鴿巢問題教學(xué)設(shè)計(jì)(實(shí)用14篇)

字號(hào):

    總結(jié)是回顧過去、規(guī)劃未來的關(guān)鍵環(huán)節(jié)。總結(jié)應(yīng)該有一個(gè)清晰的結(jié)構(gòu),包括問題的陳述、原因的分析和解決方案的提出。下面是一些關(guān)于掌握社交技巧的實(shí)用建議,供大家參考。
    鴿巢問題教學(xué)設(shè)計(jì)篇一
    本節(jié)課是數(shù)學(xué)廣角內(nèi)容,也叫“抽屜原理”。實(shí)際上是一種解決某種特定結(jié)構(gòu)的數(shù)學(xué)或生活問題的模型,體現(xiàn)了一種數(shù)學(xué)的思想方法。反思如下:
    1.從學(xué)生喜歡的“游戲”入手,激發(fā)學(xué)生學(xué)習(xí)的興趣和求知欲望,從而提出需要研究的數(shù)學(xué)問題。這樣設(shè)計(jì)使學(xué)生在生動(dòng)、活潑的數(shù)學(xué)活動(dòng)中主動(dòng)參與、主動(dòng)實(shí)踐、主動(dòng)思考,使學(xué)生的數(shù)學(xué)知識(shí)、數(shù)學(xué)能力、數(shù)學(xué)思想、數(shù)學(xué)情感得到充分的發(fā)展,從而達(dá)到動(dòng)智與動(dòng)情的完美結(jié)合,全面提高學(xué)生的整體素質(zhì)。
    2.引導(dǎo)學(xué)生在經(jīng)歷猜測(cè)、嘗試、驗(yàn)證的過程中逐步從直觀走向抽象。
    在例1中針對(duì)實(shí)驗(yàn)的所有結(jié)果,在學(xué)生總結(jié)表征的基礎(chǔ)上,進(jìn)而提出“你還可以怎樣想?”的問題,組織學(xué)生展開討論交流。我引導(dǎo)學(xué)生借助平均分即每個(gè)筆筒里先只放1支,這時(shí)學(xué)生看到還剩下1支鉛筆,這1支鉛筆不管放入其中的哪一個(gè)筆筒,這個(gè)筆筒都會(huì)有2支鉛筆。進(jìn)一步引導(dǎo)學(xué)生加深對(duì)“至少有一個(gè)筆筒中有2支鉛筆”的理解。最后,組織學(xué)生進(jìn)一步借助直觀操作,討論諸如“5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒中至少有2支鉛筆,為什么?”的問題,并不斷改變數(shù)據(jù)(鉛筆數(shù)比筆筒數(shù)多1),讓學(xué)生繼續(xù)思考,引導(dǎo)學(xué)生歸納得出一般性的結(jié)論:(+1)支鉛筆放進(jìn)個(gè)筆筒里,總有一個(gè)筆筒里至少放進(jìn)2支鉛筆。注重讓學(xué)生在觀察、實(shí)驗(yàn)、猜想、驗(yàn)證等活動(dòng)中,發(fā)展合情推理能力,培養(yǎng)學(xué)生能進(jìn)行有條理的思考,能比較清楚地表達(dá)自己的思考過程與結(jié)果,經(jīng)歷與他人合作交流解決問題的過程。
    本節(jié)課首先通過三個(gè)基礎(chǔ)練習(xí)回顧了“鴿巢原理”,接下來的練習(xí)題是鴿巢問題的原理比較簡單,但是在實(shí)際的題目當(dāng)中,最主要的.是幫助學(xué)生在不同的題目中找出該道題目的“鴿巢”是什么,然后要放到“鴿巢”里的東西是什么,只有幫助學(xué)生在解題時(shí)有了構(gòu)建鴿巢問題模型的能力,才能使學(xué)生真正的理解鴿巢問題,以便更好地解決鴿巢問題。
    鴿巢問題的出題方式都比較有趣,可以涉及生活的許多不同的方面。在解決這些問題時(shí)可以讓學(xué)生都動(dòng)手,構(gòu)解題的模型,用實(shí)物去解決問題,教師要提高學(xué)生的這種能力,才能讓學(xué)生真正地學(xué)會(huì)學(xué)習(xí),產(chǎn)生學(xué)習(xí)數(shù)學(xué)動(dòng)力,掌握學(xué)習(xí)數(shù)學(xué)的方法。
    鴿巢問題教學(xué)設(shè)計(jì)篇二
    1.通過猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會(huì)用“鴿巢原理”解決簡單的實(shí)際問題。滲透“建模”思想。
    2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
    3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
    教學(xué)重點(diǎn)。
    經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
    教學(xué)難點(diǎn)。
    理解“鴿巢問題”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
    教學(xué)過程。
    一、游戲激趣,初步體驗(yàn)。
    游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
    二、操作探究,發(fā)現(xiàn)規(guī)律。
    1.具體操作,感知規(guī)律。
    教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
    (1)學(xué)生匯報(bào)結(jié)果。
    (4,0,0)(3,1,0)(2,2,0)(2,1,1)。
    (2)師生交流擺放的結(jié)果。
    (3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
    (學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說,“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆?!?。
    質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
    2.假設(shè)法,用“平均分”來演繹“鴿巢問題”。
    1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
    學(xué)生思考――同桌交流――匯報(bào)。
    2匯報(bào)想法。
    預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
    3學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
    三、探究歸納,形成規(guī)律。
    1.課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
    [設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]。
    根據(jù)學(xué)生回答板書:5÷2=2……1。
    (學(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
    根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
    至少數(shù)=商+1?
    2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書)。
    ……。
    7÷5=1……2。
    8÷5=1……3。
    9÷5=1……4。
    觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
    得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
    板書:至少數(shù)=商+1。
    師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
    四、運(yùn)用規(guī)律解決生活中的問題。
    課件出示習(xí)題.:
    1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
    2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
    3.從電影院中任意找來13個(gè)觀眾,至少有兩個(gè)人屬相相同。
    ……。
    [設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]。
    五、課堂總結(jié)。
    這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)。
    鴿巢問題教學(xué)設(shè)計(jì)篇三
    一、教學(xué)內(nèi)容:。
    教科書第68頁例1。
    二、教學(xué)目標(biāo):
    (一)知識(shí)與技能:通過數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法。
    (二)過程與方法:結(jié)合具體的實(shí)際問題,通過實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問題的能力。
    (三)情感態(tài)度和價(jià)值觀:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過程中,讓學(xué)生切實(shí)體會(huì)到探索的樂趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。
    三、教學(xué)重難點(diǎn)。
    教學(xué)重點(diǎn):經(jīng)歷鴿巢問題的探究過程,初步了解鴿巢原理,會(huì)用鴿巢原理解決簡單的實(shí)際問題。
    教學(xué)難點(diǎn):通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    四、教學(xué)準(zhǔn)備:多媒體課件。
    五、教學(xué)過程。
    (一)候課閱讀分享:
    同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
    (二)激情導(dǎo)課。
    好,咱們班人數(shù)已到齊,從今天開始,我們學(xué)習(xí)第五單元鴿巢問題,這節(jié)課通過數(shù)學(xué)活動(dòng)我們來了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開始上課。
    (三)民主導(dǎo)學(xué)。
    1、請(qǐng)同學(xué)們先來看例1。把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2只鉛筆。
    請(qǐng)你再把題讀一次,這是為什么呢?
