教案包括了教學目標的設定、教學流程的規(guī)劃以及教學評價等內(nèi)容。教案的編寫需要關(guān)注學生的個體差異,提供不同層次的學習任務。通過觀摩他人的教案,可以幫助我們提高編寫教案的能力。
分數(shù)應用題教案篇一
(二)使學生進一步學會用線段圖表示已知條件和問題.。
(三)提高學生分析能力.。
教學重點和難點。
用線段圖幫助理解題意,分析數(shù)量關(guān)系,掌握解題思路既是重點,又是難點.。
教學過程設計。
(一)復習準備。
1.板演:
華山小學三年級栽樹56棵,四年級栽的樹是三年級的2倍.三、四年級一共栽樹多少棵?
2.全班同學根據(jù)線段圖提問題.。
先編題,再列式.。
(1)一步計算的應用題.。
有籃球20個,排球是籃球的3倍.有排球多少個?
20×3=60(個)。
(2)兩步計算的應用題.。
有籃球20個,排球是籃球的3倍.籃球比排球多多少個?
20×3-20=40(個)。
有籃球20個,排球是籃球的3倍,籃球、排球共有多少個?
20×3+20=80(個)。
編題后把問題在線段圖上表示出來.。
訂正板演題時要說出解題思路.。
(二)學習新課。
1.新課引入.。
把復習題增加一個條件,即“五年級栽的比三、四年級栽的總數(shù)少10棵”,把問題改成“五年級栽樹多少棵”,像這樣的問題這就是我們今天要研究的.(板書:應用題)。
2.出示例5.。
(1)讀題,理解題意.讀出已知條件和問題,并和復習題比較有什么地方不同。
(2)引導學生用線段圖表示題中的條件和問題.。
三年級栽56棵四年級栽的是三年級的'2倍。
五年級栽?棵10棵。
(3)學生獨立思考,試算.。
(4)集體討論、互相交流,說思路.。
(求五年級栽樹多少棵,必須知道三、四年級栽多少棵.三年級栽樹的棵數(shù)已經(jīng)知道,四年級栽樹棵數(shù)沒直接告訴,所以先求四年級栽多少棵,算式為56×2=112(棵),再求三、四年級的總數(shù),算式為56+112=168(棵).因為五年級栽的棵數(shù)比三、四年級栽的總數(shù)少10棵,所以最后用總數(shù)減去10棵:168-10=158(棵))。
隨著學生的回答,板書:
(1)四年級栽多少棵?
56×2=112(棵)。
(2)三、四年級共栽多少棵?
56+112=168(棵)。
(3)五年級栽多少棵?
168-10=158(棵)。
答:五年級栽158棵.。
還有不同的想法嗎?
(用三、四年級栽的總數(shù)加10棵,168+10=178(棵).)。
(5)求三、四年級栽樹的總數(shù)還有別的比較簡便的方法嗎?
(四年級栽的是三年級栽的2倍,三年級栽的是1倍數(shù),四年級栽的是2倍數(shù),三、四年級栽的總數(shù)是2+1=3倍數(shù):56×(2+1)=168(棵),然后再加上10棵,就是五年級栽的棵數(shù):168+10=178(棵).)。
小結(jié)。
(三)鞏固反饋。
1先畫圖,再解答.。
2.看圖解答.。
3.條件有變化、先討論、獨立解答,再集體交流.。
(四)全課總結(jié)。
引導學生說出怎樣分析應用題的數(shù)量關(guān)系.。
(五)作業(yè)。
練習五第1~3題.。
課堂教學設計說明。
本節(jié)課三步應用題是在學生學過的有關(guān)倍數(shù)的兩步應用題的基礎上發(fā)展的,兩步應用題增加一個條件,改變其問題,就是三步應用題.本節(jié)課仍以思路教學為重點,通過畫線段圖,學會分析數(shù)量關(guān)系,以掌握解題思路,提高分析問題的能力.本節(jié)課著重體現(xiàn)以下幾個方面:
板書設計。
分數(shù)應用題教案篇二
明它們的思路,會按照題目的具體情況選擇簡便的解答。
方法,能應用所學的知識解決生活中的一些簡單的實際。
問題。
2、知道百分數(shù)在實際中的應用,并會解答有關(guān)的實際問題。
[重點、難點]。
1、正確判斷作為單位“1”的量是學習的重點。
3、在發(fā)芽率的公式中為什么要乘以100%是學習的難點。
4、在工程問題中,用“1”表示工作總量,用單位時間。
內(nèi)完成工作總量的幾分之幾表示工作效率,是學習。
的難點。
5、有條理地說明解題思路是學習的難點。
第一課時:10、30。
一、復習分數(shù)乘法的意義。
一個數(shù)乘以分數(shù)就是求這個數(shù)的幾分之幾。
如:
二、要解決的`問題。
1、求一個數(shù)的幾分之幾(百分之幾)。
2、已知一個數(shù)的幾分之幾,求這個數(shù)。
如:(1)15的是多少?
(2)已知一個數(shù)的是12,這個數(shù)是多少?
三、應用。
例1、一條公路長2400米,已修了全長的,還剩。
下多少米?
分析:根據(jù)題意,已修了全長的,是把全長(2400米)看作“單位1”,未修的路程是全長的(1-),要求還剩下多少米就是求2400米的(1-)是多少。
答:還剩下960米。
例2、修路隊要修一條公路,已修了1440米,正好占。
全長的,還要修多少米?
分析:已修的正好占全長的,是把全長看作“單位1”,
答:還要修960米才完成任務。
練習:分課時總復習p98ex1:5、6、7、8。
p98ex2、ex4。
作業(yè):p99ex6:1、2。
分數(shù)應用題教案篇三
1.成數(shù)的含義。
師述:什么是成數(shù)呢?“幾成”就是十分之幾,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之(),改寫成百分數(shù)是()。
“三成五”是十分之(),改寫成百分數(shù)是()。
(2)把下面的“成數(shù)”改寫成百分數(shù)。
七成二成五五成九成九。
十成二成八七成四八成二。
2.出示例1。
(1)學生默讀。
(2)這道題和復習中的第三題有什么不同之處?
(3)指名學生說解題思路。
師述:在列式計算時,我們可以直接把“成數(shù)”化成百分數(shù),用百分數(shù)進行列式計算。
板書:
=41.6×(1+25%)。
=41.6×1.25。
=52(噸)。
答:今年收白菜52噸。
3.練習。
4.折扣的含義。
師述:工廠和商店為了推銷商品,有時將商品減價百分之幾銷售,這就是平常說的打“折扣”銷售。
某種商品打“八折”出售,就是按原價的80%出售,也就是減價20%。打五折出售,就是按原價的()%出售,也就是減價()%。
5.出示例2。
例2商店出售一種錄音機,原價330元?,F(xiàn)在打九折出售,比原價便宜了多少元?
(1)學生讀題。
(2)問:打九折出售是什么意思?
(3)求比原價便宜了多少元?你想怎樣解答?
(4)指名說解題思路。
板書:方法(一)330-330×90%。
=330-297。
=33(元)。
方法(二)330×(1-90%)。
=330×10%。
=33(元)。
答:比原價便宜了33元。
6.課堂小結(jié)。
今天我們學習了哪些知識?
師述:今天我們學習了有關(guān)“成數(shù)”和“折扣”的知識,知道了“成數(shù)”和“折扣”的含義,以及“成數(shù)”和“折扣”與分數(shù)和百分數(shù)之間的關(guān)系,并且學習了有關(guān)“成數(shù)”和“折扣”的一些實際的、簡單的應用題。
(三)鞏固反饋。
1.填空:
(1)某縣今年棉花產(chǎn)量比去年增產(chǎn)三成。這句話的意思是()是()的30%。
(2)一塊麥地,改用新品種后,產(chǎn)量增加了四成五。這句話的意思是改用新品種后產(chǎn)量是()的'()%。
(3)一種皮茄克打九折出售。這句話的意思是()是()的90%。
(4)一批舊書打五五折出售。這句話的意思是現(xiàn)價比()便宜了()%。
2.把下面的折扣數(shù)改寫成百分數(shù)。
七折九折六五折八五折六八折。
3.把下面的百分數(shù)改寫成“成數(shù)”。
75%60%42%100%95%。
6.一種畫冊原價每本6.9元,現(xiàn)在按每本4.83元出售。這種畫冊按原價打了幾折?
課堂教學設計說明。
本節(jié)課從概念入手,并和原來學習的百分數(shù)應用題進行比較,學生易于找到突破口,便于學生理解、掌握本節(jié)課的重點和難點。通過和百分數(shù)應用題的比較,加深了學生對百分數(shù)應用題的理解和掌握,培養(yǎng)了學生分析能力。另外,課本上出現(xiàn)了大量生活中的實例,使學生體會到百分數(shù)就在我們身邊,學好百分數(shù)應用題,能解決大量實際問題,從而提高了學生學習百分數(shù)應用題的興趣。
板書設計。
分數(shù)應用題教案篇四
1.成數(shù)的含義。
師述:什么是成數(shù)呢?“幾成”就是十分之幾,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之(),改寫成百分數(shù)是()。
“三成五”是十分之(),改寫成百分數(shù)是()。
(2)把下面的“成數(shù)”改寫成百分數(shù)。
七成二成五五成九成九。
十成二成八七成四八成二。
2.出示例1。
(1)學生默讀。
(2)這道題和復習中的第三題有什么不同之處?
(3)指名學生說解題思路。
師述:在列式計算時,我們可以直接把“成數(shù)”化成百分數(shù),用百分數(shù)進行列式計算。
板書:
=41.6×(1+25%)。
=41.6×1.25。
=52(噸)。
答:今年收白菜52噸。
3.練習。
4.折扣的含義。
師述:工廠和商店為了推銷商品,有時將商品減價百分之幾銷售,這就是平常說的打“折扣”銷售。
某種商品打“八折”出售,就是按原價的80%出售,也就是減價20%。打五折出售,就是按原價的()%出售,也就是減價()%。
5.出示例2。
例2商店出售一種錄音機,原價330元?,F(xiàn)在打九折出售,比原價便宜了多少元?
(1)學生讀題。
(2)問:打九折出售是什么意思?
(3)求比原價便宜了多少元?你想怎樣解答?
