教案的編寫需要教師對教學(xué)內(nèi)容的深入理解和教學(xué)方法的熟悉掌握。教師編寫教案時應(yīng)該注重語言的簡潔明確和邏輯的清晰性,方便教學(xué)操作和理解。通過研究這些教案,我們可以發(fā)現(xiàn)一些優(yōu)秀的教學(xué)策略和方法。
初中數(shù)學(xué)不等式教案篇一
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)。
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;。
(2)體驗數(shù)形結(jié)合思想。
3、情感、態(tài)度和價值觀目標(biāo)。
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會用數(shù)學(xué)的眼光觀察、分析事物;。
(2)體會多角度探索、解決問題。
初中數(shù)學(xué)不等式教案篇二
目的:以不等式的等價命題為依據(jù),揭示不等式的常用證明方法之一——比較法,要求學(xué)生能教熟練地運用作差、作商比較法證明不等式。
過程:
一、復(fù)習(xí):
2.比較法之一(作差法)步驟:作差——變形——判斷——結(jié)論。
二、作差法:(p13—14)。
甲乙兩人同時同地沿同一路線走到同一地點,甲有一半時間以速度。
m
行走,另一半時間以速度。
n
行走;有一半路程乙以速度。
m
行走,另一半路。
將本文的word文檔下載到電腦,方便收藏和打印。
初中數(shù)學(xué)不等式教案篇三
課前復(fù)習(xí)提問時,給學(xué)生的復(fù)習(xí)思考時間太短,開始問了幾個學(xué)生不等式的三個基本性質(zhì),有的答不出來,有的答對一點但不完整。在很多學(xué)生沒有作好充分準(zhǔn)備時問到這個問題有點慌亂,我覺得更好的辦法是先讓學(xué)生看一下書復(fù)習(xí)一下不等式的三個基本性質(zhì),然后合起書再叫同學(xué)來說效果會更好。
例2學(xué)生對實際問題中的字母取值范圍考慮不全,在講解這個問題時帶有點填壓式,告訴學(xué)生字母的取值要大于或等于0,講過之后可能學(xué)生印象還是不深。我覺得應(yīng)先舉一些實際生活中常見的例子,比如在數(shù)人的個數(shù)時字母應(yīng)取什么值等,多列舉一些例子讓學(xué)生感性上認識,從而引導(dǎo)學(xué)生思考例2的字母的.取值范圍。
例3學(xué)生根據(jù)三邊關(guān)系往往只列出一個不等式,在教學(xué)時我先采取了提問的方式,給出了三個問題,引出三個不等式,然后讓學(xué)生移項變形,又得出三個不等式,對總結(jié)三角形任意兩邊之差小于第三邊做了輔墊。教學(xué)效果較好。
學(xué)生在回答問題的過程中,為了更快的得到自己預(yù)期的答案,往往打斷學(xué)生的回答,剝奪了學(xué)生的主動權(quán);比如學(xué)生在總結(jié)不等式性質(zhì)3時,總怕他們出錯所以老師急于公布結(jié)論。有時在學(xué)生思考問題時做一些補充打斷學(xué)生的思路,這樣對學(xué)生思考問題又帶來一定影響;課堂小結(jié)中學(xué)生的體會與收獲談的不是很好。
初中數(shù)學(xué)不等式教案篇四
1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。
4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強對數(shù)學(xué)學(xué)習(xí)的興趣。
1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗。
利用數(shù)形結(jié)合的方法驗證公式。
動手操作,合作探究課型新授課教具投影儀。
你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨立思考和討論的時間,讓學(xué)生回想前面拼圖。)。
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常??梢缘玫揭恍┯杏玫氖阶?。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式。
提問:還能通過怎樣拼圖來解決以下問題。
(2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2。
試用拼一個長方形的方法,把這個二次三項式因式分解。
了解學(xué)生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
從這節(jié)課中你有哪些收獲?
(教師應(yīng)給予學(xué)生充分的時間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進行全面的總結(jié)。)。
學(xué)生回答。
a(b+c+d)=ab+ac+ad。
(a+b)(c+d)=ac+ad+bc+bd。
(a+b)2=a2+2ab+b2。
學(xué)生拿出準(zhǔn)備好的硬紙板制作。
給學(xué)生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
第95頁第3題。
復(fù)習(xí)例1板演。
………………。
………………。
……例2……。
………………。
………………。
教學(xué)后記。
初中數(shù)學(xué)不等式教案篇五
證明推論2證明例4練習(xí)。
探究活動。
能得到什么結(jié)論。
題目已知且,你能夠推出什么結(jié)論?
分析與解:由條件推出結(jié)論,我們可以考慮把已知條件的變量范圍擴大,對已知變量作運算,運用不等式的性質(zhì),或者跳出不等式去考慮一般的數(shù)學(xué)表達式。
思路一:改變的范圍,可得:
1.且;
2.且;
思路二:由已知變量作運算,可得:
3.且;
4.且;
5.且;
6.且;
7.且;
思路三:考慮含有的數(shù)學(xué)表達式具有的性質(zhì),可得:
8.(其中為實常數(shù))是三次方程;
9.(其中為常數(shù))的圖象不可能表示直線。
探究關(guān)系式是否成立的問題。
題目當(dāng)成立時,關(guān)系式是否成立?若成立,加以證明;若不成立,說明理由。
解:因為,所以,所以,
所以,
所以或。
所以或。
所以或。
所以不可能成立。
說明:像本例這樣的探索題,題目的結(jié)論是“兩可”(即兩種可能性)情形,而我們知道,說明結(jié)論不成立可像例1那樣舉一個反例就可以了。不過像本例的執(zhí)果索因的分析,不僅說明結(jié)論不成立,而且得出,必須同時大于1或同時小于1的結(jié)論。
探討增加什么條件使命題成立。
例適當(dāng)增加條件,使下列命題各命題成立:
(1)若,則;
(2)若,則;
(3)若,,則;
(4)若,則。
思路分析:本例為條件型開放題,需要依據(jù)不等式的性質(zhì),尋找使結(jié)論成立時所缺少的一個條件。
解:(1)。
(2)。當(dāng)時,
當(dāng)時,
(3)。
(4)。
引申發(fā)散對命題(3),能否增加條件,或,,使其成立?請闡述你的理由。
初中數(shù)學(xué)不等式教案篇六
重點:本節(jié)的重點是平行四邊形的概念和性質(zhì).雖然平行四邊形的概念在小學(xué)學(xué)過,但對于概念本質(zhì)屬性的理解并不深刻,為了加深學(xué)生對概念的理解,為以后學(xué)習(xí)特殊的平行四邊形打下基礎(chǔ),所以教師不要忽視平行四邊形的概念教學(xué).平行四邊形的性質(zhì)是以后證明四邊形問題的基礎(chǔ),也是學(xué)好全章的關(guān)鍵.尤其是平行四邊形性質(zhì)定理的推論,推論的應(yīng)用有兩個條件:
一個是夾在兩條平行線間;
一個是平行線段,具備這兩個條件才能得出一個結(jié)論平行線段相等,缺少任何一個條件結(jié)論都不成立,這也是學(xué)生容易犯錯的地方,教師要反復(fù)強調(diào).