    對(duì)總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆?;蛘呤钦f,鉛筆的支數(shù)要大于或等于兩支。
    課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個(gè)筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!
    方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個(gè)數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
    剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數(shù)學(xué)中我們叫它“枚舉法”。
    那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個(gè)情況呢?
    方法二:用“假設(shè)法”證明。
    對(duì),我們可以這樣想,如果在每個(gè)筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒。這時(shí)無論放在哪個(gè)筆筒,那個(gè)筆筒中就有2支,所以總有一個(gè)筆筒中至少放進(jìn)2支鉛筆。(平均分)。
    方法三:列式計(jì)算。
    你能用算式表示這個(gè)方法嗎?
    學(xué)生列出式子并說一說算式中商與余數(shù)各表示什么意思?
    2、把5支鉛筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒里至少有2支鉛筆。
    這道題大家可以用幾種方法解答呢?
    3種,枚舉法、假設(shè)法、列式計(jì)算。
    3、100支鉛筆,放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少要放進(jìn)多少支鉛筆呢?
    還能有枚舉法嗎?對(duì),不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時(shí)候用起來比較麻煩??梢杂眉僭O(shè)法和列式計(jì)算。
    4、表格中通過整理,總結(jié)規(guī)律。
    你發(fā)現(xiàn)了什么規(guī)律?
    當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時(shí),至少數(shù)等于2“商+1”。
    5、簡單了解鴿巢問題的由來。
    經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我把我們的這一發(fā)現(xiàn),稱為筆筒問題。但其實(shí)最早發(fā)現(xiàn)這個(gè)規(guī)律的不是我們,而是德國的一個(gè)數(shù)學(xué)家“狄里克雷”。
    (四)檢測(cè)導(dǎo)結(jié)。
    好,我們做幾道題檢測(cè)一下你們的學(xué)習(xí)效果。
    1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?
    3、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
    (五)全課總結(jié)。
    今天你有什么收獲呢?
    (六)布置作業(yè)。
    作業(yè):兩導(dǎo)兩練第70頁、71頁實(shí)踐應(yīng)用1、4題。
    鴿巢問題教學(xué)設(shè)計(jì)篇四
    教學(xué)內(nèi)容:教科書第68頁例1。
    教學(xué)目標(biāo):
    1、使學(xué)生理解“抽屜原理”(“鴿巢原理”)的基本形式,并能初步運(yùn)用“抽屜原理”解決相關(guān)的實(shí)際問題或解釋相關(guān)的現(xiàn)象。
    2、通過操作、觀察、比較、說理等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷抽屜原理的形成過程,體會(huì)和掌握邏輯推理思想和模型思想,提高學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點(diǎn):
    經(jīng)歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。
    教學(xué)難點(diǎn):
    理解“抽屜原理”,并對(duì)一些簡單的實(shí)際問題加以“模型化”。
    教學(xué)模式:
    學(xué)、探、練、展。
    教學(xué)準(zhǔn)備:
    多媒體課件一套。
    教學(xué)過程:。
    一、游戲?qū)搿?BR>    1.師生玩“撲克牌魔術(shù)”游戲。
    (2)玩游戲,組織驗(yàn)證。
    通過玩游戲驗(yàn)證,引導(dǎo)學(xué)生體會(huì)到:不管怎么抽,總有兩張牌是同花色的。
    2.導(dǎo)入新課。
    剛才這個(gè)游戲當(dāng)中,蘊(yùn)含著一個(gè)數(shù)學(xué)問題,這節(jié)課我們就一起來研究這個(gè)有趣的問題。
    二、呈現(xiàn)問題,探究新知。
    課件出示自學(xué)提示:
    (1)“總有”和“至少”是什么意思?
    (2)把4支鉛筆放進(jìn)3個(gè)筆筒中,可以怎么放?有幾種。
    不同的放法?(請(qǐng)大家用擺一擺、畫一畫、寫一寫等方法把自己的想法表示出來。)。
    (3)把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放總有一個(gè)筆筒至少放進(jìn)xxx支鉛筆?
    (一)自主探究,初步感知。
    1、學(xué)生小組合作探究。
    2、反饋交流。
    (1)枚舉法。
    (2)數(shù)的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
    (3)假設(shè)法。
    師:除了像這樣把所有可能的情況都列舉出來,還有沒有別的。
    方法也可以證明這句話是正確的呢?
    生:我是這樣想的,先假設(shè)每個(gè)筆筒中放1支,這樣還剩1支。這時(shí)無論放到哪個(gè)筆筒,那個(gè)筆筒中就有2支了。
    師:你為什么要先在每個(gè)筆筒中放1支呢?
    生:因?yàn)榭偣灿?支,平均分,每個(gè)筆筒只能分到1支。
    師:你為什么一開始就平均分呢?(板書:平均分)。
    生:平均分就可以使每個(gè)筆筒里的筆盡可能少一點(diǎn)。
    生:平均分已經(jīng)使每個(gè)筆筒里的筆盡可能少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。
    (4)確認(rèn)結(jié)論。
    師:到現(xiàn)在為止,我們可以得出什么結(jié)論?
    生(齊):把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
    (二)提升思維,構(gòu)建模型。
    師:(口述)那要是。
    (1)把5支鉛筆放進(jìn)4個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有xx支鉛筆。
    (2)把6支鉛筆放進(jìn)5個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有xx支鉛筆。
    (3)10支鉛筆放進(jìn)9個(gè)筆筒中呢?100支鉛筆放進(jìn)99個(gè)筆筒中。
    2.建立模型。
    師:通過剛才的.分析,你有什么發(fā)現(xiàn)?