(4)指名說解題思路。
板書:方法(一)330-330×90%。
=330-297。
=33(元)。
方法(二)330×(1-90%)。
=330×10%。
=33(元)。
答:比原價便宜了33元。
6.課堂小結(jié)。
今天我們學習了哪些知識?
師述:今天我們學習了有關(guān)“成數(shù)”和“折扣”的知識,知道了“成數(shù)”和“折扣”的含義,以及“成數(shù)”和“折扣”與分數(shù)和百分數(shù)之間的關(guān)系,并且學習了有關(guān)“成數(shù)”和“折扣”的一些實際的、簡單的應用題。
(三)鞏固反饋。
1.填空:
(1)某縣今年棉花產(chǎn)量比去年增產(chǎn)三成。這句話的意思是()是()的30%。
(2)一塊麥地,改用新品種后,產(chǎn)量增加了四成五。這句話的意思是改用新品種后產(chǎn)量是()的'()%。
(3)一種皮茄克打九折出售。這句話的意思是()是()的90%。
(4)一批舊書打五五折出售。這句話的意思是現(xiàn)價比()便宜了()%。
2.把下面的折扣數(shù)改寫成百分數(shù)。
七折九折六五折八五折六八折。
3.把下面的百分數(shù)改寫成“成數(shù)”。
75%60%42%100%95%。
6.一種畫冊原價每本6.9元,現(xiàn)在按每本4.83元出售。這種畫冊按原價打了幾折?
課堂教學設計說明。
本節(jié)課從概念入手,并和原來學習的百分數(shù)應用題進行比較,學生易于找到突破口,便于學生理解、掌握本節(jié)課的重點和難點。通過和百分數(shù)應用題的比較,加深了學生對百分數(shù)應用題的理解和掌握,培養(yǎng)了學生分析能力。另外,課本上出現(xiàn)了大量生活中的實例,使學生體會到百分數(shù)就在我們身邊,學好百分數(shù)應用題,能解決大量實際問題,從而提高了學生學習百分數(shù)應用題的興趣。
板書設計。
將本文的word文檔下載到電腦,方便收藏和打印。
分數(shù)應用題教案篇五
1.使學生了解儲蓄的意義和一些有關(guān)利息的初步知識,知道本金、利息和利率的含義,會利用利息的計算公式進行一些有關(guān)利息的簡單計算。
2.提高學生分析、解答應用題能力,培養(yǎng)認真審題的良好習慣。
教學重點和難點。
理解本金、利息和利率三者之間的關(guān)系及運用公式進行計算。
教學過程設計。
(一)復習準備。
2.六一班有男生25人,女生是男生的80%。女生有多少人?
板書:(105.22-100)÷100。
=5.22÷100。
=5.22%。
問:這道題敘述了一件什么事?
師述:今天我們就來研究有關(guān)儲蓄問題的應用題。
分數(shù)應用題教案篇六
1.使學生理解成數(shù)和折扣的含義,以及成數(shù)和折扣與分數(shù)、百分數(shù)之間的關(guān)系;會解答有關(guān)成數(shù)和折扣的應用題。
2.提高學生分析、解答應用題的能力,發(fā)展學生思維的靈活性。
教學重點和難點。
理解成數(shù)和折扣的含義;理解成數(shù)和折扣與分數(shù)、百分數(shù)的含義。
教學過程設計。
(一)復習準備。
1.把下列各數(shù)化成百分數(shù)。
2.李莊去年種小麥50公頃,今年種小麥60公頃。今年比去年多種小麥百分之幾?
師述:農(nóng)業(yè)收成,有時用成數(shù)來表示。今天我們就來學習有關(guān)成數(shù)和折扣的應用題。
分數(shù)應用題教案篇七
使學生進一步認識分數(shù)乘法應用題的基本數(shù)量關(guān)系,掌握解題思路和解題方法,提高分析推理和解決實際問題的能力。
分數(shù)乘法應用題的基本數(shù)量關(guān)系式,解題思路和解題方法。
教學過程設計
教學內(nèi)容:
師生活動
備注
一、復習
二、教學新課
二、 鞏固練習
三、小結(jié)
四、作業(yè)
1、解答應用題。
學校舞蹈隊有32人,合唱隊的人數(shù)是舞蹈隊的,合唱隊有多少人?
一人板演。這道題你是怎樣想的?
2、引入新課
1、教學例3
(1)讀題,說明條件和問題。
問:題里哪個月份的產(chǎn)量與呢個月份的比?要先畫哪個月份產(chǎn)量的線段?(畫線段圖)表示五月份產(chǎn)量的線段要怎樣畫?(畫線段圖)增加的臺數(shù)是哪個數(shù)量的1/5?要求什么問題?指的線段上那一部分?(在線段上表示)
(1)討論:這道題例哪個數(shù)量是單位1?為什么?哪個臺數(shù)是四月份臺數(shù)的1/5?
要求五月份比四月份增產(chǎn)多少臺可以怎樣想?
(學生看著線段圖,自己先試著說一說。)
指名學生口述。
(2)按照這樣想的過程,列式計算。
(3)小結(jié)。
2、教學試一試
解答這道題可以怎樣想?
學生練習。
問:數(shù)量關(guān)系式什么?為什么用原價乘就是降低的價錢?
從上面解題的過程可以看出,解題學習的應用題也和前一節(jié)課一樣,關(guān)鍵式先確定單位1的數(shù)量,接著要弄清與題里幾分之幾對應的式什么數(shù)量。這些數(shù)量之間的關(guān)系就是單位1的量乘幾分之幾就等于與它對應的數(shù)量。
1、練一練1
2、練習三7說出單位1的量
把數(shù)量關(guān)系填寫完整
3、練一練2
口述思考過程。提問有怎樣的數(shù)量關(guān)系。
4、練習三10
口答算式和結(jié)果。
為什么用求棗子比栗子多的噸數(shù)?
5、練習三12
練習三8、9、10
板書:單位1的量幾分之幾=對應數(shù)量
充分借助線段圖使學生理解此類應用題也是在求一個數(shù)的幾分之幾是多少?個別同學要加小灶.
分數(shù)應用題教案篇八
1.使學生了解一些有關(guān)保險的簡單知識,知道保險金額、保險費率和保險費的含義,會根據(jù)保險費的計算公式進行簡單的計算。
2.介紹一些有關(guān)稅收的知識,向?qū)W生進行公民應依法納稅的教育。
3.提高學生分析、解答應用題的能力,發(fā)展學生思維的靈活性。
教學重點和難點。
理解保險金額、保險費率和保險費三者之間的關(guān)系。
教學過程設計。
(一)復習準備。
1.甲數(shù)是12,乙數(shù)是15。甲數(shù)是乙數(shù)的百分之幾?乙數(shù)是甲數(shù)的百分之幾?
2.甲數(shù)是120,它的75%是多少?
3.()與()的'比率叫做利率。
4.利息=()×()×()。
師述:前幾天我們學習了有關(guān)儲蓄的知識,今天我們來學習有關(guān)保險和稅收的知識。
分數(shù)應用題教案篇九
1.進一步掌握的數(shù)量關(guān)系.
2.學會用一個數(shù)乘分數(shù)的意義解答兩步.
重點。
1.掌握兩步分數(shù)應用題的解題思路和方法.
難點。
分析兩次單位“1”的不同之處.
過程。
一、復習、質(zhì)疑、引新。
(一)指出下面分率句中的單位“1”.
1.乙是甲的。
2.小紅的身高是小明的。
3.參加合唱隊的同學占全班同學的。
4.乙的相當于甲。
5.1個籃球的價錢是一個排球價錢的倍。
(二)口頭分析并列式解答。
1.小亮的儲蓄箱中有18元,小華儲蓄的錢是小亮的,小華儲蓄了多少元?
2.小華儲蓄了15元,小新儲蓄的是小華的,小新儲蓄了多少元?
(三)引新:剛才復習的兩個題,同學們完成的很好,現(xiàn)在將這兩個小題,組成一道題,你還會解答嗎?這就是本節(jié)課要學習的新內(nèi)容.
二、探索、悟理。
(一)出示組編的例題。
1.思考討論。
(1)小華儲蓄的錢是小亮的,是什么意思?誰是單位“1”?
(2)小新儲蓄的是小華的,又是什么意思?誰是單位“1”?
2.匯報思路講方法。
根據(jù)“小華儲蓄的錢是小亮的”,把小亮的錢看作單位“1”,可以求出小華儲蓄的錢:.根據(jù)“小新儲蓄的是小華的”,把小華的錢看作單位“1”,再標出小新的儲蓄錢:.
由此基礎上試列綜合算式:
(二)鞏固練習。
1.分析數(shù)量關(guān)系,獨立畫圖并列式解答.
2.學生板演.
(張)。
(張)。
答:小明有40張.
3.綜合算式。
三、歸納、明理。
用連乘解答的題有什么特點?”“解題思路是什么?”
1.認真讀題弄清條件和問題。
2.確定單位“1”找準數(shù)量關(guān)系。
根據(jù)分數(shù)乘法的意義,找準“量”、“率”對應關(guān)系,即誰是誰的幾分之幾.
3.列式解答。
:抓住分率句,找準單位“1”,
畫圖來分析,列式不用急.
四、訓練、深化。
(一)聯(lián)想練習根據(jù)下面的每句話,你能想到什么?
1.蘋果的個數(shù)是梨的.(如,梨是單位“1”;蘋果少,梨多;蘋果比梨少等)。
2.修了全長的。
3.現(xiàn)在的售價比原來降低了。
(二)先口頭分析數(shù)量關(guān)系,再列式解答.
(三)提高題.
五、課后作業(yè)?。
六、設計。
點評:
解答分數(shù)應用題的關(guān)鍵是弄清題中的數(shù)量關(guān)系,誰和誰比,把誰看作單位“1”,求的是誰的幾分之幾。這也正是課堂的重點和難點,是學生分析能力的體現(xiàn)。是我們課堂的叫目標之一。
這節(jié)課是分數(shù)應用題的第二節(jié)。學生已具備初步分析已知和找單位“1”的能力,但是增加了一個條件,并增加了一個數(shù)量。要利用已有的分析方法分步分析,才能化難為易,中采用小組合作的形式,發(fā)揮集體的智慧,在共同討論中理解已知條件,有利于學生排除思維障礙。再配以線段圖加深強化學生理解題意,以實現(xiàn)舊知識向新知識的遷移和飛躍。練習的設計,由易到難、變換條件,有助于學生靈活分析,防止定勢。
分數(shù)應用題教案篇十
年的百分之幾?(百分號前面保留一位小數(shù))。
3、白沙縣計劃造林20公頃,實際造林比計劃多5公頃,實際造林比計劃多百分之幾?