難點:本節(jié)的難點是平行四邊形性質(zhì)定理的靈活應(yīng)用.為了能熟練的應(yīng)用性質(zhì)定理及其推論,要把性質(zhì)定理和推論的條件和結(jié)論給學(xué)生講清楚,哪幾個條件,決定哪個結(jié)論,如何用數(shù)學(xué)符號表示即書寫格式,都要在講練中反復(fù)強化.
3.教法建議。
(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調(diào)動學(xué)生的積極性.自己設(shè)計了一個動畫,建議老師們用它作為本節(jié)的引入,既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又可以激活學(xué)生的思維.
(2)在生產(chǎn)或生活中,平行四邊形是常見圖形之一,教師可以多給學(xué)生提供一些平行四邊形的圖片,增加學(xué)生的感性認識,然后,讓他們自己總結(jié)出平行四邊形的定義,教師最后做總結(jié).平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質(zhì).
(3)對于教師來說講課固然重要,但講完課后有目的的強化訓(xùn)練也是不可缺少的,通過做題,幫助學(xué)生更好的理解所講內(nèi)容,也就是我們平時說的要反思回顧,總結(jié)深化.
平行四邊形及其性質(zhì)第一課時。
一、素質(zhì)教育目標(biāo)。
(一)知識教學(xué)點。
1.使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.。
2.掌握平行四邊形的性質(zhì)定理1、2.。
3.并能運用這些知識進行有關(guān)的證明或計算.。
(二)能力訓(xùn)練點。
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉(zhuǎn)化思想.。
2.通過推導(dǎo)平行四邊形的性質(zhì)定理的過程,培養(yǎng)學(xué)生的推導(dǎo)、論證能力和邏輯思維能力.。
(三)德育滲透點。
通過要求學(xué)生書寫規(guī)范,培養(yǎng)學(xué)生科學(xué)嚴謹?shù)膶W(xué)風(fēng).。
(四)美育滲透點。
通過學(xué)習(xí),滲透幾何方法美和幾何語言美及圖形內(nèi)在美和結(jié)構(gòu)美。
二、學(xué)法引導(dǎo)。
閱讀、思考、講解、分析、轉(zhuǎn)化。
三、重點·難點·疑點及解決辦法。
1.教學(xué)重點:平行四邊形性質(zhì)定理的應(yīng)用。
四、課時安排。
2課時。
五、教具學(xué)具準(zhǔn)備。
教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具。
六、師生互動活動設(shè)計。
第一課時。
1.什么叫做四邊形?什么叫四邊形的一組對邊?
2.四邊形的兩組對邊在位置上有幾種可能?
(隨著學(xué)生回答畫出圖1)。
圖1。
1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.。
2.平行四邊形的表示:平行四邊形用符號“。
”表示,如圖1就是平行四邊形。
記作“。
”.。
align=middle。
圖1。
3.平行四邊形的性質(zhì)。
平行四邊形性質(zhì)定理1:平行四邊形的對角相等.。
平行四邊形性質(zhì)定理2:平行四邊形對邊相等.。
(教具用兩個全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)。
圖2如圖3。
所以四邊形是平行四邊形,所以.由此得到。
推論:夾在兩條平行線間的平行線段相等.。
圖3。
4.平行線間的距離。
我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.。
圖5。
注意:(1)兩相交直線無距離可言.。
例1已知:如圖1,
初中數(shù)學(xué)不等式教案篇七
教學(xué)目標(biāo)。
1.掌握分析法證明不等式;
2.理解分析法實質(zhì)――執(zhí)果索因;
3.提高證明不等式證法靈活性.
教學(xué)重點分析法。
教學(xué)難點分析法實質(zhì)的理解。
教學(xué)方法啟發(fā)引導(dǎo)式。
教學(xué)活動。
(一)導(dǎo)入新課。
(教師活動)教師提出問題,待學(xué)生回答和思考后點評.。
(學(xué)生活動)回答和思考教師提出的問題.。
[問題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?
[問題2]能否用比較法或綜合法證明不等式:
[點評]在證明不等式時,若用比較法或綜合法難以下手時,可采用另一種證明方法:分析法.(板書課題)。
設(shè)計意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,
(二)新課講授。
【嘗試探索、建立新知】。
[問題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時,說明了什么呢?
[問題3]說明要證明的不等式成立的理由是什么呢?
【例題示范、學(xué)會應(yīng)用】。
(學(xué)生活動)學(xué)生在教師引導(dǎo)下,研究問題,與教師一道完成問題的論證.。
初中數(shù)學(xué)不等式教案篇八
2.使學(xué)生學(xué)會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;。
3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.
教學(xué)重點和難點。
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應(yīng)關(guān)系.
課堂教學(xué)過程設(shè)計。
一、從學(xué)生原有認知結(jié)構(gòu)提出問題。
1.小學(xué)里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——.
二、講授新課。
讓學(xué)生觀察掛圖——放大的溫度計,同時教師給予語言指導(dǎo):利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))。
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例變式練習(xí)。
例1畫一個,并在上畫出表示下列各數(shù)的點:
例2指出上a,b,c,d,e各點分別表示什么數(shù).
課堂練習(xí)。
示出來.
2.說出下面上a,b,c,d,o,m各點表示什么數(shù)?
