八年級上數(shù)學導學案教案(優(yōu)秀14篇)

字號:

    教案可以幫助教師提前預設教學活動的過程和結果,有利于教師的教學策略和評價方法的選擇。教案的設計要符合課程標準和教學要求。以下是一些精心編寫的教案示例,供大家參考和借鑒。
    八年級上數(shù)學導學案教案篇一
    教學目標:
    〔知識與技能〕。
    1.在生活實例中認識軸對稱圖.
    2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。
    〔過程與方法〕。
    2、在靈活運用知識解決有關問題的過程中,體驗并掌握探索、歸納圖形性質的推理方法,進一步培說理和進行簡單推理的能力。
    〔情感、態(tài)度與價值觀〕。
    辯證唯物主義觀點。
    教學重點:.
    理解軸對稱的概念。
    教學難點。
    能夠識別軸對稱圖形并找出它的對稱軸.
    教具準備:三角尺。
    教學過程。
    一.創(chuàng)設情境,引入新課。
    1.舉實例說明對稱的重要性和生活充滿著對稱。
    2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
    3.軸對稱是對稱中重要的一種,讓我們一起走進軸對稱世界,探索它的秘密吧!
    二.導入新課。
    1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
    強調:對稱現(xiàn)象無處不在,從自然景觀到分子結構,從建筑物到藝術作品,?甚至日常生活用品,人們都可以找到對稱的例子.
    練習:從學生生活周圍的事物中來找一些具有對稱特征的例子.
    3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關于這條直線(成軸)?對稱.
    4.動手操作:取一張質地較硬的紙,將紙對折,并用小刀在紙的中央隨意。
    刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?
    歸納小結:由此我們進一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側的圖形完全重合.
    5.練習:你能找出它們的對稱軸嗎?分小組討論.
    思考:大家想一想,你發(fā)現(xiàn)了什么?
    小結得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對稱點.
    三.隨堂練習。
    1、課本60練習1、2。
    四.課時小結。
    分了軸對稱圖形和兩個圖形成軸對稱.
    五.課后作業(yè)。
    習題13.1.1、2、6題.
    六.教后記。
    八年級上數(shù)學導學案教案篇二
    教學。
    目標(含重點、難點)及。
    設置依據(jù)教學目標。
    1、了解多面體、直棱柱的有關概念.2、會認直棱柱的側棱、側面、底面.。
    3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
    教學重點與難點。
    教學過程。
    內容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)。
    一、創(chuàng)設情景,引入新課。
    析:學生很容易回答出更多的答案。
    師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點概念:
    2.合作交流。
    師:以學習小組為單位,拿出事先準備好的幾何體。
    學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學們再討論一下,能否把自己的語言轉化為數(shù)學語言。
    學生活動:分小組討論。
    說明:真正體現(xiàn)了“以生為本”。讓學生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實例。(找出區(qū)別)。
    師:(總結)棱柱分為之直棱柱和斜棱柱。(根據(jù)其側棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側棱互相平行且相等。
    4.學以至用。
    出示例題。(先請學生單獨考慮,再作講解)。
    析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(學生練習)。
    完成“課內練習”
    三、小結回顧,反思提高。
    師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?
    合作交流后得到:重點直棱柱的有關概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
    板書設計。
    作業(yè)布置或設計作業(yè)本及課時特訓。
    八年級上數(shù)學導學案教案篇三
    在推理判斷中得出同底數(shù)冪乘法的運算法則,并掌握“法則”的應用.2.過程與方法。
    在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強學習信心.重、難點與關鍵。
    1.重點:同底數(shù)冪乘法運算性質的推導和應用.2.難點:同底數(shù)冪的乘法的法則的應用.
    一、創(chuàng)設情境,故事引入【情境導入】。
    力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個壯舉,累死了,他的左眼變成了太陽,右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.