4、樂華收錄機現(xiàn)在每臺售價120元,比原來降低40元。降低了百分之幾?
5、一項工程,甲隊獨做4小時完成,乙隊獨做6小時完成。兩隊合做,需要幾小時完成?
分數(shù)應用題教案篇十一
列:
答:兄弟四人一共帶了元錢。
列:
答:分給甲元,分給乙元.。
列:
答:現(xiàn)在箱子里有個白球。
列:
答:白子占全部棋子的/()。
列:
答:共有筐荔枝。
列:
答:這所小學有男生人,女生人。
列:
答:問這塊合金含金克,含銀克。
列:
答:他們現(xiàn)在的年齡分別是,,。
列:
答:四只小猴共吃了個桃。
列:
答:那么參賽學生有人,獲獎學生有人。
分數(shù)應用題教案篇十二
1.進一步掌握的數(shù)量關(guān)系.
2.學會用一個數(shù)乘分數(shù)的意義解答兩步.
1.掌握兩步分數(shù)應用題的解題思路和方法.
分析兩次單位“1”的不同之處.
一、復習、質(zhì)疑、引新。
(一)指出下面分率句中的單位“1”.
1.乙是甲的。
2.小紅的身高是小明的。
3.參加合唱隊的同學占全班同學的。
4.乙的相當于甲。
5.1個籃球的價錢是一個排球價錢的倍。
(二)口頭分析并列式解答。
1.小亮的儲蓄箱中有18元,小華儲蓄的錢是小亮的,小華儲蓄了多少元?
2.小華儲蓄了15元,小新儲蓄的是小華的,小新儲蓄了多少元?
(三)引新:剛才復習的兩個題,同學們完成的很好,現(xiàn)在將這兩個小題,組成一道題,你還會解答嗎?這就是本節(jié)課要的新內(nèi)容.
二、探索、悟理。
(一)出示組編的例題。
1.思考討論。
(1)小華儲蓄的錢是小亮的,是什么意思?誰是單位“1”?
(2)小新儲蓄的是小華的,又是什么意思?誰是單位“1”?
2.匯報思路講方法。
根據(jù)“小華儲蓄的錢是小亮的”,把小亮的錢看作單位“1”,可以求出小華儲蓄的錢:.根據(jù)“小新儲蓄的是小華的”,把小華的錢看作單位“1”,再標出小新的儲蓄錢:.
由此基礎上試列綜合算式:
(二)鞏固練習。
1.分析數(shù)量關(guān)系,獨立畫圖并列式解答.
2.學生板演.
(張)。
(張)。
答:小明有40張.
3.綜合算式。
三、歸納、明理。
用連乘解答的題有什么特點?”“解題思路是什么?”
1.認真讀題弄清條件和問題。
2.確定單位“1”找準數(shù)量關(guān)系。
根據(jù)分數(shù)乘法的意義,找準“量”、“率”對應關(guān)系,即誰是誰的幾分之幾.
3.列式解答。
板書:抓住分率句,找準單位“1”,
畫圖來分析,列式不用急.
四、訓練、深化。
(一)聯(lián)想練習根據(jù)下面的每句話,你能想到什么?
1.蘋果的個數(shù)是梨的.(如,梨是單位“1”;蘋果少,梨多;蘋果比梨少等)。
2.修了全長的。
3.現(xiàn)在的售價比原來降低了。
(二)先口頭分析數(shù)量關(guān)系,再列式解答.
(三)提高題.
五、課后作業(yè)?。
六、
解答分數(shù)應用題的關(guān)鍵是弄清題中的數(shù)量關(guān)系,誰和誰比,把誰看作單位“1”,求的是誰的幾分之幾。這也正是課堂教學的重點和難點,是學生分析能力的體現(xiàn)。是我們課堂的叫目標之一。
這節(jié)課是分數(shù)應用題的第二節(jié)。學生已具備初步分析已知和找單位“1”的能力,但是增加了一個條件,并增加了一個數(shù)量。要利用已有的分析方法分步分析,才能化難為易,教學中采用小組合作的形式,發(fā)揮集體的智慧,在共同討論中理解已知條件,有利于學生排除思維障礙。教師再配以線段圖加深強生理解題意,以實現(xiàn)舊知識向新知識的遷移和飛躍。練習的設計,由易到難、變換條件,有助于學生靈活分析,防止定勢。
分數(shù)應用題教案篇十三
1.通過復習,使學生能夠掌握的數(shù)量關(guān)系,并能正確的解答.
2.通過復習,培養(yǎng)學生的分析能力以及綜合能力.
3.通過復習,培養(yǎng)學生認真、仔細的學習習慣.
重點。
通過復習,使學生能夠掌握的數(shù)量關(guān)系,并能正確的解答.
難點。
通過復習,使學生能夠掌握的數(shù)量關(guān)系,并且能夠數(shù)量、正確的解答.
過程。
一、復習準備.
老師這里有兩個數(shù),一個是6,另一個是3.你能夠用6與3提問并且進行回答嗎?
學生回答:
(1)3是6的幾分之幾?
(2)6是3的幾倍?
(3)3比6少幾分之幾?
(4)6比3多幾分之幾?
(5)6占6與3總和的幾分之幾?
(6)3是6與3差的幾倍?……。
談話導入??:今天我們就來復習.(:的復習)。
二、復習探討.
(一)例4.
學校舉辦的美術(shù)展覽中,有50幅水彩畫,80幅蠟筆畫.___________?
1.提問:根據(jù)已知條件,你都可以提出什么問題?并解答.
2.反饋:
(1)水彩畫和蠟筆畫共多少幅?
(2)水彩畫比筆畫少多少幅?
(3)蠟筆畫比水彩畫多幾分之幾?
(4)水彩畫比蠟筆畫少幾分之幾?
(5)水彩畫是蠟筆畫的幾分之幾?
(6)蠟筆畫是水彩畫的幾分之幾?
(7)……。
3.質(zhì)疑.
(1)5問和6問為什么解答方法不同?(單位1不同)。
(2)3問和4問的問題有什么不同?(單位1不同)。
(二)例題變式.
(1)學生獨立解答.
(2)學生討論兩道題的區(qū)別.
總結(jié):看來我們做時,需要認真審題并且在找準單位1的同時注意找準對應關(guān)系.
(三)深化.
如果題目中的分數(shù)發(fā)生了變化,我們還會解答嗎?
(1)學生獨立解答.
(2)學生討論兩道題的區(qū)別.
總結(jié):雖然與百在表現(xiàn)形式上不同,但是數(shù)量關(guān)系相同.同樣需要注意認真審題并且在找準單位1的同時注意找準對應關(guān)系.
三、鞏固反饋.
1.分析下面每個題的含義,然后列出文字表達式.
(1)今年的產(chǎn)量比去年的產(chǎn)量增加了百分之幾?
(2)實際用電比計劃節(jié)約了百分之幾?
(3)十月份的利潤比九月份的利潤超過了百分之幾?
(4)1999年的電視機價格比1998年降低了百分之幾?
(5)現(xiàn)在生產(chǎn)一個零件的時間比原來縮短了百分之幾?
(6)十一月份比十二月份超額完成了百分之幾?
2.列式不計算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
3.判斷并且說明理由.
男生比女生多20%,女生就比男生少20%.????????(??????)。
四、課堂總結(jié).
通過今天這堂課,你有什么收獲嗎?
五、課后作業(yè)?.
某體操隊有60名男隊員,
(1)女隊員比男隊員多,女隊員有多少名?
(2)男隊員比女隊員多,體操隊員共有多少名?
(3)女隊員比男隊員少,女隊員有多少名?
(4)男隊員比女隊員少,體操隊員共有多少名?
六、設計。
分數(shù)應用題教案篇十四
教學目標:。
1、使學生進一步理解分數(shù)的意義、分數(shù)與除法間的關(guān)系、分數(shù)的基本性質(zhì)、最大公因數(shù)與約分、最小公倍數(shù)與通分等知識。
2、在知識過程中進一步發(fā)展學生的數(shù)感,發(fā)展學生分析問題解決問題的能力。
3、引導學生通過對所學內(nèi)容的與反思,使學生學會條理化、系統(tǒng)化思考問題、問題。
教學設計:。
(一)談話導入。
師:這一單元我們對分數(shù)進行了較系統(tǒng)的學習,本節(jié)課讓我們一起把與分數(shù)有聯(lián)系的知識進行歸納,形成絡。
(二)知識形成脈絡。
1、以小組為單位,交流自己在課前好的有關(guān)分數(shù)這一單元學到的知識都有哪些?
2、(1)各小組代表將你們歸納的知識在全班交流,要求舉例進行說明,其余同學可根據(jù)情況進行補充。
絡圖如下:
3、根據(jù)歸納的知識絡圖,就某一部分知識提己的問題,你可以要求全班同學或某一位同不給予解答。
4、通過知識的和對問題的解答,在這一單元的學習中你都學會了哪些解決問題的策略?舉例說明。
(三)知識運用。
1、填空:
(1)出示題目:把4米長的繩子平均分成7段,每段占全長的(),每段長()米(要求先獨立完成,再集體反饋)。
師:你的答案是什么?你是怎樣想的?
生:每段占全長的1/7,每段長4/7米。我是這樣想的:求每段占全長的幾分之幾就是把全長4米看作單位“1”,把單位“1”平均分成7段,每段占1份也就是全長的4/7;每段長多少米,就是把4米平均分成7份,每份是4÷7=4/7(米)。
師:這兩個問題有什么區(qū)別?
生:求每段占全長的幾分之幾求的是一個分率,而求每段長多少米是求一個具體的量。他們的含義是不同的。
師:(強調(diào)指出)同學們在解題時一定要注意區(qū)分。
師:說說你的答案,在這里把誰看作單位“1”。
(學生練習后進行全班的交流)。
師:你們分別是用什么方法把這些題回答的這么棒呢?誰能把你的經(jīng)驗與大家共享一下?