最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)。
指導(dǎo)學(xué)生閱讀教材后指出:是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學(xué)們能掌握的三要素,正確地畫出,在此還要提醒同學(xué)們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)。
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)a,h,d,e,o各點分別表示什么數(shù)?
2.在下面上,a,b,c,d各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};。
初中數(shù)學(xué)不等式教案篇九
《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點,教法學(xué)法,教學(xué)過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實際意義。同時,不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我班學(xué)生的特點,我制定了如下教學(xué)目標(biāo):
知識與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學(xué)化的能力。
教學(xué)重難點:
初中數(shù)學(xué)不等式教案篇十
填空:
教師追問:第三題()里可以填多少個數(shù)?第4題呢?
為什么3、4題()里可以填無數(shù)個數(shù)?
()里填任何數(shù)都行嗎?哪個數(shù)不行?(板書:零除外)。
這里為什么必須“零除外”?
(板書課題:分數(shù)基本性質(zhì))。
4.深入理解分數(shù)基本性質(zhì).。
教師提問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數(shù)大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習(xí).。
1.用直線把相等的分數(shù)連接起來.。
2.把下列分數(shù)按要求分類.。
和相等的分數(shù):
和相等的分數(shù):
3.判斷下列各題的對錯,并說明理由.。
4.填空并說出理由.。
5.集體練習(xí).。
四、照應(yīng)課前談話.。
問:現(xiàn)在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結(jié).。
這節(jié)課你有什么收獲?
六、布置作業(yè).。
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.。
2.在下面的括號里填上適當(dāng)?shù)臄?shù).。
將本文的word文檔下載到電腦,方便收藏和打印。
初中數(shù)學(xué)不等式教案篇十一
本節(jié)課的內(nèi)容,是人教版七年級下冊第九章第二節(jié)“實際問題與一元一次不等式”。它是在學(xué)習(xí)不等式的概念、性質(zhì)及其解法和運用一元一次方程(或方程組)解決實際問題等知識的基礎(chǔ)上,利用不等式解決實際問題。這既是對已學(xué)知識的運用和深化,又為今后在解決實際問題中提供另一種有效的解決途徑。通過實際問題的探究,讓學(xué)生學(xué)會列一元一次不等式,解決具有不等關(guān)系的實際問題。經(jīng)歷由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的過程,掌握利用一元一次不等式解決問題的基本過程。促進學(xué)生的數(shù)學(xué)思維意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。同時向?qū)W生滲透由特殊到一般、類比、建模和分類考慮問題的思想方法。不等式與現(xiàn)實生活中聯(lián)系非常緊密,解決好這類應(yīng)用題,有助于學(xué)生在以后的日常生活中自主靈活應(yīng)用所學(xué)知識解決實際問題。
七2班班現(xiàn)有56名同學(xué),部分學(xué)生基礎(chǔ)較差,拔尖學(xué)生少,尤其個別學(xué)生底子太薄,學(xué)生學(xué)習(xí)較為被動,預(yù)習(xí)工作做得不夠認真,同時學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性不高,基本能力較差,解決問題的能力不強,知識掌握不夠扎實,運用不夠靈活。從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認知特點來說:學(xué)生已經(jīng)在前一階段學(xué)習(xí)的學(xué)習(xí)中已經(jīng)具備了實際問題建立一元一次方程和解一元一次方程的一般步驟的基礎(chǔ),能進行數(shù)學(xué)建模和簡單的解釋應(yīng)用。雖然初一學(xué)生對消費問題比較熱心,但由于年紀(jì)太小,缺少生活經(jīng)驗,由于本節(jié)問題的背景和表達都比較貼近實際,其中有些數(shù)量關(guān)系比較隱蔽,可能會產(chǎn)生一定的障礙。
一元一次不等式的應(yīng)用,是中學(xué)數(shù)學(xué)的重要內(nèi)容,和一元一次方程應(yīng)用相似,對培養(yǎng)學(xué)生分析問題、解決問題的能力,體會數(shù)學(xué)的價值都有較大的意義,對實際生活中的不等量關(guān)系、數(shù)量大小比較等知識,學(xué)生在小學(xué)階段已經(jīng)有所了解,但用不等式表示,并對不等式的相關(guān)性質(zhì)進行探究,對學(xué)生是新的內(nèi)容。這些問題能培養(yǎng)學(xué)生思維的深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì)。分組活動,先獨立思考,再組內(nèi)交流,然后各組匯報討論結(jié)果,可極大調(diào)動學(xué)生的創(chuàng)造積極性,應(yīng)把握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。在實施教學(xué)時,要根據(jù)課程改革的基本理念和教材特點組織教學(xué),結(jié)合具體內(nèi)容,讓學(xué)生經(jīng)歷知識的形成與應(yīng)用過程。
知識目標(biāo):能進一步熟練的解一元一次不等式,會從實際問題中抽象出數(shù)學(xué)模型,會用一元一次不等式解決簡單的實際問題。
能力目標(biāo):通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,形成實事求是的態(tài)度和獨立思考的習(xí)慣;學(xué)會在解決問題時,與其他同學(xué)交流,培養(yǎng)互相合作精神。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實際中抽象出數(shù)量關(guān)系。注意問題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
創(chuàng)設(shè)情境,研究新知。
初中數(shù)學(xué)不等式教案篇十二
用“”或“”號表示大小關(guān)系的式子叫做不等式。
能使不等式成立的未知數(shù)的。取值范圍,叫做不等式解的集合,簡稱解集。
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
不等式有以下性質(zhì):
不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。
不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。
不等式的性質(zhì)3不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變。
解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa)的形式。
把兩個不等式合起來,就組成了一個一元一次不等式組。
的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。
初中數(shù)學(xué)不等式教案篇十三
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集.
(二)內(nèi)容解析。
現(xiàn)實生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實際出發(fā)導(dǎo)入常見行程問題的不等關(guān)系,使學(xué)生充分認識到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學(xué)過方程、方程的解、解方程的概念.通過類比教學(xué)、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學(xué)者而言,不等式的解集的理解就有一定的難度.因此教材又進行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.
基于以上分析,可以確定本節(jié)課的教學(xué)重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上.
