教案篇十六
    學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對您有所幫助!
    1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
    (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
    (2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
    (3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
    2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
    3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
    (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
    (2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
    (3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
    (4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
    (5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
    (6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的.
    上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
    高中高一數(shù)學(xué)教案篇十七
    三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
    通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
    以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
    借助單位圓探究誘導(dǎo)公式。
    能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
    誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
    誘導(dǎo)公式的應(yīng)用。
    多媒體。
    1. 誘導(dǎo)公式(一)(二)。
    2. 角 (終邊在一條直線上)
    3. 思考:下列一組角有什么特征?( )能否用式子來表示?
    已知 由
    可知
    而 (課件演示,學(xué)生發(fā)現(xiàn))
    所以
    于是可得: (三)
    設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
    由公式(一)(三)可以看出,角 角 相等。即:
    .
    公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
    設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
    1. 練習(xí)
    (1)
    設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
    (學(xué)生板演,老師點(diǎn)評,用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
    例3:求下列各三角函數(shù)值:
    (1)
    (2)
    (3)
    (4)
    設(shè)計(jì)意圖:利用公式解決問題。
    練習(xí):
    (1)
    (2) (學(xué)生板演,師生點(diǎn)評)
    設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。
    四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
    很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
    1.要認(rèn)真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點(diǎn)把握要到位
    2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正
    3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
    5.上課的生動化,形象化需要加強(qiáng)
    1.評議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
    2.評議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
    3.評議者:學(xué)科網(wǎng)絡(luò)平臺的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。
    4.評議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。
    建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。
    ( 1)給學(xué)生思考的時(shí)間較長,語調(diào)相對平緩,總結(jié)時(shí),給學(xué)生一些激勵的語言更好
    ( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考
    ( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來
    ( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對是比較快的3.練習(xí)量比較少
    ( 6)讓學(xué)生多探究,課堂會更熱鬧
    ( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
    ( 8)教學(xué)模式相對簡單重復(fù)
    ( 9)思路較為清晰,規(guī)范化的推理
    高中高一數(shù)學(xué)教案篇十八
    1、掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)。
    2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
    3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
    3、雙曲線的漸進(jìn)線方程為、
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
    (1)過點(diǎn),離心率、
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
    高中高一數(shù)學(xué)教案篇十九
    掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。
    (一)主要知識:
    1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的`有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略。
    1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識解決有關(guān)應(yīng)用問題,
    2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
    高中高一數(shù)學(xué)教案篇二十
    (2)理解任意角的三角函數(shù)不同的定義方法;。
    (4)掌握并能初步運(yùn)用公式一;。
    (5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
    初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
    任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.
    本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
    教學(xué)重難點(diǎn)。
    重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
    難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
    高中高一數(shù)學(xué)教案篇二十一
    了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。
    漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。
    2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
    3、經(jīng)過兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。
    4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。
    5、與雙曲線有公共的漸近線,且經(jīng)過點(diǎn)的雙曲線的方程為
    1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。
    2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無關(guān)的定值,試對雙曲線寫出具有類似特性的性質(zhì),并加以證明。
    3、設(shè)雙曲線的半焦距為,直線過兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。
    1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。
    2、與雙曲線有共同的漸近線,且經(jīng)過點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。
    3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是
    4、過雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。
    1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率
    2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。
    3、雙曲線的焦距為
    4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則
    5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為。