    八年級上數(shù)學導學案教案篇四
    (一)、知識與技能:
    (1)使學生了解因式分解的意義,理解因式分解的概念。
    (2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
    (二)、過程與方法:
    (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。
    (2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。
    (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。
    (三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。
    二、教學重點和難點。
    重點:因式分解的概念及提公因式法。
    難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
    三、教學過程。
    教學環(huán)節(jié):
    活動1:復習引入。
    看誰算得快:用簡便方法計算:
    (1)7/9×13-7/9×6+7/9×2=;
    (2)-2.67×132+25×2.67+7×2.67=;
    (3)992–1=。
    設計意圖:
    注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
    活動2:導入課題。
    p165的探究(略);
    2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
    設計意圖:
    引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。
    活動3:探究新知。
    看誰算得準:
    計算下列式子:
    (1)3x(x-1)=;
    (2)(a+b+c)=;
    (3)(+4)(-4)=;
    (4)(-3)2=;
    (5)a(a+1)(a-1)=;
    根據(jù)上面的算式填空:
    (1)a+b+c=;
    (2)3x2-3x=;
    (3)2-16=;
    (4)a3-a=;
    (5)2-6+9=。
    在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。
    活動4:歸納、得出新知。
    比較以下兩種運算的聯(lián)系與區(qū)別:
    a(a+1)(a-1)=a3-a。
    a3-a=a(a+1)(a-1)。
    在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
    八年級上數(shù)學導學案教案篇五
    多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。
    二、自主學習,指向目標。
    學習至此:請完成《學生用書》相應部分。
    三、合作探究,達成目標。
    多邊形的定義及有關概念。
    活動一:閱讀教材p19。
    小組討論:結合具體圖形說出多邊形的邊、內角、外角?
    反思小結:多邊形的定義及相關概念。
    針對訓練:見《學生用書》相應部分。
    多邊形的對角線。
    活動二:(1)十邊形的對角線有35條。
    (2)如果經過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。
    反思小結:當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。
    小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?
    針對訓練:見《學生用書》相應部分。
    正多邊形的有關概念。
    活動二:閱讀教材p20。
    小組討論:判斷一個多邊形是否是正多邊形的條件?
    反思小結:由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
    針對訓練:見《學生用書》相應部分。
    四、總結梳理,內化目標。
    本節(jié)學習的數(shù)學知識是:
    1、多邊形、多邊形的外角,多邊形的對角線。
    2、凸凹多邊形的概念。
    五、達標檢測,反思目標。
    1、下列敘述正確的是(d)。
    a、每條邊都相等的多邊形是正多邊形。
    c、每個角都相等的多邊形叫正多邊形。
    d、每條邊、每個角都相等的多邊形叫正多邊形。
    2、小學學過的下列圖形中不可能是正多邊形的是(d)。
    a、三角形b。正方形c。四邊形d。梯形。
    3、多邊形的內角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內角和它相鄰的外角是鄰補角關系。
    4、已知一個四邊形的四個內角的比為1∶2∶3∶4,求這個四邊形的各個內角的度數(shù)。
    八年級上數(shù)學導學案教案篇六
    正比例函數(shù)的概念。
    2、內容解析。
    一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎,了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經驗。
    對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應,這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構建的函數(shù)模型中,函數(shù)和自變量每一對對應值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
    本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關系式,觀察比較概括出這些函數(shù)關系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
    基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念。
    1、目標。
    (1)經歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
    (2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。
    2、目標解析。
    達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
    達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。
    正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數(shù)概念的理解關鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度。
    因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程。
    八年級上數(shù)學導學案教案篇七
    本節(jié)內容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
    本節(jié)內容的難點是定理及逆定理的關系.垂直平分線定理和其逆定理,題設與結論正好相反.學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
    本節(jié)課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:
    學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結.最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
    線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.
    八年級上數(shù)學導學案教案篇八
    2、范例講解。
    (學生嘗試練習后,教師講評)。
    例1:解方程例2:解方程例3:解方程講評時強調:
    1、怎樣確定最簡公分母?(先將各分母因式分解)。
    2、解分式方程的步驟、
    鞏固練習:p1471t,2t、
    課堂小結:解分式方程的一般步驟。
    布置作業(yè):見作業(yè)本。
    八年級上數(shù)學導學案教案篇九
    1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
    2.會綜合運用平行四邊形的判定方法和性質來解決問題。
    平行四邊形的判定方法及應用。
    閱讀教材p44至p45。
    利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:
    (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
    (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
    (3)你能說出你的做法及其道理嗎?
    (5)你還能找出其他方法嗎?
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
    八年級上數(shù)學導學案教案篇十
    學會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。
    去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、
    解分式方程的一般步驟。
    1、什么叫分式方程?
    2、解分式方程的基本思想:
    分式方程整式方程。
    3、解方程(學生板演)。
    1、由上述學生的板演歸納出解分式方程的一般步驟。
    (1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;
    (2)解這個整式方程;
    2、范例講解。
    (學生嘗試練習后,教師講評)。
    例1:解方程例2:解方程例3:解方程講評時強調:
    1、怎樣確定最簡公分母?(先將各分母因式分解)。
    2、解分式方程的步驟、
    鞏固練習:p1471t,2t、
    課堂小結:解分式方程的一般步驟。
    布置作業(yè):見作業(yè)本。
    八年級上數(shù)學導學案教案篇十一
    教學目標:
    1、知道一次函數(shù)與正比例函數(shù)的意義.