二、目標(biāo)和目標(biāo)解析。
(一)教學(xué)目標(biāo)。
1.理解不等式的概念。
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系。
3.了解解不等式的概念。
4.用數(shù)軸來表示簡單不等式的解集。
(二)目標(biāo)解析。
1.達成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式.
2.達成目標(biāo)2的標(biāo)志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個過程.
4、達成目標(biāo)4的標(biāo)志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標(biāo)出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學(xué)問題診斷分析。
本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學(xué),學(xué)生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學(xué)難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.
四、教學(xué)支持條件分析。
利用多媒體直觀演示課前引入問題,激發(fā)學(xué)生的學(xué)習(xí)興趣.
五、教學(xué)過程設(shè)計。
(一)動畫演示情景激趣。
設(shè)計意圖:通過實例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣.
(二)立足實際引出新知。
小組討論,合作交流,然后小組反饋交流結(jié)果.
最后,老師將小組反饋意見進行整理(學(xué)生沒有討論出來的思路老師進行補充)。
初中數(shù)學(xué)不等式教案篇十四
《不等式的基本性質(zhì)》它是北師大版八年級下冊第一章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點,教法學(xué)法,教學(xué)過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實際意義。同時,不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的`內(nèi)容兼顧我校八年級學(xué)生的特點,我制定了如下教學(xué)目標(biāo):
知識與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學(xué)化的能力。
教學(xué)重難點:
初中數(shù)學(xué)不等式教案篇十五
2、能力目標(biāo):通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題。
3、情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,形成實事求是的態(tài)度和獨立思考的`習(xí)。
慣;學(xué)會在解決問題時,與其他同學(xué)交流,培養(yǎng)互相合作精神。
重點:一元一次不等式在實際問題中的應(yīng)用。難點:在實際問題中建立一元一次不等式的數(shù)量關(guān)系。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實際中抽象出數(shù)量關(guān)系。注意問題中隱含的。
不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
這個周末我們要去杜氏旅游渡假村,為此我們要做兩個準(zhǔn)備:先選擇一家旅行社,然后購買一些必需的旅游用品。在這個過程中,我們會碰到一些問題,看同學(xué)們能不能用數(shù)學(xué)知識來解決。
選定了旅行社以后,咱們要去購物了,正好商店為了吸引顧客在舉行優(yōu)惠打折活動。
問題2:
(1)如果累計購物不超過50元,則在兩店購物花費有區(qū)別嗎?
(2)如果累計購物超過50元,則在哪家商店購物花費???為什么?
關(guān)鍵是對于第二個問題的分類,鼓勵學(xué)生大膽猜想,對研究的問題發(fā)表見解,進行探索、合作與交流,涌現(xiàn)出多樣化的解題思路.教師及時予以引導(dǎo)、歸納和總結(jié),讓學(xué)生感知不等式的建模,在活動中體會不等式的實際作用。
1、根據(jù)設(shè)置恰當(dāng)?shù)奈粗獢?shù)。
2、用代數(shù)式表示各過程量。
3、尋找問題中的不等關(guān)系列出不等式。
解不等式注意不等式基本性質(zhì)的運用。
(本環(huán)節(jié)我設(shè)置學(xué)生分組合作共同討論,由學(xué)生代表發(fā)言,互相補充,最后總結(jié)。學(xué)生會體會到本節(jié)課我們不僅僅是解了如何分析問題中的不等關(guān)系列出不等式,也嘗試了利用分類的方法考慮問題,同時還學(xué)到了一種新的比較兩個量大小的方法:求差比較法。體現(xiàn)了新課標(biāo)提倡的學(xué)生主動,師生互動,生生互動的新的總結(jié)方式。)預(yù)留懸念要出游旅行,目的地的天氣情況也是我們很關(guān)注的問題,下節(jié)課咱們再一起看看杜氏旅游渡假村所在地的天氣如何,大家可以自己先去查查相關(guān)的資料。
(拋出學(xué)生感興趣的問題,為下節(jié)課的教學(xué)內(nèi)容打下了伏筆,做了很好的鋪墊)。
一元一次不等式的實際應(yīng)用是人教版七年級下冊第九章第二小節(jié)內(nèi)容,是在學(xué)習(xí)了一元一次不等式的性質(zhì)及其解法、用一元一次方程解決實際問題等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運用和深化,又為下節(jié)一元一次不等式組的學(xué)習(xí)奠定基礎(chǔ),具有承上啟下的作用;同時通過本節(jié)的學(xué)習(xí),向?qū)W生滲透“求差比較兩個量的大小”的方法,和分類考慮問題的探究方式,可以提高學(xué)生分析、解決問題的能力。
1。、教學(xué)內(nèi)容:
本節(jié)課的教學(xué)內(nèi)容大多以實際生活中的問題情景呈現(xiàn)出來,給學(xué)生以親切感,可以提高學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到數(shù)學(xué)來源于生活,學(xué)生通過合作、努力解決問題,體會到學(xué)習(xí)數(shù)學(xué)的價值。
2、組織形式:
本節(jié)課以開放式的課堂形式組織教學(xué),讓學(xué)生進行合作學(xué)習(xí),共同操作與探索、共同研究、解決問題。由于本節(jié)教學(xué)內(nèi)容的特點,教師無須過多講解,只需引導(dǎo)、組織學(xué)生活動,有意識的讓學(xué)生主動去觀察、比較、分類、歸納,積極思考,并真正參與到學(xué)生的討論之中。這節(jié)課成功與否,不在于教師的講解本領(lǐng),而在于調(diào)動、啟發(fā)學(xué)生、提出問題的水平以及激起學(xué)生求知欲、培養(yǎng)他們學(xué)習(xí)數(shù)學(xué)的主動性的藝術(shù)高低。
3、學(xué)習(xí)方式:
動手實踐、自主探索是學(xué)習(xí)數(shù)學(xué)的重要方式,因此本節(jié)課改變了過去接受式的學(xué)習(xí)方式,學(xué)生不是等待知識的傳遞,而是主動的參與到學(xué)習(xí)活動中,成為學(xué)習(xí)的主體。
4、評價方式:
教師在教學(xué)中關(guān)注的是學(xué)生對待學(xué)習(xí)的態(tài)度是否積極,關(guān)注的是學(xué)生思考。
初中數(shù)學(xué)不等式教案篇十六
3、情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,形成實事求是的態(tài)度和獨立思考的習(xí)慣;學(xué)會在解決問題時,與其他同學(xué)交流,培養(yǎng)互相合作精神。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實際中抽象出數(shù)量關(guān)系。注意問題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
創(chuàng)設(shè)情境,研究新知。
這個周末我們要去四明山旅游渡假村,為此我們要做兩個準(zhǔn)備:先選擇一家旅行社,然后購買一些必需的旅游用品。在這個過程中,我們會碰到一些問題,看同學(xué)們能不能用數(shù)學(xué)知識來解決。
(從生活中的實際問題入手,激發(fā)學(xué)生探究問題的興趣,這是一個最優(yōu)方案的選擇問題,具有一定的開放性和探索性,解決這類問題,一般要根據(jù)題目的條件,分別計算結(jié)果,再比較、擇優(yōu)。本題通過問題設(shè)置,培養(yǎng)學(xué)生分析題意的能力,分析題中相關(guān)條件,找到不等關(guān)系。讓學(xué)生充分進行討論交流,在活動中體會不等式的應(yīng)用。在分析問題的過程中運用了“求差值比較大小”這一方式,使學(xué)生又掌握了一種新的比較兩個量之間大小的方式;同時體會到分類考慮問題的思考方式)。
觀察探討,實際操作。
選定了旅行社以后,咱們要去購物了,正好商店為了吸引顧客在舉行優(yōu)惠打折活動。
問題2:
分析:這個問題較復(fù)雜,從何處入手呢?