生1:在做第一題時,首先判斷這是把整數(shù)化成分數(shù)的練習,需要運用分數(shù)的性質(zhì)知識,然后用已知分母乘整數(shù)的積作為分子或用已知分子除以整數(shù)的商作為分母。
生2:第二題也是應用分數(shù)的基本性質(zhì),在觀察分子、或者分母如何變化的情況下,再對相應分母或分子進行同樣的變化。
生3:第三題很簡單,就是用分子和分母的公因數(shù)分別同時除已知分數(shù)的分子和分母,最后把他們化成只有公因數(shù)1的最簡分數(shù)。
(設計說明:練習題的設計要力求緊扣重點、難點、層次清楚,形式多樣。在學生獨立試作后,應訂正。一旦發(fā)現(xiàn)錯誤,應讓本人或其他同學糾正,把錯誤消滅在萌芽之中,以有利于概念牢固掌握。)。
教學反思:。
單元:
分數(shù)應用題教案篇十五
教學內(nèi)容:
教學目標:
3、在“猜想——探索”的過程中,培養(yǎng)學生的猜想、觀察、分析、概括及表達能力和小組合作精神。
教學重點:讓學生充分經(jīng)歷“猜想——探索”的過程,使他們得出分數(shù)能否化成有限小數(shù)的規(guī)律。
教學難點:探究、理解一個分數(shù)能否化成有限小數(shù)。
教具學具:多媒體課件。
教學過程:
一、提出問題。
1、說出下列各數(shù)各有哪些不同的質(zhì)因數(shù)?
103512815214022125。
2、分數(shù)化成小數(shù),一般用什么方法?
3、提出問題。
(1)、動手操作。
同學們,我們已經(jīng)學習了分數(shù)化小數(shù)的方法??催@里有許多分數(shù)。媒體出示分數(shù):
媒體出示要求:(同桌合作)。
把分數(shù)化成小數(shù)(借助計算器)。
根據(jù)計算的結(jié)果分類。
(2)、反饋。
誰愿意來說一說通過計算,你們把這些分數(shù)分為幾類?
又是怎樣分的?
在學生回答后,媒體出示分得的結(jié)果。
能化成有限小數(shù)不能化成有限小數(shù)。
1/22/55/81/35/62/9。
7/104/253/409/148/157/30。
這節(jié)課我們就來研究能化成有限小數(shù)的分數(shù)的規(guī)律。
(板書課題:能化成有限小數(shù)的分數(shù)的規(guī)律)。
二、大膽猜想:
這兩個部分的分數(shù)有什么相同的地方?有什么不同的地方?
提出問題:仔細觀察這些分數(shù),你覺得一個分數(shù)能否化成有限小數(shù)與什么有關(guān)?
學生可能提出一下三條:
(1)一個分數(shù)能不能化成有限小數(shù)與分數(shù)的分子有關(guān)。
(2)一個分數(shù)能不能化成有限小數(shù)與分數(shù)的分母有關(guān)。
(3)一個分數(shù)能不能化成有限小數(shù)與分數(shù)的分子、分母都有關(guān)。
三、探索規(guī)律:
第一次探索:
1、提出問題:有的同學認為一個分數(shù)能不能化成有限小數(shù)與分子有關(guān)。你們怎樣認為?
2、反饋:你們怎樣認為?
學生舉例說明:1/2和1/3、2/5和2/9、5/8和5/6這三組分數(shù)每一組中分子相同,但是有的能化成有限小數(shù),有的不能化成有限小數(shù),所以一個分數(shù)能不能化成有限小數(shù)與分子無關(guān)。
根據(jù)學生回答:媒體閃動一下分數(shù)1/2和1/3、2/5和2/9、5/8和5/6,
小結(jié):我們可以從1/2和1/3、2/5和2/9、5/8和5/6看出:一個分數(shù)能不能化成有限小數(shù)與分子無關(guān)。
那么我提出的第三條:與分子分母都有關(guān),正確嗎?
第二次探索:
2、小組討論。
學生在小組討論中可能出現(xiàn)以下幾種情況:
(1)分母個位是0的分數(shù)都能化成有限小數(shù)。
(2)分母是分子倍數(shù)的分數(shù)能化成有限小數(shù)。
(3)分母是2和5的倍數(shù)的分數(shù)一定能化成有限小數(shù)。
(4)能化成有限小數(shù)的分數(shù)分母中只含有質(zhì)因數(shù)2和5。
3、在學生小組討論時,教師巡視并參與,引導學生運用舉例的方法進行推理。
(1)7/30分母個位是0的分數(shù)不能化成有限小數(shù)。
(2)有的同學認為:分母是2或5的倍數(shù)的分數(shù)能化成有限小數(shù)。
這個想法對嗎?為什么?
學生舉例說明:
5/8、7/10、4/25、3/40分母都是2或5的倍數(shù)能化成有限小數(shù);。
5/6、9/14、8/15、7/30分母都是2或5的倍數(shù)不能化成有限小數(shù)。
得出結(jié)論:“分母是2或5的倍數(shù)的分數(shù)一定能化成有限小數(shù)”是不正確的。
(4)反饋。
a、討論中引導學生把這些分數(shù)的分母分解質(zhì)因數(shù)。
反饋時,根據(jù)學生回答板書顯示:
5/82×2×25/62×3。
7/102×59/142×7。
4/255×58/153×5。
3/402×2×2×57/302×3×5。
引導學生得出結(jié)論:如果分母中除了2和5以外,不含有其他質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù)。
分母中含有2和5以外的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù)。
生自己找?guī)讉€分母中只含有質(zhì)因數(shù)2和5的分數(shù),來驗證自己的猜想。
出示:b、3/15中分母15分解質(zhì)因數(shù)15=3×5,分母中有質(zhì)因數(shù)3,但把他化成小數(shù)等于0.2是一個有限小數(shù)。
討論:這和我們剛才的結(jié)論不是矛盾了嗎?為什么?
通過討論得出:剛才我們討論的分數(shù)都是最簡分數(shù),3/15不是最簡分數(shù),但是化簡后等于1/5,分母中不含有2和5以外的質(zhì)因數(shù),所以能化成有限小數(shù)。
學生回答:這個分數(shù)必須是最簡分數(shù)才符合這個規(guī)律。
(5)這就是能化成有限小數(shù)的分數(shù)的規(guī)律,請大家看書,把這個規(guī)律填寫完整,并輕聲地讀兩遍。
三、運用規(guī)律。
1、根據(jù)剛才的發(fā)現(xiàn),想一想判斷一個分數(shù)能不能化成有限小數(shù)要先想什么?再想什么?同桌互相說一說。
哪位同學愿意來說一說。
學生回答:先想這個分數(shù)是不是最簡分數(shù)?再想分母中是否含有2和5以外的質(zhì)因數(shù)?
2、練一練。
判別下面各分數(shù),哪些能化成有限小數(shù),哪些不能化成有限小數(shù)?為什么?
3/2027/1815/84/1132/258/97/283/169/40。
29/1214/5。
小組討論:通過剛才的判斷,你又發(fā)現(xiàn)了什么?
學生回答:我們只要先看它是不是最簡分數(shù),再分析分母中質(zhì)因數(shù)的情況。
3、判斷題。
(1)一個分數(shù),如果分母中除了2和5以外,還含有其他的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。()。
(2)一個最簡分數(shù),如果分母中含有質(zhì)因數(shù)2和5,這個分數(shù)一定能化成有限小數(shù)。()。
(3)一個最簡分數(shù),如果分母有約數(shù)3,一定不能化成有限小數(shù)。()。
(4)一個最簡分數(shù),如果分母有約數(shù)7,一定不能化成有限小數(shù)。()。
第(1)(2)是錯誤的,要求學生說說是怎樣想的?怎樣說就對了。
四、課堂小結(jié)。
回顧一下,這節(jié)課我們探索了什么?你有那些收獲?
五、拓展延伸:
剛才我們探索得到了分數(shù)化小數(shù)時的一個規(guī)律。
其實在分數(shù)化小數(shù)時,還有許多規(guī)律。
觀察下列各式,按規(guī)律填空。
1/2=0.5(2)1/5=0.2(5)。
3/4=0.75(2×2)4/25=0.16(5×5)。
7/8=0.875(2×2×2)9/125=0.072(5×5×5)。
5/16能化成()位小數(shù)8/625能化成()位小數(shù)。
(2×2×2×2)(5×5×5×5)。
先獨立思考,再小組討論。
學生匯報時說出規(guī)律:分母中只有1個質(zhì)因數(shù)2(或5)化成一位小數(shù),只有2個質(zhì)因數(shù)(2或5)化成兩位小數(shù),……只有4個質(zhì)因數(shù)2(或5)所以能化成四位小數(shù)。
因為5/16分母中有4個質(zhì)因數(shù)2,所以它能化成四位小數(shù)。
因為8/125分母中有4個質(zhì)因數(shù)5,所以它能化成四位小數(shù)。
用計算器算一算對嗎?
學生通過計算器證明答案是正確的。
教師小結(jié):在數(shù)學王國中還有許許多多的規(guī)律,我們只要認真學習,不斷探索,一定能發(fā)現(xiàn)更多更有趣的規(guī)律。
分數(shù)應用題教案篇十六
九年義務教育六年制小學數(shù)學第十二冊課本第111~112頁例4。
1、知識與技能:理解和掌握求比一個數(shù)多(或少)幾分之幾的分數(shù)、百分數(shù)應用題基本數(shù)量關(guān)系與解題方法,比較熟練解答這類應用題,把它們的有關(guān)知識系統(tǒng)化。
2、過程與方法:使學生經(jīng)歷整理信息、利用信息的過程,發(fā)展學生的初步邏輯思維能力,能夠靈活地運用這些知識正確解答稍復雜的分數(shù)、百分數(shù)應用題。
3、情感態(tài)度與價值觀:培養(yǎng)學生認真審題和學會聯(lián)系實際的.良好學習習慣。讓學生感受到學習數(shù)學的快樂。
多媒體課件。
一、課前預習。
1、閱讀課本十二冊111頁~112頁的內(nèi)容。再看看其他冊課本有關(guān)分數(shù)、百分數(shù)的內(nèi)容。
2、在課本中,用自己喜歡的符號標出預習中不懂的地方。
3、提出預習中自己存在的問題,在課本相應的地方寫出來。
4、課前試練:111頁“做一做”。
二、學生提出預習中問題。
三、對學生預習中普遍存在的問題,教師給予講解。
四、變式訓練。
教師精點111頁“做一做”。
分數(shù)應用題教案篇一
(二)使學生進一步學會用線段圖表示已知條件和問題.。
(三)提高學生分析能力.。
教學重點和難點。
用線段圖幫助理解題意,分析數(shù)量關(guān)系,掌握解題思路既是重點,又是難點.。
教學過程設計。
(一)復習準備。
1.板演:
華山小學三年級栽樹56棵,四年級栽的樹是三年級的2倍.三、四年級一共栽樹多少棵?