    生:只要鉛筆的數(shù)量比筆筒的數(shù)量多1,那么總有一個(gè)筆筒至少要放進(jìn)2支筆。
    師:對(duì)。鉛筆放進(jìn)筆筒我們會(huì)解釋了,那么有關(guān)鴿子飛入鴿巢的問題,大家會(huì)解釋嗎?(課件出示)。
    師:以上這些問題有什么相同之處呢?
    生:其實(shí)都是一樣的,鴿巢就相當(dāng)于筆筒,鴿子就相當(dāng)于鉛筆。
    師:像這樣的數(shù)學(xué)問題,我們就叫做“鴿巢問題”或“抽屜問題”,它們里面蘊(yùn)含的這種數(shù)學(xué)原理,我們就叫做“鴿巢問題”或“抽屜問題”。(揭題)。
    三、基本練習(xí)。
    四、拓展提升。
    五、課堂小結(jié)。
    六、作業(yè)布置。
    完成課本第71頁,練習(xí)十三,第1題。
    鴿巢問題教學(xué)設(shè)計(jì)篇五
    教學(xué)目標(biāo):
    1、引導(dǎo)學(xué)生經(jīng)歷鴿巢原理的探究過程,初步了解鴿巢原理,會(huì)運(yùn)用鴿巢原理解決一些簡單的實(shí)際問題。
    2、通過操作、觀察、比較、列舉、假設(shè)、推理等活動(dòng)發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    3、使學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,初步形成模型思想。
    教學(xué)重點(diǎn):經(jīng)歷鴿巢原理的探究過程,初步了解鴿巢原理。
    教學(xué)難點(diǎn):理解鴿巢原理,并對(duì)一些簡單的實(shí)際問題加以模型化。
    教學(xué)過程:
    一、創(chuàng)設(shè)情境、導(dǎo)入新課。
    1、師:同學(xué)們,你們玩過撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學(xué)隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)。
    2、師:大家猜對(duì)了嗎?其實(shí)這里面藏著一個(gè)非常有趣的數(shù)學(xué)問題,叫做“鴿巢問題”。今天我們就一起來研究它。
    二、合作探究、發(fā)現(xiàn)規(guī)律。
    師:研究一個(gè)數(shù)學(xué)問題,我們通常從簡單一點(diǎn)的情況開始入手研究。請(qǐng)看大屏幕。(生齊讀題目)。
    1、教學(xué)例1:把4支鉛筆放進(jìn)3個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
    (1)理解“總有”、“至少”的含義。(ppt)總有:一定有至少:最少。
    師:這個(gè)結(jié)論正確嗎?我們要?jiǎng)邮謥眚?yàn)證一下。
    探究之前,老師有幾個(gè)要求。(一生讀要求)。
    (3)匯報(bào)展示方法,證明結(jié)論。(展示兩張作品,其中一張是重復(fù)擺的。)。
    第一張作品:誰看懂他是怎么擺的?(一生匯報(bào),發(fā)現(xiàn)重復(fù)的擺法)。
    第二張作品:他是怎么擺的?這4種擺法有沒有重復(fù)的?還有其他的擺法嗎?板書:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
    師:我們要證明的是總有一個(gè)筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報(bào):第一種擺法中哪個(gè)筆筒滿足要求?只要發(fā)現(xiàn)有一個(gè)筆筒里至少有2支鉛筆就行了。)。
    總結(jié):把4支鉛筆放進(jìn)3個(gè)筆筒中一共只有四種情況,在每一種情況中,都一定有一個(gè)筆筒中至少有2支鉛筆??磥磉@個(gè)結(jié)論是正確的。
    師:像這樣把所有情況一一列舉出來的方法,數(shù)學(xué)上叫做“枚舉法”。(板書)。
    (4)通過比較,引出“假設(shè)法”
    引導(dǎo)學(xué)生說出:假設(shè)先在每個(gè)筆筒里放1支,還剩下1支,這時(shí)無論放到哪個(gè)筆筒,那個(gè)筆筒里就有2支鉛筆了。(ppt演示)。
    (5)初步建模—平均分。
    師:先在每個(gè)筆筒里放1支,這種分法實(shí)際上是怎么分的?
    生:平均分(師板書)。
    師:為什么要去平均分呢?平均分有什么好處?
    生:平均分可以保證每個(gè)筆筒里的筆數(shù)量一樣,盡可能的少。這樣多出來的1支不管放進(jìn)哪個(gè)筆筒里,總有一個(gè)筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個(gè)筆筒里,這樣就不能保證一下子找到最少的情況了)。
    師:這種先平均分的方法叫做“假設(shè)法”。怎么用算式表示這種方法呢?
    板書:4÷3=1……11+1=2。
    師:現(xiàn)在我們把題目改一改,結(jié)果會(huì)怎樣呢?
    ppt出示:把5支筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有幾支筆?(引導(dǎo)學(xué)生說清楚理由)。
    師:為什么大家都選擇用假設(shè)法來分析?(假設(shè)法更直接、簡單)。
    通過這些問題,你有什么發(fā)現(xiàn)?
    交流總結(jié):只要筆的數(shù)量比筆筒數(shù)量多1,總有一個(gè)筆筒里至少放進(jìn)2支筆。
    過渡語:師:如果多出來的數(shù)量不是1,結(jié)果會(huì)怎樣呢?
    2、出示:5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠里至少飛進(jìn)了幾只鴿子呢?
    (1)同桌討論交流、指名匯報(bào)。
    先讓一生說出5÷3=1……21+2=3的結(jié)果,再問:有不同的意見嗎?
    再讓一生說出5÷3=1……21+1=2。
    師:你們同意哪種想法?
    (2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?
    (3)明確:再次平均分,才能保證“至少”的情況。
    3、教學(xué)例2。
    (1)師:我們剛才研究的把筆放入筆筒、鴿子飛進(jìn)鴿籠這樣的問題就叫做“鴿巢問題”,也叫“抽屜問題”。它最早是由德國數(shù)學(xué)家狄利克雷發(fā)現(xiàn)并提出的,當(dāng)他發(fā)現(xiàn)這個(gè)問題之后決定繼續(xù)深入研究下去。出示例2。
    (2)獨(dú)立思考后指名匯報(bào)。
    師板書:7÷3=2……12+1=3。
    (3)如果有8本書會(huì)怎樣?10本書呢?
    指名回答,師相機(jī)板書:8÷3=2……22+1=3。
    師:剩下的2本怎么放才更符合“至少”的要求?
    為什么不能用商+2?