甲商店優(yōu)惠方案的起點為購物款達__元后;
乙商店優(yōu)惠方案的起點為購物款過__元后、
啟發(fā)提問:我們是否應(yīng)分情況考慮?可以怎樣分情況呢?
(1)如果累計購物不超過50元,則在兩店購物花費有區(qū)別嗎?
(2)如果累計購物超過50元,則在哪家商店購物花費???為什么?
關(guān)鍵是對于第二個問題的分類,鼓勵學(xué)生大膽猜想,對研究的問題發(fā)表見解,進行探索、合作與交流,涌現(xiàn)出多樣化的解題思路.教師及時予以引導(dǎo)、歸納和總結(jié),讓學(xué)生感知不等式的建模,在活動中體會不等式的實際作用。
實際問題從關(guān)鍵語句中找條件。
符號表達1、根據(jù)題意設(shè)置恰當(dāng)?shù)奈粗獢?shù)。
2、用代數(shù)式表示各過程量。
3、尋找問題中的不等關(guān)系列出不等式。
解不等式注意不等式基本性質(zhì)的運用。
(本環(huán)節(jié)我設(shè)置學(xué)生分組合作共同討論,由學(xué)生代表發(fā)言,互相補充,最后總結(jié)。學(xué)生會體會到本節(jié)課我們不僅僅是解了如何分析問題中的不等關(guān)系列出不等式,也嘗試了利用分類的方法考慮問題,同時還學(xué)到了一種新的比較兩個量大小的方法:求差比較法。體現(xiàn)了新課標(biāo)提倡的學(xué)生主動,師生互動,生生互動的新的總結(jié)方式。)。
一元一次不等式的實際應(yīng)用是浙教版八年級上冊第五章內(nèi)容,是在學(xué)習(xí)了一元一次不等式的性質(zhì)及其解法、用一元一次方程解決實際問題等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運用和深化,又為下節(jié)一元一次不等式組的學(xué)習(xí)奠定基礎(chǔ),具有承上啟下的作用;同時通過本節(jié)的學(xué)習(xí),向?qū)W生滲透“求差比較兩個量的大小”的方法,和分類考慮問題的探究方式,可以提高學(xué)生分析問題、解決問題的能力。
本節(jié)課的教學(xué)設(shè)計從以下幾個方面進行設(shè)置:
1、教學(xué)內(nèi)容:本節(jié)課的教學(xué)內(nèi)容大多以實際生活中的問題情景呈現(xiàn)出來,給學(xué)生以親切感,可以提高學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到數(shù)學(xué)來源于生活,學(xué)生通過合作、努力解決問題,體會到學(xué)習(xí)數(shù)學(xué)的價值。
2、組織形式:本節(jié)課以開放式的課堂形式組織教學(xué),讓學(xué)生進行合作學(xué)習(xí),共同操作與探索、共同研究、解決問題。由于本節(jié)教學(xué)內(nèi)容的特點,教師無須過多講解,只需引導(dǎo)、組織學(xué)生活動,有意識的讓學(xué)生主動去觀察、比較、分類、歸納,積極思考,并真正參與到學(xué)生的討論之中。這節(jié)課成功與否,不在于教師的講解本領(lǐng),而在于調(diào)動、啟發(fā)學(xué)生、提出問題的水平以及激起學(xué)生求知欲、培養(yǎng)他們學(xué)習(xí)數(shù)學(xué)的主動性的藝術(shù)高低。
3、學(xué)習(xí)方式:動手實踐、自主探索是學(xué)習(xí)數(shù)學(xué)的重要方式,因此本節(jié)課改變了過去接受式的學(xué)習(xí)方式,學(xué)生不是等待知識的傳遞,而是主動的參與到學(xué)習(xí)活動中,成為學(xué)習(xí)的主體。
4、評價方式:教師在教學(xué)中關(guān)注的是學(xué)生對待學(xué)習(xí)的態(tài)度是否積極,關(guān)注的是學(xué)生思考了沒有,參與了沒有,關(guān)注學(xué)生能否從數(shù)學(xué)的角度考慮問題。也就是說:教師關(guān)注的是過程,而不是結(jié)果。另外,在課堂教學(xué)中,給了學(xué)生更多的展示自己的機會,并且教師的鼓勵與欣賞有助于學(xué)生認識自我,建立自信,發(fā)揮評價的教育功能。
初中數(shù)學(xué)不等式教案篇十七
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介。
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、教育教學(xué)觀。
1、學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、重過程。按照認知規(guī)律及學(xué)生認知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納……猜想……結(jié)論……驗證應(yīng)用”的循環(huán)往復(fù)的認知過程。
3、重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴謹?shù)膫€性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機啟發(fā),恰當(dāng)點撥,促進學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、教學(xué)目標(biāo)。
基于上述認識,及不等式的.基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)。
3、情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴謹求實的態(tài)度。
四、教與學(xué)重點、難點。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
五、教法與學(xué)法。
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強主動學(xué)習(xí)的指導(dǎo)。基于此,在學(xué)生初中知識經(jīng)驗的基礎(chǔ)上,以舊探新;以一系列問題,促進主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當(dāng)時機進行點撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達到知識與能力的目標(biāo)。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
初中數(shù)學(xué)不等式教案篇十八
知識與技能:會解含有分母的一元一次不等式;能夠用不等式表達數(shù)量之間的不等關(guān)系;能夠確定不等式的整數(shù)解。
過程與方法:經(jīng)歷解方程和解不等式兩種過程的比較,體會類比思想,發(fā)展學(xué)生的數(shù)學(xué)思考水平。
情感態(tài)度、價值觀:通過一元一次不等式的學(xué)習(xí),培養(yǎng)學(xué)生認真、堅持等良好學(xué)習(xí)習(xí)慣。.