2.全班同學根據(jù)線段圖提問題.。
先編題,再列式.。
(1)一步計算的應用題.。
有籃球20個,排球是籃球的3倍.有排球多少個?
20×3=60(個)。
(2)兩步計算的應用題.。
有籃球20個,排球是籃球的3倍.籃球比排球多多少個?
20×3-20=40(個)。
有籃球20個,排球是籃球的3倍,籃球、排球共有多少個?
20×3+20=80(個)。
編題后把問題在線段圖上表示出來.。
訂正板演題時要說出解題思路.。
(二)學習新課。
1.新課引入.。
把復習題增加一個條件,即“五年級栽的比三、四年級栽的總數(shù)少10棵”,把問題改成“五年級栽樹多少棵”,像這樣的問題這就是我們今天要研究的.(板書:應用題)。
2.出示例5.。
(1)讀題,理解題意.讀出已知條件和問題,并和復習題比較有什么地方不同。
(2)引導學生用線段圖表示題中的條件和問題.。
三年級栽56棵四年級栽的是三年級的'2倍。
五年級栽?棵10棵。
(3)學生獨立思考,試算.。
(4)集體討論、互相交流,說思路.。
(求五年級栽樹多少棵,必須知道三、四年級栽多少棵.三年級栽樹的棵數(shù)已經(jīng)知道,四年級栽樹棵數(shù)沒直接告訴,所以先求四年級栽多少棵,算式為56×2=112(棵),再求三、四年級的總數(shù),算式為56+112=168(棵).因為五年級栽的棵數(shù)比三、四年級栽的總數(shù)少10棵,所以最后用總數(shù)減去10棵:168-10=158(棵))。
隨著學生的回答,板書:
(1)四年級栽多少棵?
56×2=112(棵)。
(2)三、四年級共栽多少棵?
56+112=168(棵)。
(3)五年級栽多少棵?
168-10=158(棵)。
答:五年級栽158棵.。
還有不同的想法嗎?
(用三、四年級栽的總數(shù)加10棵,168+10=178(棵).)。
(5)求三、四年級栽樹的總數(shù)還有別的比較簡便的方法嗎?
(四年級栽的是三年級栽的2倍,三年級栽的是1倍數(shù),四年級栽的是2倍數(shù),三、四年級栽的總數(shù)是2+1=3倍數(shù):56×(2+1)=168(棵),然后再加上10棵,就是五年級栽的棵數(shù):168+10=178(棵).)。
小結(jié)。
(三)鞏固反饋。
1先畫圖,再解答.。
2.看圖解答.。
3.條件有變化、先討論、獨立解答,再集體交流.。
(四)全課總結(jié)。
引導學生說出怎樣分析應用題的數(shù)量關(guān)系.。
(五)作業(yè)。
練習五第1~3題.。
課堂教學設計說明。
本節(jié)課三步應用題是在學生學過的有關(guān)倍數(shù)的兩步應用題的基礎上發(fā)展的,兩步應用題增加一個條件,改變其問題,就是三步應用題.本節(jié)課仍以思路教學為重點,通過畫線段圖,學會分析數(shù)量關(guān)系,以掌握解題思路,提高分析問題的能力.本節(jié)課著重體現(xiàn)以下幾個方面:
板書設計。
分數(shù)應用題教案篇二
明它們的思路,會按照題目的具體情況選擇簡便的解答。
方法,能應用所學的知識解決生活中的一些簡單的實際。
問題。
2、知道百分數(shù)在實際中的應用,并會解答有關(guān)的實際問題。
[重點、難點]。
1、正確判斷作為單位“1”的量是學習的重點。
3、在發(fā)芽率的公式中為什么要乘以100%是學習的難點。
4、在工程問題中,用“1”表示工作總量,用單位時間。
內(nèi)完成工作總量的幾分之幾表示工作效率,是學習。
的難點。
5、有條理地說明解題思路是學習的難點。
第一課時:10、30。
一、復習分數(shù)乘法的意義。
一個數(shù)乘以分數(shù)就是求這個數(shù)的幾分之幾。
如:
二、要解決的`問題。
1、求一個數(shù)的幾分之幾(百分之幾)。
2、已知一個數(shù)的幾分之幾,求這個數(shù)。
如:(1)15的是多少?
(2)已知一個數(shù)的是12,這個數(shù)是多少?
三、應用。
例1、一條公路長2400米,已修了全長的,還剩。
下多少米?
分析:根據(jù)題意,已修了全長的,是把全長(2400米)看作“單位1”,未修的路程是全長的(1-),要求還剩下多少米就是求2400米的(1-)是多少。
答:還剩下960米。
例2、修路隊要修一條公路,已修了1440米,正好占。
全長的,還要修多少米?
分析:已修的正好占全長的,是把全長看作“單位1”,
答:還要修960米才完成任務。
練習:分課時總復習p98ex1:5、6、7、8。
p98ex2、ex4。
作業(yè):p99ex6:1、2。
分數(shù)應用題教案篇三
1.成數(shù)的含義。
師述:什么是成數(shù)呢?“幾成”就是十分之幾,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之(),改寫成百分數(shù)是()。
“三成五”是十分之(),改寫成百分數(shù)是()。
(2)把下面的“成數(shù)”改寫成百分數(shù)。
七成二成五五成九成九。
十成二成八七成四八成二。
2.出示例1。
(1)學生默讀。
(2)這道題和復習中的第三題有什么不同之處?
(3)指名學生說解題思路。
師述:在列式計算時,我們可以直接把“成數(shù)”化成百分數(shù),用百分數(shù)進行列式計算。
板書:
=41.6×(1+25%)。
=41.6×1.25。
=52(噸)。
答:今年收白菜52噸。
3.練習。
4.折扣的含義。
師述:工廠和商店為了推銷商品,有時將商品減價百分之幾銷售,這就是平常說的打“折扣”銷售。
某種商品打“八折”出售,就是按原價的80%出售,也就是減價20%。打五折出售,就是按原價的()%出售,也就是減價()%。
5.出示例2。
例2商店出售一種錄音機,原價330元?,F(xiàn)在打九折出售,比原價便宜了多少元?
(1)學生讀題。
(2)問:打九折出售是什么意思?
(3)求比原價便宜了多少元?你想怎樣解答?
(4)指名說解題思路。
板書:方法(一)330-330×90%。
=330-297。
=33(元)。
方法(二)330×(1-90%)。
=330×10%。
=33(元)。
答:比原價便宜了33元。
6.課堂小結(jié)。
今天我們學習了哪些知識?
師述:今天我們學習了有關(guān)“成數(shù)”和“折扣”的知識,知道了“成數(shù)”和“折扣”的含義,以及“成數(shù)”和“折扣”與分數(shù)和百分數(shù)之間的關(guān)系,并且學習了有關(guān)“成數(shù)”和“折扣”的一些實際的、簡單的應用題。
(三)鞏固反饋。
1.填空:
(1)某縣今年棉花產(chǎn)量比去年增產(chǎn)三成。這句話的意思是()是()的30%。
(2)一塊麥地,改用新品種后,產(chǎn)量增加了四成五。這句話的意思是改用新品種后產(chǎn)量是()的'()%。
(3)一種皮茄克打九折出售。這句話的意思是()是()的90%。
(4)一批舊書打五五折出售。這句話的意思是現(xiàn)價比()便宜了()%。
2.把下面的折扣數(shù)改寫成百分數(shù)。
七折九折六五折八五折六八折。
3.把下面的百分數(shù)改寫成“成數(shù)”。
75%60%42%100%95%。
6.一種畫冊原價每本6.9元,現(xiàn)在按每本4.83元出售。這種畫冊按原價打了幾折?
課堂教學設計說明。
本節(jié)課從概念入手,并和原來學習的百分數(shù)應用題進行比較,學生易于找到突破口,便于學生理解、掌握本節(jié)課的重點和難點。通過和百分數(shù)應用題的比較,加深了學生對百分數(shù)應用題的理解和掌握,培養(yǎng)了學生分析能力。另外,課本上出現(xiàn)了大量生活中的實例,使學生體會到百分數(shù)就在我們身邊,學好百分數(shù)應用題,能解決大量實際問題,從而提高了學生學習百分數(shù)應用題的興趣。
板書設計。
分數(shù)應用題教案篇四
1.成數(shù)的含義。
師述:什么是成數(shù)呢?“幾成”就是十分之幾,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之(),改寫成百分數(shù)是()。
“三成五”是十分之(),改寫成百分數(shù)是()。
(2)把下面的“成數(shù)”改寫成百分數(shù)。
七成二成五五成九成九。
十成二成八七成四八成二。
2.出示例1。
(1)學生默讀。
(2)這道題和復習中的第三題有什么不同之處?
(3)指名學生說解題思路。
師述:在列式計算時,我們可以直接把“成數(shù)”化成百分數(shù),用百分數(shù)進行列式計算。
板書:
=41.6×(1+25%)。
=41.6×1.25。
=52(噸)。
答:今年收白菜52噸。
3.練習。
4.折扣的含義。
師述:工廠和商店為了推銷商品,有時將商品減價百分之幾銷售,這就是平常說的打“折扣”銷售。
某種商品打“八折”出售,就是按原價的80%出售,也就是減價20%。打五折出售,就是按原價的()%出售,也就是減價()%。
5.出示例2。
例2商店出售一種錄音機,原價330元?,F(xiàn)在打九折出售,比原價便宜了多少元?
(1)學生讀題。
(2)問:打九折出售是什么意思?
(3)求比原價便宜了多少元?你想怎樣解答?
(4)指名說解題思路。
板書:方法(一)330-330×90%。
=330-297。
=33(元)。
方法(二)330×(1-90%)。
=330×10%。
=33(元)。
答:比原價便宜了33元。
6.課堂小結(jié)。
今天我們學習了哪些知識?