    10÷3=3……13+1=4。
    (4)觀察發(fā)現(xiàn)、總結(jié)規(guī)律。
    歸納總結(jié):總有一個(gè)抽屜里至少可以放“商+1”本書。(板書:商+1)。
    三、鞏固應(yīng)用。
    師:利用鴿巢問題中這個(gè)原理可以解釋生活中很多有趣的問題。
    1、做一做第1、2題。
    2、用抽屜原理解釋“撲克表演”。
    說清楚把4種花色看作抽屜,5張牌看作要放進(jìn)的書。
    四、全課小結(jié):
    通過這節(jié)課的學(xué)習(xí),你有什么收獲或感想?
    鴿巢問題教學(xué)設(shè)計(jì)篇六
    1、借助直觀學(xué)具演示,經(jīng)歷探究過程。教師注重讓學(xué)生在操作中,經(jīng)歷探究過程,感知、理解鴿巢問題。
    2、教師注重培養(yǎng)學(xué)生的“模型”思想。通過一系列的操作活動(dòng),學(xué)生對(duì)于枚舉法和假設(shè)法有一定的認(rèn)識(shí),加以比較,分析兩種方法在解決鴿巢問題的優(yōu)超性和局限性,使學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來思考問題。
    3、在活動(dòng)中引導(dǎo)學(xué)生感受數(shù)學(xué)的魅力。本節(jié)課的“鴿巢問題”的建立是學(xué)生在觀察、操作、思考與推理的基礎(chǔ)上理解和發(fā)現(xiàn)的,學(xué)生學(xué)的積極主動(dòng)。特別以游戲引入,又以游戲結(jié)束,既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又學(xué)到了抽屜原理的知識(shí),同時(shí)鍛煉了學(xué)生的思維。在整節(jié)課的教學(xué)活動(dòng)中使學(xué)生感受了數(shù)學(xué)的魅力。
    鴿巢問題教學(xué)設(shè)計(jì)篇七
    1.經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會(huì)用“鴿巢問題”解決簡單的實(shí)際問題。
    2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    3.通過“鴿巢問題”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
    重點(diǎn):經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。難點(diǎn):理解“鴿巢問題”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    多媒體課件。
    紙杯。
    吸管。
    一、課前游戲引入。
    生:想。
    師:我這里有一副撲克牌,我找五位同學(xué)每人抽一張。老師猜。(至少有兩張花色一樣)。
    二、通過操作,探究新知。
    (一)探究例1。
    1、研究3根小棒放進(jìn)2個(gè)紙杯里。
    (1)要把3枝小棒放進(jìn)2個(gè)紙杯里,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
    (2)反饋:兩種放法:(3,0)和(2,1)。(教師板書)(3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)。
    (4)“總有”什么意思?(一定有)。
    (5)“至少”有2枝什么意思?(不少于2枝)。
    小結(jié):在研究3根小棒放進(jìn)2個(gè)紙杯時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)紙杯里放進(jìn)2根小棒)。
    2、研究4根小棒放進(jìn)3個(gè)紙杯里。
    (1)要把4根小棒放進(jìn)3個(gè)紙杯里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
    (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)紙杯里至少有2根小棒)。
    (4)你是怎么發(fā)現(xiàn)的?
    (5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)紙杯里放進(jìn)2根小棒”。
    師:大家看,全放到一個(gè)杯子里,就有四個(gè)了。太多了。那怎么樣讓每個(gè)杯子里都盡可能少,你覺得應(yīng)該要怎樣放?(小組合作,討論交流)(每個(gè)紙杯里都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)紙杯,總會(huì)有一個(gè)紙杯里至少有2根小棒)(你真是一個(gè)善于思想的孩子。)。
    (6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個(gè)紙杯里里放1根小棒,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)。
    (8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問題,同學(xué)們的方法有兩種,一是。
    3、類推:把5枝小棒放進(jìn)4個(gè)紙杯,總有一個(gè)紙杯里至少有幾根小棒?為什么?
    把6枝小棒放進(jìn)5個(gè)紙杯,總有一個(gè)紙杯里至少有幾根小棒?為什么?
    把7枝小棒放進(jìn)6個(gè)紙杯,是不是總有一個(gè)紙杯里至少有幾根小棒?為什么?
    把100枝小棒放進(jìn)99個(gè)紙杯,是不是總有一個(gè)紙杯里至少有幾根小棒?為什么?
    4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的小棒比紙杯的數(shù)量多1,總有一個(gè)紙杯里至少放進(jìn)2根小棒。)。
    5、小結(jié):剛才我們分析了把小棒放進(jìn)紙杯的情況,只要小棒數(shù)量多于紙杯數(shù)量時(shí),總有一個(gè)紙杯里至少放進(jìn)2根小棒。
    這就是今天我們要學(xué)習(xí)的鴿巢問題,也叫抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?小棒相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么紙杯就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體。
    小練習(xí):
    1、任意13人中,至少有幾人的出生月份相同?
    2、任意367名學(xué)生中,至少有幾名學(xué)生,他們?cè)谕惶爝^生日?為什么?
    3、任意13人中,至少有幾人的屬相相同?”