本節(jié)教材首先讓學(xué)生動手做一做解兩個不等式;之后讓大家談?wù)劷庖辉淮尾坏仁脚c解一元一次方程的異同點;最后是關(guān)于通過列不等式表示數(shù)量之間不等關(guān)系的例題2、3,其中例3涉及到了不等式的正解數(shù)解問題。關(guān)于解含有分母的一元一次不等式,學(xué)生在去分母這一部可能容易出錯,可以采用通過學(xué)生深度解決、師生總結(jié)交流方法、鞏固應(yīng)用等方式處理。關(guān)于一元一次不等式的整數(shù)解問題,學(xué)生確實會有一定困難,主要是思考不夠認真,缺少方法等原因,教師要注重借助數(shù)軸的學(xué)法指導(dǎo)。
2、用不等式表達數(shù)量之間的不等關(guān)系。
3、確定不等式的整數(shù)解。
1、解含有分母的一元一次不等式時,去分母這一部的準(zhǔn)確性。
2、不等式的整數(shù)解的確定。
一、直接引入。
我們學(xué)習(xí)了解一元一次方程和解一元一次不等式,它們之間有怎樣的區(qū)別和聯(lián)系呢今天我們來探究一下。
二、探究新知。
1、出示問題,讓學(xué)生板演。
找兩名同學(xué),分別解下面兩個問題:
(1)解方程:﹦。
(2)解不等式:
2、小組討論解一元一次方程和解一元一次不等式的過程的異同點。
3、師生交流。
相同點:解一元一次方程和解一元一次不等式的步驟相同,依次為:去分母去括號移項,合并同類項化系數(shù)為1。
不同點:在解一元一次不等式的化系數(shù)為1時,要注意不等式兩邊乘或除以同一個負數(shù)時,不等號要改變方向。
4、運用新知。
將下列不等式中的分母化去:
初中數(shù)學(xué)不等式教案篇十九
《一元一次不等式組》是華東師大版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)七年級下冊第八章第三節(jié),我把本節(jié)內(nèi)容分為兩個課時,第一課時是一元一次不等式組的概念及解法,第二課時是不等式組的實踐與探索。今天,我說課的內(nèi)容是第一課時。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)的要求是:充分感受生活中存在著大量的不等關(guān)系,了解不等式組的意義;會解簡單的一元一次不等式組,并會用數(shù)軸確定解集。
《一元一次不等式》的主要內(nèi)容是一元一次不等式(不等式組)的解法及其簡單應(yīng)用。是在學(xué)習(xí)了有理數(shù)的大小比較、等式及其性質(zhì)、一元一次方程的基礎(chǔ)上,開始學(xué)習(xí)簡單的數(shù)量之間的不等關(guān)系,進一步探究現(xiàn)實世界數(shù)量關(guān)系的重要內(nèi)容,是繼一元一次方程和二元一次方程組之后,又一次數(shù)學(xué)建模思想的學(xué)習(xí),也是后繼學(xué)習(xí)一元二次方程、函數(shù)及進一步學(xué)習(xí)不等式的重要基礎(chǔ),具有承前啟后的重要作用。
《一元一次不等式組》是本章的最后一節(jié),是一元一次不等式知識的綜合運用和拓展延伸,是進一步刻畫現(xiàn)實世界數(shù)量關(guān)系的數(shù)學(xué)模型,是下一節(jié)利用一元一次不等式組解決實際問題的關(guān)鍵。因此,我把本節(jié)課的教學(xué)重點確定為一元一次不等式組的解法。
數(shù)學(xué)課程應(yīng)當(dāng)從學(xué)生熟悉的現(xiàn)實生活開始,沿著數(shù)學(xué)發(fā)現(xiàn)過程中人類的活動軌跡,從生活中的問題到數(shù)學(xué)問題,從具體問題到抽象概念,從特殊關(guān)系到一般規(guī)則,逐步通過學(xué)生自己的發(fā)現(xiàn)去學(xué)習(xí)數(shù)學(xué)、獲取知識。得到抽象化的數(shù)學(xué)知識之后,再及時地把它們應(yīng)用到新的現(xiàn)實問題上去。按照這樣的途徑發(fā)展,數(shù)學(xué)教育才能較好地溝通生活中的數(shù)學(xué)與課堂上的數(shù)學(xué)的聯(lián)系,才能有益于學(xué)生理解數(shù)學(xué),熱愛數(shù)學(xué)和使數(shù)學(xué)成為生活中有用的本領(lǐng)。
本節(jié)課,既有概念教學(xué)又有解題教學(xué),而概念教學(xué),應(yīng)該從生活、生產(chǎn)實例或?qū)W生熟悉的已有知識引入,引導(dǎo)學(xué)生通過觀察、比較、分析、綜合,抽取共性,得到概念的本質(zhì)屬性。在此基礎(chǔ)上歸納概括出概念的定義,并引導(dǎo)學(xué)生弄清定義中每一個字、詞的確切含義。華師版的教科書中,只設(shè)計了一個問題情境,我感覺還不夠,不能從一個問題抽象出概念的本質(zhì)。因此,在這里我又增加了一個問題情境,以增加對不等式組概念的理解,加強數(shù)學(xué)應(yīng)用意識的培養(yǎng)。
從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認知特點來說,學(xué)生已經(jīng)學(xué)習(xí)了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數(shù)學(xué)模型,有一定的數(shù)學(xué)化能力。但學(xué)生將兩個一元一次不等式的解集在同一數(shù)軸上表示會產(chǎn)生一定的困惑。這個年齡段的學(xué)生,以感性認識為主,并向理性認知過渡,所以,我對本節(jié)課的設(shè)計是通過兩個學(xué)生所熟悉的問題情境,讓學(xué)生獨立思考,合作交流,從而引導(dǎo)其自主學(xué)習(xí)。
基于對學(xué)情的分析,我確定了本節(jié)課的教學(xué)難點是:正確理解不等式組的解集。
在教材分析和學(xué)情分析的基礎(chǔ)上,結(jié)合預(yù)設(shè)的教學(xué)方法,確定了本節(jié)課的教學(xué)目標(biāo)如下:
1通過實例體會一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。
4培養(yǎng)學(xué)生分析、解決實際問題的能力。
5通過實際問題的解決,體會數(shù)學(xué)知識在生活中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數(shù)學(xué)的價值。
本節(jié)課采用多媒體教學(xué),利用多媒體教學(xué)信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學(xué)內(nèi)容,這樣不但可以提高學(xué)習(xí)效率和質(zhì)量,而且容易激發(fā)學(xué)生學(xué)習(xí)的興趣,調(diào)動積極性。
本節(jié)課的教學(xué)流程如下:實際問題——一元一次不等式組——解集——解法——應(yīng)用。
本節(jié)課我設(shè)計了五個活動。
活動一、實際問題,創(chuàng)設(shè)情境。
問題1。
(1)從蹺蹺板的狀況你可以找出怎樣的不等關(guān)系?