師述:今天我們學習了有關(guān)“成數(shù)”和“折扣”的知識,知道了“成數(shù)”和“折扣”的含義,以及“成數(shù)”和“折扣”與分數(shù)和百分數(shù)之間的關(guān)系,并且學習了有關(guān)“成數(shù)”和“折扣”的一些實際的、簡單的應用題。
(三)鞏固反饋。
1.填空:
(1)某縣今年棉花產(chǎn)量比去年增產(chǎn)三成。這句話的意思是()是()的30%。
(2)一塊麥地,改用新品種后,產(chǎn)量增加了四成五。這句話的意思是改用新品種后產(chǎn)量是()的'()%。
(3)一種皮茄克打九折出售。這句話的意思是()是()的90%。
(4)一批舊書打五五折出售。這句話的意思是現(xiàn)價比()便宜了()%。
2.把下面的折扣數(shù)改寫成百分數(shù)。
七折九折六五折八五折六八折。
3.把下面的百分數(shù)改寫成“成數(shù)”。
75%60%42%100%95%。
6.一種畫冊原價每本6.9元,現(xiàn)在按每本4.83元出售。這種畫冊按原價打了幾折?
課堂教學設計說明。
本節(jié)課從概念入手,并和原來學習的百分數(shù)應用題進行比較,學生易于找到突破口,便于學生理解、掌握本節(jié)課的重點和難點。通過和百分數(shù)應用題的比較,加深了學生對百分數(shù)應用題的理解和掌握,培養(yǎng)了學生分析能力。另外,課本上出現(xiàn)了大量生活中的實例,使學生體會到百分數(shù)就在我們身邊,學好百分數(shù)應用題,能解決大量實際問題,從而提高了學生學習百分數(shù)應用題的興趣。
板書設計。
將本文的word文檔下載到電腦,方便收藏和打印。
分數(shù)應用題教案篇五
1.使學生了解儲蓄的意義和一些有關(guān)利息的初步知識,知道本金、利息和利率的含義,會利用利息的計算公式進行一些有關(guān)利息的簡單計算。
2.提高學生分析、解答應用題能力,培養(yǎng)認真審題的良好習慣。
教學重點和難點。
理解本金、利息和利率三者之間的關(guān)系及運用公式進行計算。
教學過程設計。
(一)復習準備。
2.六一班有男生25人,女生是男生的80%。女生有多少人?
板書:(105.22-100)÷100。
=5.22÷100。
=5.22%。
問:這道題敘述了一件什么事?
師述:今天我們就來研究有關(guān)儲蓄問題的應用題。
分數(shù)應用題教案篇六
1.使學生理解成數(shù)和折扣的含義,以及成數(shù)和折扣與分數(shù)、百分數(shù)之間的關(guān)系;會解答有關(guān)成數(shù)和折扣的應用題。
2.提高學生分析、解答應用題的能力,發(fā)展學生思維的靈活性。
教學重點和難點。
理解成數(shù)和折扣的含義;理解成數(shù)和折扣與分數(shù)、百分數(shù)的含義。
教學過程設計。
(一)復習準備。
1.把下列各數(shù)化成百分數(shù)。
2.李莊去年種小麥50公頃,今年種小麥60公頃。今年比去年多種小麥百分之幾?
師述:農(nóng)業(yè)收成,有時用成數(shù)來表示。今天我們就來學習有關(guān)成數(shù)和折扣的應用題。
分數(shù)應用題教案篇七
使學生進一步認識分數(shù)乘法應用題的基本數(shù)量關(guān)系,掌握解題思路和解題方法,提高分析推理和解決實際問題的能力。
分數(shù)乘法應用題的基本數(shù)量關(guān)系式,解題思路和解題方法。
教學過程設計
教學內(nèi)容:
師生活動
備注
一、復習
二、教學新課
二、 鞏固練習
三、小結(jié)
四、作業(yè)
1、解答應用題。
學校舞蹈隊有32人,合唱隊的人數(shù)是舞蹈隊的,合唱隊有多少人?
一人板演。這道題你是怎樣想的?
2、引入新課
1、教學例3
(1)讀題,說明條件和問題。
問:題里哪個月份的產(chǎn)量與呢個月份的比?要先畫哪個月份產(chǎn)量的線段?(畫線段圖)表示五月份產(chǎn)量的線段要怎樣畫?(畫線段圖)增加的臺數(shù)是哪個數(shù)量的1/5?要求什么問題?指的線段上那一部分?(在線段上表示)
(1)討論:這道題例哪個數(shù)量是單位1?為什么?哪個臺數(shù)是四月份臺數(shù)的1/5?
要求五月份比四月份增產(chǎn)多少臺可以怎樣想?
(學生看著線段圖,自己先試著說一說。)
指名學生口述。
(2)按照這樣想的過程,列式計算。
(3)小結(jié)。
2、教學試一試
解答這道題可以怎樣想?
學生練習。
問:數(shù)量關(guān)系式什么?為什么用原價乘就是降低的價錢?
從上面解題的過程可以看出,解題學習的應用題也和前一節(jié)課一樣,關(guān)鍵式先確定單位1的數(shù)量,接著要弄清與題里幾分之幾對應的式什么數(shù)量。這些數(shù)量之間的關(guān)系就是單位1的量乘幾分之幾就等于與它對應的數(shù)量。
1、練一練1
2、練習三7說出單位1的量
把數(shù)量關(guān)系填寫完整
3、練一練2
口述思考過程。提問有怎樣的數(shù)量關(guān)系。
4、練習三10
口答算式和結(jié)果。
為什么用求棗子比栗子多的噸數(shù)?
5、練習三12
練習三8、9、10
板書:單位1的量幾分之幾=對應數(shù)量
充分借助線段圖使學生理解此類應用題也是在求一個數(shù)的幾分之幾是多少?個別同學要加小灶.
分數(shù)應用題教案篇八
1.使學生了解一些有關(guān)保險的簡單知識,知道保險金額、保險費率和保險費的含義,會根據(jù)保險費的計算公式進行簡單的計算。
2.介紹一些有關(guān)稅收的知識,向?qū)W生進行公民應依法納稅的教育。
3.提高學生分析、解答應用題的能力,發(fā)展學生思維的靈活性。
教學重點和難點。
理解保險金額、保險費率和保險費三者之間的關(guān)系。
教學過程設計。
(一)復習準備。
1.甲數(shù)是12,乙數(shù)是15。甲數(shù)是乙數(shù)的百分之幾?乙數(shù)是甲數(shù)的百分之幾?
2.甲數(shù)是120,它的75%是多少?
3.()與()的'比率叫做利率。
4.利息=()×()×()。
師述:前幾天我們學習了有關(guān)儲蓄的知識,今天我們來學習有關(guān)保險和稅收的知識。
分數(shù)應用題教案篇九
1.進一步掌握的數(shù)量關(guān)系.
2.學會用一個數(shù)乘分數(shù)的意義解答兩步.
重點。
1.掌握兩步分數(shù)應用題的解題思路和方法.
難點。
分析兩次單位“1”的不同之處.
過程。
一、復習、質(zhì)疑、引新。
(一)指出下面分率句中的單位“1”.
1.乙是甲的。
2.小紅的身高是小明的。
3.參加合唱隊的同學占全班同學的。
4.乙的相當于甲。
5.1個籃球的價錢是一個排球價錢的倍。
(二)口頭分析并列式解答。
1.小亮的儲蓄箱中有18元,小華儲蓄的錢是小亮的,小華儲蓄了多少元?
2.小華儲蓄了15元,小新儲蓄的是小華的,小新儲蓄了多少元?
(三)引新:剛才復習的兩個題,同學們完成的很好,現(xiàn)在將這兩個小題,組成一道題,你還會解答嗎?這就是本節(jié)課要學習的新內(nèi)容.
二、探索、悟理。
(一)出示組編的例題。
1.思考討論。
(1)小華儲蓄的錢是小亮的,是什么意思?誰是單位“1”?
(2)小新儲蓄的是小華的,又是什么意思?誰是單位“1”?
2.匯報思路講方法。
根據(jù)“小華儲蓄的錢是小亮的”,把小亮的錢看作單位“1”,可以求出小華儲蓄的錢:.根據(jù)“小新儲蓄的是小華的”,把小華的錢看作單位“1”,再標出小新的儲蓄錢:.
由此基礎上試列綜合算式:
(二)鞏固練習。
1.分析數(shù)量關(guān)系,獨立畫圖并列式解答.
2.學生板演.
(張)。
(張)。
答:小明有40張.
3.綜合算式。
三、歸納、明理。
用連乘解答的題有什么特點?”“解題思路是什么?”
1.認真讀題弄清條件和問題。
2.確定單位“1”找準數(shù)量關(guān)系。
根據(jù)分數(shù)乘法的意義,找準“量”、“率”對應關(guān)系,即誰是誰的幾分之幾.
3.列式解答。
:抓住分率句,找準單位“1”,
畫圖來分析,列式不用急.
四、訓練、深化。
(一)聯(lián)想練習根據(jù)下面的每句話,你能想到什么?
1.蘋果的個數(shù)是梨的.(如,梨是單位“1”;蘋果少,梨多;蘋果比梨少等)。
2.修了全長的。
3.現(xiàn)在的售價比原來降低了。
(二)先口頭分析數(shù)量關(guān)系,再列式解答.
(三)提高題.
五、課后作業(yè)?。
六、設計。
點評:
解答分數(shù)應用題的關(guān)鍵是弄清題中的數(shù)量關(guān)系,誰和誰比,把誰看作單位“1”,求的是誰的幾分之幾。這也正是課堂的重點和難點,是學生分析能力的體現(xiàn)。是我們課堂的叫目標之一。
這節(jié)課是分數(shù)應用題的第二節(jié)。學生已具備初步分析已知和找單位“1”的能力,但是增加了一個條件,并增加了一個數(shù)量。要利用已有的分析方法分步分析,才能化難為易,中采用小組合作的形式,發(fā)揮集體的智慧,在共同討論中理解已知條件,有利于學生排除思維障礙。再配以線段圖加深強化學生理解題意,以實現(xiàn)舊知識向新知識的遷移和飛躍。練習的設計,由易到難、變換條件,有助于學生靈活分析,防止定勢。
分數(shù)應用題教案篇十
年的百分之幾?(百分號前面保留一位小數(shù))。
3、白沙縣計劃造林20公頃,實際造林比計劃多5公頃,實際造林比計劃多百分之幾?