    6、剛才我們研究的是小棒數(shù)比紙杯多1的情況,如果小棒比紙杯數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)紙杯里至少有2根小棒?!?BR>    鴿巢問題教學(xué)設(shè)計(jì)篇八
    數(shù)學(xué)課堂是師生互動(dòng)的過程,學(xué)生是學(xué)習(xí)的主人,教師是組織者和引導(dǎo)者。一堂好的數(shù)學(xué)課,我認(rèn)為應(yīng)該是原生態(tài),充滿“數(shù)學(xué)味”的課;應(yīng)該立足課堂,立足知識(shí)點(diǎn)。“創(chuàng)設(shè)情境——建立模型——解釋應(yīng)用”是新課程倡導(dǎo)的課堂教學(xué)模式,本節(jié)課運(yùn)用這一模式,設(shè)計(jì)了豐富多彩的數(shù)學(xué)活動(dòng),讓學(xué)生經(jīng)歷“鴿巢問題”的探究過程,從探究具體問題到類推得出一般結(jié)論,初步了解“鴿巢問題”。本節(jié)課教學(xué)在師生互動(dòng)方面有以下特色:
    在導(dǎo)入新課時(shí),我以游戲引入,不僅激發(fā)學(xué)生的興趣,提高師生雙邊互動(dòng)的積極性,更是讓學(xué)生初步感受到鴿巢原理的本質(zhì)。通過游戲,一下子就抓住了學(xué)生的注意力。讓學(xué)生覺得這節(jié)課要探究的問題,好玩又有意義,喚起學(xué)生繼續(xù)參與課堂互動(dòng)的意愿。
    本節(jié)課充分發(fā)揮學(xué)生的自主性,首先讓學(xué)生自主思考,采用自己的方法“證明”:“把4枝鉛筆放入3個(gè)杯子中,不管怎么放,總有一個(gè)杯子里至少放進(jìn)2枝鉛筆”。接著同桌互動(dòng)演示并嘗試解釋這種現(xiàn)象發(fā)生的原因。最后,全班交流展示,多元評(píng)價(jià)各種“證明”方法,針對(duì)學(xué)生的不同方法教師給予針對(duì)性的鼓勵(lì)和指導(dǎo),讓學(xué)生在自主探索中體驗(yàn)成功,獲得發(fā)展。
    本節(jié)課注重給學(xué)生創(chuàng)造提出問題的機(jī)會(huì),讓學(xué)生去品嘗提出問題、解決問題的快樂。如在出示“5只鴿子飛進(jìn)了3個(gè)鴿籠”問學(xué)生看到這個(gè)條件你想提怎樣的數(shù)學(xué)問題?這樣間接培養(yǎng)學(xué)生的問題意識(shí)。
    鴿巢問題教學(xué)設(shè)計(jì)篇九
    本教材專門安排“數(shù)學(xué)廣角”這一單元,向?qū)W生滲透一些重要的數(shù)學(xué)思想方法。和以往的義務(wù)教育教材相比,這部分內(nèi)容是新增的內(nèi)容。本單元教材通過幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“鴿巢問題”,使學(xué)生在理解“鴿巢問題”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡單的實(shí)際問題加以“模型化”,會(huì)用“鴿巢問題”加以解決。在數(shù)學(xué)問題中,有一類與“存在性”有關(guān)的問題。在這類問題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就是可以了,并不需要指出是哪個(gè)物體(或人)。這類問題依據(jù)的理論我們稱之為“抽屜原理”。“抽屜原理”最先是19世紀(jì)的德國數(shù)學(xué)家狄利克雷運(yùn)用于解決數(shù)學(xué)問題的,所以又稱“狄利克雷原理”,也稱之為“鴿巢問題”?!傍澇矄栴}”的理論本身并不復(fù)雜,甚至可以說是顯而易見的。但“鴿巢問題”的應(yīng)用卻是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的`結(jié)論。因此,“鴿巢問題”在數(shù)論、集合論、組合論中都得到了廣泛的應(yīng)用。
    1、知識(shí)與技能:引導(dǎo)學(xué)生通過觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng),經(jīng)歷探究“鴿巢原理”的過程,初步了解“鴿巢原理”的含義,會(huì)用“鴿巢原理”解決簡單的實(shí)際問題。
    2、過程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗(yàn)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng)的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。
    3、情感態(tài)度與價(jià)值觀:
    (1)體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體驗(yàn)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
    (2)理解知識(shí)的產(chǎn)生過程,受到歷史唯物注意的教育。
    (3)感受數(shù)學(xué)在實(shí)際生活中的作用,培養(yǎng)刻苦鉆研、探究新知的良好品質(zhì)。
    重點(diǎn):應(yīng)用“鴿巢原理”解決實(shí)際問題。引導(dǎo)學(xué)會(huì)把具體問題轉(zhuǎn)化成“鴿巢問題”。
    難點(diǎn):理解“鴿巢原理”,找出”鴿巢問題“解決的竅門進(jìn)行反復(fù)推理。
    這個(gè)問題同“鴿巢原理”結(jié)合起來,是本次教學(xué)能否成功的關(guān)鍵。所以,在教學(xué)中,應(yīng)有意識(shí)地讓學(xué)生理解“鴿巢原理”的“一般化模型”。六年級(jí)的學(xué)生理解能力、學(xué)習(xí)能力和生活經(jīng)驗(yàn)已達(dá)到能夠掌握本章內(nèi)容的程度。教材選取的是學(xué)生熟悉的,易于理解的生活實(shí)例,將具體實(shí)際與數(shù)學(xué)原理結(jié)合起來,有助于提高學(xué)生的邏輯思維能力和解決實(shí)際問題的能力。
    1、讓學(xué)生經(jīng)歷“數(shù)學(xué)證明”的過程??梢怨膭?lì)、引導(dǎo)學(xué)生借助學(xué)具、實(shí)物操作或畫草圖的`方式進(jìn)行“說理”。通過“說理”的方式理解“鴿巢原理”的過程是一種數(shù)學(xué)證明的雛形。通過這樣的方式,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。
    2、有意識(shí)地培養(yǎng)學(xué)生的“模型”思想。當(dāng)我們面對(duì)一個(gè)具體的問題時(shí),能否將這個(gè)具體問題和“鴿巢原理”聯(lián)系起來,能否找到該問題中的具體情境與“鴿巢原理”的“一般化模型”之間的內(nèi)在關(guān)系,找出該問題中什么是“待分的東西”,什么是“鴿巢”,是解決問題的關(guān)鍵。教學(xué)時(shí),要引導(dǎo)學(xué)生先判斷某個(gè)問題是否屬于用“鴿巢原理”可以解決的范疇;再思考如何尋找隱藏在其背后的“鴿巢問題”的一般模型。這個(gè)過程是學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,從紛繁復(fù)雜的現(xiàn)實(shí)素材中找出最本質(zhì)的數(shù)學(xué)模型,是學(xué)生數(shù)學(xué)思維和能力的重要體現(xiàn)。
    3、要適當(dāng)把握教學(xué)要求?!傍澇苍怼北旧砘蛟S并不復(fù)雜,但它的應(yīng)用廣泛且靈活多變。因此,用“鴿巢原理”解決實(shí)際問題時(shí),經(jīng)常會(huì)遇到一些困難。例如,有時(shí)要找到實(shí)際問題與“鴿巢原理”之間的聯(lián)系并不容易,即使找到了,也很難確定用什么作為“鴿巢”,要用幾個(gè)“鴿巢”。因此,教學(xué)時(shí),不必過于要求學(xué)生“說理”的嚴(yán)密性,只要能結(jié)合具體問題,把大致意思說出來就可以了,鼓勵(lì)學(xué)生借助實(shí)物操作等直觀方式進(jìn)行猜測(cè)、驗(yàn)證。
    鴿巢問題教學(xué)設(shè)計(jì)篇十
    1.1知識(shí)與技能:
    1.初步了解“抽屜原理”,會(huì)運(yùn)用“抽屜原理”解決簡單的實(shí)際問題或解釋相關(guān)的現(xiàn)象。2.通過操作、觀察、比較、推理等數(shù)學(xué)活動(dòng),引導(dǎo)學(xué)生理解并掌握這一類“抽屜原理”的一般規(guī)律。
    1.2過程與方法:
    經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,體會(huì)比較的學(xué)習(xí)方法。
    1.3情感態(tài)度與價(jià)值觀:
    感受數(shù)學(xué)的魅力,提高學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用意識(shí),培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
    2.教學(xué)重點(diǎn)/難點(diǎn)。
    2.1教學(xué)重點(diǎn)。
    經(jīng)歷抽屜原理的探究過程,理解抽屜原理,靈活運(yùn)用抽屜原理解決生活中的簡單問題。
    2.2教學(xué)難點(diǎn)。
    理解“總有”、“至少”,構(gòu)建“抽屜原理”的數(shù)學(xué)模型,并對(duì)一些簡單的實(shí)際問題加以模型化。
    3.教學(xué)用具。
    多媒體課件,鉛筆,筆筒,一副撲克牌。
    4.標(biāo)簽。
    教學(xué)過程。
    一、開門見山,引入課題。
    學(xué)生提出問題:什么是抽屜原理?怎樣研究抽屜原理?抽屜原理有什么用?等等。師:同學(xué)們都很愛提問題,也很會(huì)提問題,這節(jié)課我們就帶著這些問題來研究。
    二、自主探究,構(gòu)建模型。
    1.教學(xué)例1,初步感知,體驗(yàn)方法,概括規(guī)律。
    師:我們先從簡單的例子入手,請(qǐng)看,如果把4個(gè)小球放進(jìn)3個(gè)抽屜里,我可以肯定地說,不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球。
    稍加停頓。
    師:“總有”是什么意思?