(2)你認為怎樣求x的范圍,可以盡可能地接近小寶的體重?
我提出問題(1),學(xué)生獨立思考,回答問題。
考察學(xué)生對應(yīng)用一元一次不等式解決實際問題的能力,并引出新知。
教師提出問題(2),學(xué)生小組合作、探索交流,回答問題。
我預(yù)計學(xué)生對于這個問題會產(chǎn)生兩種不同的看法:一種方法是利用估算的方法將特殊值代入來求出適合不等式組的特殊解;另一種方法是求出兩個不等式的解集,并分別將這兩個解集在數(shù)軸上表示。因此教師應(yīng)引導(dǎo)學(xué)生進一步理解本題的實際意義,能將兩個不等式的解集綜合分析。
這里是通過對數(shù)量關(guān)系的分析、抽象,突出數(shù)學(xué)建模思想的教學(xué),注重對學(xué)生進行引導(dǎo),讓學(xué)生充分發(fā)表意見,并鼓勵學(xué)生提出不同的解法。
問題2。
教師提出問題,學(xué)生獨立思考,回答問題。
教學(xué)效果預(yù)估與對策:預(yù)計學(xué)生對三角形三邊關(guān)系可能有所遺忘,教師應(yīng)給予提示。
設(shè)計意圖:這是一個與三角形相關(guān)的問題,要。
求學(xué)生能綜合運用已有的知識,獨立思考、自主探索、嘗試解決,促使學(xué)生在探索和解決問題的過程中獲得體驗、得到發(fā)展,學(xué)會新的東西,發(fā)展自己的思維能力。
活動二、總結(jié)歸納,得出概念。
通過上面兩個實際問題的探究,歸納概括出一元一次不等式組的概念和一元一次不等式組解集的概念。
同時滿足不等式(1)、(2)的未知數(shù)x應(yīng)是這兩個不等式解集的公共部分。在同一數(shù)軸上表示出這兩個解集,找到公共部分,就是所列不等式組的解集。
不等式組中幾個不等式的解集的公共部分,叫做這個不等式組的解集。
師生活動:在活動一的基礎(chǔ)上,將學(xué)生得出的結(jié)論進行歸納總結(jié)。教師要注意傾聽學(xué)生敘述問題的準(zhǔn)確性和全面性。
教學(xué)效果預(yù)估與對策:估計多數(shù)學(xué)生在經(jīng)歷了上述的探索過程后,能夠?qū)@個結(jié)論有所認識,但是未必能夠全面得出結(jié)論。因此,教師要耐心加以引導(dǎo)。
通過學(xué)生的自主探究,合作交流,培養(yǎng)學(xué)生的總結(jié)歸納能力。
活動三、解釋應(yīng)用、拓展延伸。
例題。
解下列不等式組,并把它們的解集在數(shù)軸上表示出來:
師生活動:師生共同完成,教師板書。
在對一元一次不等式意義理解的基礎(chǔ)上,會解一元一次不等式組。(2)是對解一元一次不等式組的拓展延伸。
練習(xí)1:
練習(xí)2:
師生活動:教師展示多媒體課件,學(xué)生獨立完成。
設(shè)計意圖:培養(yǎng)學(xué)生分析、解決實際問題的能力。
練習(xí)3:
求不等式組的解集。
練習(xí)4:
求不等式組的正整數(shù)解。
師生活動:教師展示多媒體課件,學(xué)生獨立完成。
設(shè)計意圖:這兩道習(xí)題的設(shè)置讓學(xué)生進一步理解一元一次不等式組解集的概念,會用數(shù)軸表示一元一次不等式組的解集。
活動四、課堂小結(jié)。
我提出了三個問題:
1通過本課的學(xué)習(xí),你學(xué)到了哪些新的知識?
2一元一次不等式組與不等式在解法和解集上有什么聯(lián)系?
3在學(xué)習(xí)這些知識的過程中,你的經(jīng)驗與教訓(xùn)是什么?