    2、能寫出實際問題中正比例關系與一次函數(shù)關系的解析式.
    3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應用性.
    4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.
    教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.
    教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
    教學方法:結構教學法、以學生“再創(chuàng)造”為主的教學方法。
    教學過程:
    1、復習舊課。
    前面我們學習了函數(shù)的相關知識,(教師在黑板上畫出本章結構并讓學生說出前三。
    2、引入新課。
    就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。
    這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內用紅字強調)那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。
    3、例題講解。
    例1、某油管因地震破裂,導致每分鐘漏出原油30公升。
    (1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關系式。
    (2)破裂3.5小時后,共漏出原油多少公升。
    分析:y與x成正比例。
    解:(1)(2)(升)。
    例2、小丸子的存折上已經有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。
    (1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關系式;。
    (2)多長時間以后,小丸子的銀行存款才能買隨身聽?
    分析:銀行存款數(shù)由兩部分構成:原有的存款500元,后存入的零用錢。
    例3、已知函數(shù)是正比例函數(shù),求的值。
    分析:本題考察的是正比例函數(shù)的概念。
    解:
    4、小結。
    由學生對本節(jié)課知識進行總結,教師板書即可.
    5、布置作業(yè)。
    書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。
    八年級上數(shù)學導學案教案篇十二
    調查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
    例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
    從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
    例如,要調查全縣農村中學生學生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學生進行調查,就是抽樣調查,這500名學生平均每周每人的零花錢數(shù),就是總體的一個樣本。
    將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
    一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
    例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
    解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
    又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
    解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
    所以這組數(shù)據(jù)的眾數(shù)是2和3。
    【規(guī)律方法小結】。
    (1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
    (2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關,是最為重要的量。
    (3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
    (4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關,不受個別數(shù)據(jù)影響,有時是我們最為關心的統(tǒng)計數(shù)據(jù)。
    探究交流。
    1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
    解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
    總結:
    (1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
    (2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
    (3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
    (4)中位數(shù)與數(shù)據(jù)排序有關。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
    課堂檢測。
    基本概念題。
    1、填空題。
    (1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
    (4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
    基礎知識應用題。
    2、某公交線路總站設在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結果如下:20,23,26,25,29,28,30,25,21,23。
    (1)計算這10個班次乘車人數(shù)的平均數(shù);
    (2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
    八年級上數(shù)學導學案教案篇十三
    1.了解算術平方根的概念,會用根號表示正數(shù)的算術平方根,并了解算術平方根的非負性。
    2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術平方根。
    算術平方根的概念。
    根據(jù)算術平方根的概念正確求出非負數(shù)的算術平方根。
    這就要用到平方根的概念,也就是本章的主要學習內容.這節(jié)課我們先學習有關算術平方根的概念.
    1、提出問題:(書p68頁的問題)
    你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
    這個問題相當于在等式擴=25中求出正數(shù)x的值.
    一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術平方根是0.
    也就是,在等式=a (x0)中,規(guī)定x = .
    2、試一試:你能根據(jù)等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.
    3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
    建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。
    4、例1求下列各數(shù)的算術平方根:
    (1)100;(2)1;(3) ;(4)0.0001
    p69練習1、2
    怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
    方法1:課本中的方法,略;
    方法2:
    可還有其他方法,鼓勵學生探究。
    問題:這個大正方形的邊長應該是多少呢?
    大正方形的邊長是,表示2的算術平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
    建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
    1、這節(jié)課學習了什么呢?
    2、算術平方根的具體意義是怎么樣的?
    3、怎樣求一個正數(shù)的算術平方根
    p75習題13.1活動第1、2、3題
    八年級上數(shù)學導學案教案篇十四
    教學目標:
    1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現(xiàn)實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。
    2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養(yǎng)學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
    3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發(fā)展學生的空間觀念,增強審美意識,培養(yǎng)學生積極進取的生活態(tài)度。
    重點與難點:
    重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。
    難點:分析典型圖案的設計意圖。
    疑點:在設計的圖案中清晰地表現(xiàn)自己的設計意圖。
    教具學具準備:
    提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
    教學過程設計:
    1、情境導入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)。
    明確在欣賞了圖案后,簡單地復習旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數(shù)及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。
    2、課本。
    1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
    評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。
    評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
    (二)課內練習。
    (1)以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
    (2)利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。
    (三)議一議。
    生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。
    (四)課時小結。
    本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。
    通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)。
    進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。