    生:一定有。
    師:“至少放2個(gè)小球”你是怎樣理解的?
    生:最少放2個(gè)小球,也可以放3個(gè)、4個(gè)。
    師:2個(gè)或比2個(gè)多,我們就說“至少放2個(gè)小球”。
    師:老師說的這句話對(duì)嗎?我們得需要驗(yàn)證,怎么驗(yàn)證呢?華羅庚說過不懂就畫圖,下面請(qǐng)同學(xué)們用圓形代替小球,用長方形代替抽屜,畫一畫,看有幾種不同的方法。也可以尋求其他的方法驗(yàn)證,聽明白了嗎?開始吧!
    學(xué)生活動(dòng),教師巡視指導(dǎo)。
    匯報(bào)交流。
    師:哪位同學(xué)愿意把你的方法分享給大家?
    一生上前匯報(bào)。
    生1:可以在第一個(gè)抽屜里放4個(gè)小球,其他兩個(gè)抽屜空著。
    師:這4個(gè)小球一定要放在第一個(gè)抽屜里嗎?
    生:不一定,也可以放在其他兩個(gè)抽屜里。
    師:看來不管怎么放,總有一個(gè)抽屜里放進(jìn)4個(gè)小球。這種放法可以簡單的記作4,0,0。不好意思,接著介紹吧。
    生:第二種方法是第一個(gè)抽屜里放3個(gè)小球,第二個(gè)抽屜里放1個(gè),第三個(gè)抽屜空著,也就是3,1,0;第三種方法是2,2,0;第四種方法是2,1,1。
    (此環(huán)節(jié)可以先讓一名學(xué)生匯報(bào),其他學(xué)生補(bǔ)充、評(píng)價(jià))。
    師:他找到了4種不同的方法,誰來評(píng)一評(píng)?
    生2:他找的很全,并且排列的有序。
    師:除了這4種放法,還有沒有不同的放法?(沒有)謝謝你的精彩展示,請(qǐng)回??磥?,把4個(gè)小球放進(jìn)3個(gè)抽屜里,就有這4種不同的方法。同學(xué)們真不簡單,一下子就找到了4種放法。
    出示課件,展示4種方法。
    生:第一種放法有一個(gè)抽屜里放4個(gè),大于2,符合至少2個(gè),第二種放法有一個(gè)抽屜里放3個(gè),也大于2,符合至少2個(gè),第三種放法有一個(gè)抽屜里放2個(gè),符合至少2個(gè),第四種放法有一個(gè)抽屜里放2個(gè),符合至少2個(gè)。所以,總有一個(gè)抽屜里至少放兩個(gè)小球。
    師:說得有理有據(jù)。誰愿意再解釋解釋?(再找一名學(xué)生解釋)。
    師:原來呀!這兩位同學(xué)關(guān)注的都是每種方法當(dāng)中放的最——多的抽屜,分別放了幾個(gè)小球?(4個(gè)、3個(gè)、2個(gè)、2個(gè))最少放了幾個(gè)?(2個(gè)),最少2個(gè),有的超過了2個(gè),我們就說至少2個(gè)。確實(shí),不管怎么放,我們都找到了這樣的一個(gè)抽屜,里面至少放2個(gè)小球。看來,老師的猜測(cè)對(duì)不對(duì)?(對(duì))是正確的!
    生1:把小球分散地放,每個(gè)抽屜里先放1個(gè)小球?剩下的1個(gè)小球任意放在其中的一個(gè)抽屜里,這樣總有一個(gè)抽屜里至少放了兩個(gè)小球。
    生2:先把小球平均放,余下的1個(gè)小球不管放在哪個(gè)抽屜里,一定會(huì)出現(xiàn)總有一個(gè)抽屜里至少放了2個(gè)小球。
    師:每個(gè)抽屜里先放1個(gè)小球,也就是我們以前學(xué)過的怎么分?
    生:平均分。
    師:為什么要先平均分?
    生:先平均分,就能使每個(gè)抽屜里的小球放得均勻,都比較少,再把余下的1個(gè)小球任意放在其中的一個(gè)抽屜中,這樣一定會(huì)出現(xiàn)“總有一個(gè)抽屜至少放了2個(gè)小球”。
    課件演示。
    3=1……1,1+1=2。生:4÷。
    3=1……1,1+1=2教師隨機(jī)板書:4÷。
    師:這兩個(gè)“1”表示的意思一樣嗎?
    生:不一樣,第一個(gè)“1”表示每個(gè)抽屜里分得的1個(gè)小球,第二個(gè)“1”表示剩下的那個(gè)小球,可以放在任意一個(gè)抽屜里。
    師:第一個(gè)“1”就是先分得的1個(gè)小球,也就是除法中的商,第二個(gè)“1”是剩下的1個(gè)小球,可以任意放在其中的一個(gè)抽屜中。瞧,用算式來表示多么地簡潔明了。
    生:第四種放法出現(xiàn)的情況。
    師:你認(rèn)為用列舉法和假設(shè)法進(jìn)行驗(yàn)證,哪種方法比較簡便?為什么?