4、樂華收錄機現(xiàn)在每臺售價120元,比原來降低40元。降低了百分之幾?
5、一項工程,甲隊獨做4小時完成,乙隊獨做6小時完成。兩隊合做,需要幾小時完成?
分數(shù)應用題教案篇十一
列:
答:兄弟四人一共帶了元錢。
列:
答:分給甲元,分給乙元.。
列:
答:現(xiàn)在箱子里有個白球。
列:
答:白子占全部棋子的/()。
列:
答:共有筐荔枝。
列:
答:這所小學有男生人,女生人。
列:
答:問這塊合金含金克,含銀克。
列:
答:他們現(xiàn)在的年齡分別是,,。
列:
答:四只小猴共吃了個桃。
列:
答:那么參賽學生有人,獲獎學生有人。
分數(shù)應用題教案篇十二
1.進一步掌握的數(shù)量關(guān)系.
2.學會用一個數(shù)乘分數(shù)的意義解答兩步.
1.掌握兩步分數(shù)應用題的解題思路和方法.
分析兩次單位“1”的不同之處.
一、復習、質(zhì)疑、引新。
(一)指出下面分率句中的單位“1”.
1.乙是甲的。
2.小紅的身高是小明的。
3.參加合唱隊的同學占全班同學的。
4.乙的相當于甲。
5.1個籃球的價錢是一個排球價錢的倍。
(二)口頭分析并列式解答。
1.小亮的儲蓄箱中有18元,小華儲蓄的錢是小亮的,小華儲蓄了多少元?
2.小華儲蓄了15元,小新儲蓄的是小華的,小新儲蓄了多少元?
(三)引新:剛才復習的兩個題,同學們完成的很好,現(xiàn)在將這兩個小題,組成一道題,你還會解答嗎?這就是本節(jié)課要的新內(nèi)容.
二、探索、悟理。
(一)出示組編的例題。
1.思考討論。
(1)小華儲蓄的錢是小亮的,是什么意思?誰是單位“1”?
(2)小新儲蓄的是小華的,又是什么意思?誰是單位“1”?
2.匯報思路講方法。
根據(jù)“小華儲蓄的錢是小亮的”,把小亮的錢看作單位“1”,可以求出小華儲蓄的錢:.根據(jù)“小新儲蓄的是小華的”,把小華的錢看作單位“1”,再標出小新的儲蓄錢:.
由此基礎上試列綜合算式:
(二)鞏固練習。
1.分析數(shù)量關(guān)系,獨立畫圖并列式解答.
2.學生板演.
(張)。
(張)。
答:小明有40張.
3.綜合算式。
三、歸納、明理。
用連乘解答的題有什么特點?”“解題思路是什么?”
1.認真讀題弄清條件和問題。
2.確定單位“1”找準數(shù)量關(guān)系。
根據(jù)分數(shù)乘法的意義,找準“量”、“率”對應關(guān)系,即誰是誰的幾分之幾.
3.列式解答。
板書:抓住分率句,找準單位“1”,
畫圖來分析,列式不用急.
四、訓練、深化。
(一)聯(lián)想練習根據(jù)下面的每句話,你能想到什么?
1.蘋果的個數(shù)是梨的.(如,梨是單位“1”;蘋果少,梨多;蘋果比梨少等)。
2.修了全長的。
3.現(xiàn)在的售價比原來降低了。
(二)先口頭分析數(shù)量關(guān)系,再列式解答.
(三)提高題.
五、課后作業(yè)?。
六、
解答分數(shù)應用題的關(guān)鍵是弄清題中的數(shù)量關(guān)系,誰和誰比,把誰看作單位“1”,求的是誰的幾分之幾。這也正是課堂教學的重點和難點,是學生分析能力的體現(xiàn)。是我們課堂的叫目標之一。
這節(jié)課是分數(shù)應用題的第二節(jié)。學生已具備初步分析已知和找單位“1”的能力,但是增加了一個條件,并增加了一個數(shù)量。要利用已有的分析方法分步分析,才能化難為易,教學中采用小組合作的形式,發(fā)揮集體的智慧,在共同討論中理解已知條件,有利于學生排除思維障礙。教師再配以線段圖加深強生理解題意,以實現(xiàn)舊知識向新知識的遷移和飛躍。練習的設計,由易到難、變換條件,有助于學生靈活分析,防止定勢。
分數(shù)應用題教案篇十三
1.通過復習,使學生能夠掌握的數(shù)量關(guān)系,并能正確的解答.
2.通過復習,培養(yǎng)學生的分析能力以及綜合能力.
3.通過復習,培養(yǎng)學生認真、仔細的學習習慣.
重點。
通過復習,使學生能夠掌握的數(shù)量關(guān)系,并能正確的解答.
難點。
通過復習,使學生能夠掌握的數(shù)量關(guān)系,并且能夠數(shù)量、正確的解答.
過程。
一、復習準備.
老師這里有兩個數(shù),一個是6,另一個是3.你能夠用6與3提問并且進行回答嗎?
學生回答:
(1)3是6的幾分之幾?
(2)6是3的幾倍?
(3)3比6少幾分之幾?
(4)6比3多幾分之幾?
(5)6占6與3總和的幾分之幾?
(6)3是6與3差的幾倍?……。
談話導入??:今天我們就來復習.(:的復習)。
二、復習探討.
(一)例4.
學校舉辦的美術(shù)展覽中,有50幅水彩畫,80幅蠟筆畫.___________?
1.提問:根據(jù)已知條件,你都可以提出什么問題?并解答.
2.反饋:
(1)水彩畫和蠟筆畫共多少幅?
(2)水彩畫比筆畫少多少幅?
(3)蠟筆畫比水彩畫多幾分之幾?
(4)水彩畫比蠟筆畫少幾分之幾?
(5)水彩畫是蠟筆畫的幾分之幾?
(6)蠟筆畫是水彩畫的幾分之幾?
(7)……。
3.質(zhì)疑.
(1)5問和6問為什么解答方法不同?(單位1不同)。
(2)3問和4問的問題有什么不同?(單位1不同)。
(二)例題變式.
(1)學生獨立解答.
(2)學生討論兩道題的區(qū)別.
總結(jié):看來我們做時,需要認真審題并且在找準單位1的同時注意找準對應關(guān)系.
(三)深化.
如果題目中的分數(shù)發(fā)生了變化,我們還會解答嗎?
(1)學生獨立解答.
(2)學生討論兩道題的區(qū)別.
總結(jié):雖然與百在表現(xiàn)形式上不同,但是數(shù)量關(guān)系相同.同樣需要注意認真審題并且在找準單位1的同時注意找準對應關(guān)系.
三、鞏固反饋.
1.分析下面每個題的含義,然后列出文字表達式.
(1)今年的產(chǎn)量比去年的產(chǎn)量增加了百分之幾?
(2)實際用電比計劃節(jié)約了百分之幾?
(3)十月份的利潤比九月份的利潤超過了百分之幾?
(4)1999年的電視機價格比1998年降低了百分之幾?
(5)現(xiàn)在生產(chǎn)一個零件的時間比原來縮短了百分之幾?
(6)十一月份比十二月份超額完成了百分之幾?
2.列式不計算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
3.判斷并且說明理由.
男生比女生多20%,女生就比男生少20%.????????(??????)。
四、課堂總結(jié).
通過今天這堂課,你有什么收獲嗎?
五、課后作業(yè)?.
某體操隊有60名男隊員,
(1)女隊員比男隊員多,女隊員有多少名?
(2)男隊員比女隊員多,體操隊員共有多少名?
(3)女隊員比男隊員少,女隊員有多少名?
(4)男隊員比女隊員少,體操隊員共有多少名?
六、設計。
分數(shù)應用題教案篇十四
教學目標:。
1、使學生進一步理解分數(shù)的意義、分數(shù)與除法間的關(guān)系、分數(shù)的基本性質(zhì)、最大公因數(shù)與約分、最小公倍數(shù)與通分等知識。
2、在知識過程中進一步發(fā)展學生的數(shù)感,發(fā)展學生分析問題解決問題的能力。
3、引導學生通過對所學內(nèi)容的與反思,使學生學會條理化、系統(tǒng)化思考問題、問題。
教學設計:。
(一)談話導入。
師:這一單元我們對分數(shù)進行了較系統(tǒng)的學習,本節(jié)課讓我們一起把與分數(shù)有聯(lián)系的知識進行歸納,形成絡。
(二)知識形成脈絡。
1、以小組為單位,交流自己在課前好的有關(guān)分數(shù)這一單元學到的知識都有哪些?
2、(1)各小組代表將你們歸納的知識在全班交流,要求舉例進行說明,其余同學可根據(jù)情況進行補充。
絡圖如下:
3、根據(jù)歸納的知識絡圖,就某一部分知識提己的問題,你可以要求全班同學或某一位同不給予解答。
4、通過知識的和對問題的解答,在這一單元的學習中你都學會了哪些解決問題的策略?舉例說明。
(三)知識運用。
1、填空:
(1)出示題目:把4米長的繩子平均分成7段,每段占全長的(),每段長()米(要求先獨立完成,再集體反饋)。
師:你的答案是什么?你是怎樣想的?
生:每段占全長的1/7,每段長4/7米。我是這樣想的:求每段占全長的幾分之幾就是把全長4米看作單位“1”,把單位“1”平均分成7段,每段占1份也就是全長的4/7;每段長多少米,就是把4米平均分成7份,每份是4÷7=4/7(米)。
師:這兩個問題有什么區(qū)別?
生:求每段占全長的幾分之幾求的是一個分率,而求每段長多少米是求一個具體的量。他們的含義是不同的。
師:(強調(diào)指出)同學們在解題時一定要注意區(qū)分。
師:說說你的答案,在這里把誰看作單位“1”。
(學生練習后進行全班的交流)。
師:你們分別是用什么方法把這些題回答的這么棒呢?誰能把你的經(jīng)驗與大家共享一下?