    生:假設(shè)法,列舉法需要把所有的情況都一一列舉出來,假設(shè)法只需要研究一種情況,并且可以用算式簡明地表示出來。
    生:2個(gè),先往每個(gè)抽屜里放一個(gè)小球,這樣還剩下1個(gè),剩下的1個(gè)小球任意放在一個(gè)其中的一個(gè)抽屜里,這樣,不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球。
    師:把6個(gè)小球放進(jìn)5個(gè)抽屜里,總有一個(gè)抽屜里至少放幾個(gè)小球呢?
    5=1……1,1+1=2,還是總有一個(gè)抽屜里至少放2個(gè)小球。生:6÷。
    師:把7個(gè)小球放進(jìn)6個(gè)抽屜里呢?
    生:總有一個(gè)抽屜里至少放2個(gè)小球。
    師:接著往后想,你能繼續(xù)說嗎?
    生1:小球個(gè)數(shù)和抽屜個(gè)數(shù)都依次增加1,總有一個(gè)抽屜里至少放的小球個(gè)數(shù)都是2.生2:當(dāng)小球的個(gè)數(shù)比抽屜數(shù)多1時(shí),不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球。師:你們真善于概括總結(jié)!
    2.教學(xué)例2,深入研究,提升思維,構(gòu)建模型。
    師:剛才我們研究了小球數(shù)比抽屜數(shù)多1時(shí),總有一個(gè)抽屜至少放2個(gè)小球,當(dāng)小球數(shù)比抽屜數(shù)多2、多3,甚至更多,又會(huì)出現(xiàn)什么情況呢?想不想繼續(xù)研究?(想)。
    5=1……2,1+2=3。生1:7÷。
    師:有不同意見嗎?
    5=1……2,1+1=2。生2:7÷。
    5=1……2,不同點(diǎn)是一位同學(xué)認(rèn)師:出現(xiàn)了兩種不同的聲音,這兩位同學(xué)都是用7÷。
    生3:我贊同1+1=2。因?yàn)橛嘞碌?個(gè)還要分到不同的抽屜里,所以總有一個(gè)抽屜至少放2個(gè)小球。
    鴿巢問題教學(xué)設(shè)計(jì)篇十一
    1.通過猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會(huì)用“鴿巢原理”解決簡單的實(shí)際問題。滲透“建?!彼枷搿?BR>    2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
    3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
    經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
    教學(xué)難點(diǎn)。
    理解“鴿巢問題”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
    教學(xué)過程。
    一、游戲激趣,初步體驗(yàn)。
    游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
    二、操作探究,發(fā)現(xiàn)規(guī)律。
    1.具體操作,感知規(guī)律。
    教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
    (1)學(xué)生匯報(bào)結(jié)果。
    (4,0,0)(3,1,0)(2,2,0)(2,1,1)。
    (2)師生交流擺放的結(jié)果。
    (3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
    (學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說,“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。”)。
    質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
    2.假設(shè)法,用“平均分”來演繹“鴿巢問題”。
    1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
    學(xué)生思考――同桌交流――匯報(bào)。
    2匯報(bào)想法。
    預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
    3學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
    三、探究歸納,形成規(guī)律。
    1.課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
    [設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]。
    根據(jù)學(xué)生回答板書:5÷2=2……1。
    (學(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
    根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
    至少數(shù)=商+1?
    2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書)。
    ……。
    7÷5=1……2。
    8÷5=1……3。
    9÷5=1……4。
    觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
    得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
    板書:至少數(shù)=商+1。
    師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
    四、運(yùn)用規(guī)律解決生活中的問題。
    課件出示習(xí)題.:
    1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
    2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
    3.從電影院中任意找來13個(gè)觀眾,至少有兩個(gè)人屬相相同。
    ……。
    [設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]。
    五、課堂總結(jié)。
    這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)。
    鴿巢問題教學(xué)設(shè)計(jì)篇十二
    課堂上,我首先采用學(xué)生搶凳子游戲?qū)?,使學(xué)生初步感受總是有一個(gè)凳子上要坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,也使學(xué)生集中注意力,把心思馬上放到課堂上,讓學(xué)生覺得這節(jié)課探究的問題既好玩又有意義,為后面教與學(xué)的活動(dòng)做了鋪墊。但這部分內(nèi)容真正理解對(duì)于學(xué)生來說有一定的難度。在教學(xué)中我通過實(shí)際案例培養(yǎng)學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力,從而解決實(shí)際問題,初步感受數(shù)學(xué)的魅力。本堂課注重為學(xué)生提供自主探索的空間,引導(dǎo)學(xué)生通過探索,初步了解“鴿巢原理”,總結(jié)“鴿巢原理”的規(guī)律,會(huì)用“鴿巢原理”解決實(shí)際問題。
    在本節(jié)課中,我非常注重學(xué)生的自主探索精神,讓學(xué)生在學(xué)習(xí)中,經(jīng)歷猜想、驗(yàn)證、推理、應(yīng)用的過程。
    1、采用枚舉法,讓學(xué)生通過小組合作把4本書放入3個(gè)抽屜中的所有情況都列舉出來,然后通過學(xué)生匯報(bào)四種不同的排放情況,運(yùn)用直觀的方式,發(fā)現(xiàn)并描述、理解最簡單的“鴿巢原理”即“書本數(shù)比抽屜數(shù)多1時(shí),總有一個(gè)抽屜里至少有2本書”。進(jìn)而介紹這種擺放的'方法是我們數(shù)學(xué)中常用的一種方法即枚舉法。
    2、讓學(xué)生借助直觀操作發(fā)現(xiàn),把書盡量多的“平均分”給各個(gè)抽屜,看每個(gè)抽屜能分到多少本書,剩下的書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜比平均分得的本數(shù)多1本,可以用有余數(shù)的除法這一數(shù)學(xué)規(guī)律來表示。
    3、大量例舉之后,再引導(dǎo)學(xué)生總結(jié)歸納這一類“抽屜問題”的一般規(guī)律,讓學(xué)生借助直觀操作、觀察、表達(dá)等方式,讓學(xué)生經(jīng)歷從不同的角度認(rèn)識(shí)鴿巢原理。
    4、對(duì)“某個(gè)抽屜至少有書的本數(shù)”是除法算式中的“商+1”,而不是“商+余數(shù)”,適時(shí)挑出有針對(duì)性問題進(jìn)行交流、引導(dǎo)、討論,使學(xué)生從本質(zhì)上理解了“抽屜原理”,總結(jié)出“抽屜原理”中總有一個(gè)抽屜里至少有的本數(shù)等于“商+1”。
    5、本課教學(xué)中,學(xué)生對(duì)“總是”和“至少”的理解上沒有進(jìn)行結(jié)合具體的實(shí)例進(jìn)行引導(dǎo),學(xué)生在學(xué)習(xí)時(shí)理解有一些空難。
    6、在數(shù)學(xué)語言表述上應(yīng)該更加準(zhǔn)確,使學(xué)生聽起來更加明白。
    在這堂課的難點(diǎn)突破處,也就是讓學(xué)生借助直觀操作發(fā)現(xiàn),把書盡量多的“平均分”到各個(gè)抽屜,看每個(gè)抽屜能分到多少本書,剩下的書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜比平均分得的本數(shù)多1本。教學(xué)知識(shí)不光是讓學(xué)生按照公式來套用公式,這樣很容易造成學(xué)生的思維定勢(shì),所以在練習(xí)中,讓學(xué)生充分說理的基礎(chǔ)上,明確把什么當(dāng)作“抽屜數(shù)”,把什么當(dāng)作“物體數(shù)”并進(jìn)行反復(fù)練習(xí)。
    在這節(jié)課里部分學(xué)生判斷不出誰是“物體”,誰是“抽屜”。因此,在今后的教學(xué)中,多下些功夫,以求在課堂上讓學(xué)生更好地理解、消化所授知識(shí)。課后還要讓多做相關(guān)的練習(xí)加以鞏固。
    鴿巢問題教學(xué)設(shè)計(jì)篇十三
    教科書第68頁例1。
    (一)知識(shí)與技能:通過數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法。
    (二)過程與方法:結(jié)合具體的實(shí)際問題,通過實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問題的能力。
    (三)情感態(tài)度和價(jià)值觀:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過程中,讓學(xué)生切實(shí)體會(huì)到探索的樂趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。
    教學(xué)重點(diǎn):經(jīng)歷鴿巢問題的探究過程,初步了解鴿巢原理,會(huì)用鴿巢原理解決簡單的實(shí)際問題。
    教學(xué)難點(diǎn):通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    多媒體課件。
    同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
    好,咱們班人數(shù)已到齊,從今天開始,我們學(xué)習(xí)第五單元鴿巢問題,這節(jié)課通過數(shù)學(xué)活動(dòng)我們來了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開始上課。
    1、請(qǐng)同學(xué)們先來看例1。把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2只鉛筆。
    請(qǐng)你再把題讀一次,這是為什么呢?
    對(duì)總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆?;蛘呤钦f,鉛筆的支數(shù)要大于或等于兩支。
    課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個(gè)筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!
    方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個(gè)數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
    剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數(shù)學(xué)中我們叫它“枚舉法”。
    那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個(gè)情況呢?
    方法二:用“假設(shè)法”證明。
    對(duì),我們可以這樣想,如果在每個(gè)筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒。這時(shí)無論放在哪個(gè)筆筒,那個(gè)筆筒中就有2支,所以總有一個(gè)筆筒中至少放進(jìn)2支鉛筆。(平均分)。
    方法三:列式計(jì)算。
    你能用算式表示這個(gè)方法嗎?
    學(xué)生列出式子并說一說算式中商與余數(shù)各表示什么意思?
    2、把5支鉛筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒里至少有2支鉛筆。
    這道題大家可以用幾種方法解答呢?
    3種,枚舉法、假設(shè)法、列式計(jì)算。
    3、100支鉛筆,放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少要放進(jìn)多少支鉛筆呢?
    還能有枚舉法嗎?對(duì),不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時(shí)候用起來比較麻煩??梢杂眉僭O(shè)法和列式計(jì)算。
    4、表格中通過整理,總結(jié)規(guī)律。
    你發(fā)現(xiàn)了什么規(guī)律?
    當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時(shí),至少數(shù)等于2“商+1”。
    經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我把我們的這一發(fā)現(xiàn),稱為筆筒問題。但其實(shí)最早發(fā)現(xiàn)這個(gè)規(guī)律的不是我們,而是德國的一個(gè)數(shù)學(xué)家“狄里克雷”。
    好,我們做幾道題檢測(cè)一下你們的學(xué)習(xí)效果。
    1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?
    3、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
    今天你有什么收獲呢?
    作業(yè):兩導(dǎo)兩練第70頁、71頁實(shí)踐應(yīng)用1、4題。
    鴿巢問題教學(xué)設(shè)計(jì)篇十四
    本節(jié)課是通過幾個(gè)直觀例子,借助實(shí)際操作,引導(dǎo)學(xué)生探究“鴿巢原理”,初步經(jīng)歷“數(shù)學(xué)證明“的過程,并有意識(shí)的培養(yǎng)學(xué)生的“模型思想。
    1、借助直觀操作,經(jīng)歷探究過程。教師注重讓學(xué)生在操作中,經(jīng)歷探究過程,感知、理解抽屜原理。
    2、教師注重培養(yǎng)學(xué)生的“模型”思想。通過一系列的操作活動(dòng),學(xué)生對(duì)于枚舉法和假設(shè)法有一定的認(rèn)識(shí),加以比較,分析兩種方法在解決抽屜原理的優(yōu)超性和局限性,使學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來思考問題。
    3、在活動(dòng)中引導(dǎo)學(xué)生感受數(shù)學(xué)的魅力。本節(jié)課的“抽屜原理”的建立是學(xué)生在觀察、操作、思考與推理的基礎(chǔ)上理解和發(fā)現(xiàn)的,學(xué)生學(xué)的積極主動(dòng)。特別以游戲引入,又以游戲結(jié)束,既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又學(xué)到了抽屜原理的知識(shí),同時(shí)鍛煉了學(xué)生的思維。在整節(jié)課的教學(xué)活動(dòng)中使學(xué)生感受了數(shù)學(xué)的魅力。
    回顧整節(jié)課我覺得主要存在兩個(gè)問題:
    1、在學(xué)生體驗(yàn)數(shù)學(xué)知識(shí)的產(chǎn)生過程中,我始終擔(dān)心學(xué)生不理解,不敢大膽放手,總是牽著學(xué)生的思路走。
    2、這部分內(nèi)容屬于思維訓(xùn)練的內(nèi)容,應(yīng)該讓學(xué)生多說理,讓學(xué)生在說理的過程中真正理解體會(huì)“鴿巢問題”中的“總有”和“至少”的真正含義,并能靈活運(yùn)用所學(xué)知識(shí)解答一些變式練習(xí)。