生1:在做第一題時,首先判斷這是把整數(shù)化成分數(shù)的練習,需要運用分數(shù)的性質(zhì)知識,然后用已知分母乘整數(shù)的積作為分子或用已知分子除以整數(shù)的商作為分母。
生2:第二題也是應用分數(shù)的基本性質(zhì),在觀察分子、或者分母如何變化的情況下,再對相應分母或分子進行同樣的變化。
生3:第三題很簡單,就是用分子和分母的公因數(shù)分別同時除已知分數(shù)的分子和分母,最后把他們化成只有公因數(shù)1的最簡分數(shù)。
(設計說明:練習題的設計要力求緊扣重點、難點、層次清楚,形式多樣。在學生獨立試作后,應訂正。一旦發(fā)現(xiàn)錯誤,應讓本人或其他同學糾正,把錯誤消滅在萌芽之中,以有利于概念牢固掌握。)。
教學反思:。
單元:
分數(shù)應用題教案篇十五
教學內(nèi)容:
教學目標:
3、在“猜想——探索”的過程中,培養(yǎng)學生的猜想、觀察、分析、概括及表達能力和小組合作精神。
教學重點:讓學生充分經(jīng)歷“猜想——探索”的過程,使他們得出分數(shù)能否化成有限小數(shù)的規(guī)律。
教學難點:探究、理解一個分數(shù)能否化成有限小數(shù)。
教具學具:多媒體課件。
教學過程:
一、提出問題。
1、說出下列各數(shù)各有哪些不同的質(zhì)因數(shù)?
103512815214022125。
2、分數(shù)化成小數(shù),一般用什么方法?
3、提出問題。
(1)、動手操作。
同學們,我們已經(jīng)學習了分數(shù)化小數(shù)的方法??催@里有許多分數(shù)。媒體出示分數(shù):
媒體出示要求:(同桌合作)。
把分數(shù)化成小數(shù)(借助計算器)。
根據(jù)計算的結(jié)果分類。
(2)、反饋。
誰愿意來說一說通過計算,你們把這些分數(shù)分為幾類?
又是怎樣分的?
在學生回答后,媒體出示分得的結(jié)果。
能化成有限小數(shù)不能化成有限小數(shù)。
1/22/55/81/35/62/9。
7/104/253/409/148/157/30。
這節(jié)課我們就來研究能化成有限小數(shù)的分數(shù)的規(guī)律。
(板書課題:能化成有限小數(shù)的分數(shù)的規(guī)律)。
二、大膽猜想:
這兩個部分的分數(shù)有什么相同的地方?有什么不同的地方?
提出問題:仔細觀察這些分數(shù),你覺得一個分數(shù)能否化成有限小數(shù)與什么有關(guān)?
學生可能提出一下三條:
(1)一個分數(shù)能不能化成有限小數(shù)與分數(shù)的分子有關(guān)。
(2)一個分數(shù)能不能化成有限小數(shù)與分數(shù)的分母有關(guān)。
(3)一個分數(shù)能不能化成有限小數(shù)與分數(shù)的分子、分母都有關(guān)。
三、探索規(guī)律:
第一次探索:
1、提出問題:有的同學認為一個分數(shù)能不能化成有限小數(shù)與分子有關(guān)。你們怎樣認為?
2、反饋:你們怎樣認為?
學生舉例說明:1/2和1/3、2/5和2/9、5/8和5/6這三組分數(shù)每一組中分子相同,但是有的能化成有限小數(shù),有的不能化成有限小數(shù),所以一個分數(shù)能不能化成有限小數(shù)與分子無關(guān)。
根據(jù)學生回答:媒體閃動一下分數(shù)1/2和1/3、2/5和2/9、5/8和5/6,
小結(jié):我們可以從1/2和1/3、2/5和2/9、5/8和5/6看出:一個分數(shù)能不能化成有限小數(shù)與分子無關(guān)。
那么我提出的第三條:與分子分母都有關(guān),正確嗎?
第二次探索:
2、小組討論。
學生在小組討論中可能出現(xiàn)以下幾種情況:
(1)分母個位是0的分數(shù)都能化成有限小數(shù)。
(2)分母是分子倍數(shù)的分數(shù)能化成有限小數(shù)。
(3)分母是2和5的倍數(shù)的分數(shù)一定能化成有限小數(shù)。
(4)能化成有限小數(shù)的分數(shù)分母中只含有質(zhì)因數(shù)2和5。
3、在學生小組討論時,教師巡視并參與,引導學生運用舉例的方法進行推理。
(1)7/30分母個位是0的分數(shù)不能化成有限小數(shù)。
(2)有的同學認為:分母是2或5的倍數(shù)的分數(shù)能化成有限小數(shù)。
這個想法對嗎?為什么?
學生舉例說明:
5/8、7/10、4/25、3/40分母都是2或5的倍數(shù)能化成有限小數(shù);。
5/6、9/14、8/15、7/30分母都是2或5的倍數(shù)不能化成有限小數(shù)。
得出結(jié)論:“分母是2或5的倍數(shù)的分數(shù)一定能化成有限小數(shù)”是不正確的。
(4)反饋。
a、討論中引導學生把這些分數(shù)的分母分解質(zhì)因數(shù)。
反饋時,根據(jù)學生回答板書顯示:
5/82×2×25/62×3。
7/102×59/142×7。
4/255×58/153×5。
3/402×2×2×57/302×3×5。
引導學生得出結(jié)論:如果分母中除了2和5以外,不含有其他質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù)。
分母中含有2和5以外的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù)。
生自己找?guī)讉€分母中只含有質(zhì)因數(shù)2和5的分數(shù),來驗證自己的猜想。
出示:b、3/15中分母15分解質(zhì)因數(shù)15=3×5,分母中有質(zhì)因數(shù)3,但把他化成小數(shù)等于0.2是一個有限小數(shù)。
討論:這和我們剛才的結(jié)論不是矛盾了嗎?為什么?
通過討論得出:剛才我們討論的分數(shù)都是最簡分數(shù),3/15不是最簡分數(shù),但是化簡后等于1/5,分母中不含有2和5以外的質(zhì)因數(shù),所以能化成有限小數(shù)。
學生回答:這個分數(shù)必須是最簡分數(shù)才符合這個規(guī)律。
(5)這就是能化成有限小數(shù)的分數(shù)的規(guī)律,請大家看書,把這個規(guī)律填寫完整,并輕聲地讀兩遍。
三、運用規(guī)律。
1、根據(jù)剛才的發(fā)現(xiàn),想一想判斷一個分數(shù)能不能化成有限小數(shù)要先想什么?再想什么?同桌互相說一說。
哪位同學愿意來說一說。
學生回答:先想這個分數(shù)是不是最簡分數(shù)?再想分母中是否含有2和5以外的質(zhì)因數(shù)?
2、練一練。
判別下面各分數(shù),哪些能化成有限小數(shù),哪些不能化成有限小數(shù)?為什么?
3/2027/1815/84/1132/258/97/283/169/40。
29/1214/5。
小組討論:通過剛才的判斷,你又發(fā)現(xiàn)了什么?
學生回答:我們只要先看它是不是最簡分數(shù),再分析分母中質(zhì)因數(shù)的情況。
3、判斷題。
(1)一個分數(shù),如果分母中除了2和5以外,還含有其他的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。()。
(2)一個最簡分數(shù),如果分母中含有質(zhì)因數(shù)2和5,這個分數(shù)一定能化成有限小數(shù)。()。
(3)一個最簡分數(shù),如果分母有約數(shù)3,一定不能化成有限小數(shù)。()。
(4)一個最簡分數(shù),如果分母有約數(shù)7,一定不能化成有限小數(shù)。()。
第(1)(2)是錯誤的,要求學生說說是怎樣想的?怎樣說就對了。
四、課堂小結(jié)。
回顧一下,這節(jié)課我們探索了什么?你有那些收獲?
五、拓展延伸:
剛才我們探索得到了分數(shù)化小數(shù)時的一個規(guī)律。
其實在分數(shù)化小數(shù)時,還有許多規(guī)律。
觀察下列各式,按規(guī)律填空。
1/2=0.5(2)1/5=0.2(5)。
3/4=0.75(2×2)4/25=0.16(5×5)。
7/8=0.875(2×2×2)9/125=0.072(5×5×5)。
5/16能化成()位小數(shù)8/625能化成()位小數(shù)。
(2×2×2×2)(5×5×5×5)。
先獨立思考,再小組討論。
學生匯報時說出規(guī)律:分母中只有1個質(zhì)因數(shù)2(或5)化成一位小數(shù),只有2個質(zhì)因數(shù)(2或5)化成兩位小數(shù),……只有4個質(zhì)因數(shù)2(或5)所以能化成四位小數(shù)。
因為5/16分母中有4個質(zhì)因數(shù)2,所以它能化成四位小數(shù)。
因為8/125分母中有4個質(zhì)因數(shù)5,所以它能化成四位小數(shù)。
用計算器算一算對嗎?
學生通過計算器證明答案是正確的。
教師小結(jié):在數(shù)學王國中還有許許多多的規(guī)律,我們只要認真學習,不斷探索,一定能發(fā)現(xiàn)更多更有趣的規(guī)律。
分數(shù)應用題教案篇十六
九年義務教育六年制小學數(shù)學第十二冊課本第111~112頁例4。
1、知識與技能:理解和掌握求比一個數(shù)多(或少)幾分之幾的分數(shù)、百分數(shù)應用題基本數(shù)量關(guān)系與解題方法,比較熟練解答這類應用題,把它們的有關(guān)知識系統(tǒng)化。
2、過程與方法:使學生經(jīng)歷整理信息、利用信息的過程,發(fā)展學生的初步邏輯思維能力,能夠靈活地運用這些知識正確解答稍復雜的分數(shù)、百分數(shù)應用題。
3、情感態(tài)度與價值觀:培養(yǎng)學生認真審題和學會聯(lián)系實際的.良好學習習慣。讓學生感受到學習數(shù)學的快樂。
多媒體課件。
一、課前預習。
1、閱讀課本十二冊111頁~112頁的內(nèi)容。再看看其他冊課本有關(guān)分數(shù)、百分數(shù)的內(nèi)容。
2、在課本中,用自己喜歡的符號標出預習中不懂的地方。
3、提出預習中自己存在的問題,在課本相應的地方寫出來。
4、課前試練:111頁“做一做”。
二、學生提出預習中問題。
三、對學生預習中普遍存在的問題,教師給予講解。
四、變式訓練。
教師精點111頁“做一做”。