在學(xué)生回答的基礎(chǔ)上,教師作如下的歸納總結(jié):
1學(xué)習(xí)一元一次不等式組是數(shù)學(xué)知識拓展的需要,也是現(xiàn)實生活的需要,不等式組的知識源于生活實際,要學(xué)會分析現(xiàn)實世界中量與量的不等關(guān)系,解一元一次不等式組。
2將一元一次不等式組的解集在數(shù)軸上表示可以加深對一元一次不等式組解集的理解,也便于直觀地得到一元一次不等式組的解集,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法。
在課堂小結(jié)的過程中,教師提出問題,學(xué)生回答,互相補充.。
教學(xué)效果預(yù)估與對策:預(yù)計學(xué)生在利用本節(jié)知識解決所提出的問題的過程中,能夠總結(jié)出經(jīng)驗和教訓(xùn),有所收獲。教師要加以引導(dǎo),師生之間相互加以完善。
設(shè)計意圖:學(xué)生通過第一個問題,可以回顧出本節(jié)課所學(xué)到的知識;通過第二個問題,使學(xué)生在與一元一次不等式的對比中加深對一元一次不等式組的理解,并形成知識網(wǎng)絡(luò)。通過第三個問題,培養(yǎng)學(xué)生克服困難的自信心、意志力,并獲得成功的體驗,有助于學(xué)生全面認識數(shù)學(xué)的價值。
活動五、課后作業(yè)。
1教材p53練習(xí)1、2、4;
2p55復(fù)習(xí)題a組5、6。
教師布置作業(yè),學(xué)生記錄作業(yè).。
估計大部分學(xué)生可以較為順利完成作業(yè)1;作業(yè)2具有一定的難度,需要學(xué)生首先進行判斷,如果思維上存在障礙,可降低思維難度。
作業(yè)的設(shè)計,可以讓學(xué)生鞏固所學(xué)知識,讓學(xué)生在這個環(huán)節(jié)中,進一步理解和體會數(shù)學(xué)建模思想在實際問題中的應(yīng)用。
初中數(shù)學(xué)不等式教案篇二十
1、地位和價值。
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介。
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、教育教學(xué)觀。
1、學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、重過程。按照認知規(guī)律及學(xué)生認知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納……猜想……結(jié)論……驗證應(yīng)用”的循環(huán)往復(fù)的認知過程。
3、重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴謹?shù)腵個性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機啟發(fā),恰當(dāng)點撥,促進學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、教學(xué)目標(biāo)。
基于上述認識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)。
3、情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴謹求實的態(tài)度。
四、教與學(xué)重點、難點。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
初中數(shù)學(xué)不等式教案篇一
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)。
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;。
(2)體驗數(shù)形結(jié)合思想。
3、情感、態(tài)度和價值觀目標(biāo)。
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會用數(shù)學(xué)的眼光觀察、分析事物;。
(2)體會多角度探索、解決問題。
初中數(shù)學(xué)不等式教案篇二
目的:以不等式的等價命題為依據(jù),揭示不等式的常用證明方法之一——比較法,要求學(xué)生能教熟練地運用作差、作商比較法證明不等式。
過程:
一、復(fù)習(xí):
2.比較法之一(作差法)步驟:作差——變形——判斷——結(jié)論。
二、作差法:(p13—14)。
甲乙兩人同時同地沿同一路線走到同一地點,甲有一半時間以速度。
m
行走,另一半時間以速度。
n
行走;有一半路程乙以速度。
m
行走,另一半路。
將本文的word文檔下載到電腦,方便收藏和打印。
初中數(shù)學(xué)不等式教案篇三
課前復(fù)習(xí)提問時,給學(xué)生的復(fù)習(xí)思考時間太短,開始問了幾個學(xué)生不等式的三個基本性質(zhì),有的答不出來,有的答對一點但不完整。在很多學(xué)生沒有作好充分準(zhǔn)備時問到這個問題有點慌亂,我覺得更好的辦法是先讓學(xué)生看一下書復(fù)習(xí)一下不等式的三個基本性質(zhì),然后合起書再叫同學(xué)來說效果會更好。
例2學(xué)生對實際問題中的字母取值范圍考慮不全,在講解這個問題時帶有點填壓式,告訴學(xué)生字母的取值要大于或等于0,講過之后可能學(xué)生印象還是不深。我覺得應(yīng)先舉一些實際生活中常見的例子,比如在數(shù)人的個數(shù)時字母應(yīng)取什么值等,多列舉一些例子讓學(xué)生感性上認識,從而引導(dǎo)學(xué)生思考例2的字母的.取值范圍。
例3學(xué)生根據(jù)三邊關(guān)系往往只列出一個不等式,在教學(xué)時我先采取了提問的方式,給出了三個問題,引出三個不等式,然后讓學(xué)生移項變形,又得出三個不等式,對總結(jié)三角形任意兩邊之差小于第三邊做了輔墊。教學(xué)效果較好。
學(xué)生在回答問題的過程中,為了更快的得到自己預(yù)期的答案,往往打斷學(xué)生的回答,剝奪了學(xué)生的主動權(quán);比如學(xué)生在總結(jié)不等式性質(zhì)3時,總怕他們出錯所以老師急于公布結(jié)論。有時在學(xué)生思考問題時做一些補充打斷學(xué)生的思路,這樣對學(xué)生思考問題又帶來一定影響;課堂小結(jié)中學(xué)生的體會與收獲談的不是很好。
初中數(shù)學(xué)不等式教案篇四
1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。
4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強對數(shù)學(xué)學(xué)習(xí)的興趣。
1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗。
利用數(shù)形結(jié)合的方法驗證公式。
動手操作,合作探究課型新授課教具投影儀。
你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨立思考和討論的時間,讓學(xué)生回想前面拼圖。)。
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常??梢缘玫揭恍┯杏玫氖阶?。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式。
提問:還能通過怎樣拼圖來解決以下問題。
(2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2。
試用拼一個長方形的方法,把這個二次三項式因式分解。
了解學(xué)生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
從這節(jié)課中你有哪些收獲?
(教師應(yīng)給予學(xué)生充分的時間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進行全面的總結(jié)。)。
學(xué)生回答。
a(b+c+d)=ab+ac+ad。
(a+b)(c+d)=ac+ad+bc+bd。
(a+b)2=a2+2ab+b2。
學(xué)生拿出準(zhǔn)備好的硬紙板制作。
給學(xué)生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
第95頁第3題。
復(fù)習(xí)例1板演。
………………。
………………。
……例2……。
………………。
………………。
教學(xué)后記。
初中數(shù)學(xué)不等式教案篇五
證明推論2證明例4練習(xí)。
探究活動。
能得到什么結(jié)論。
題目已知且,你能夠推出什么結(jié)論?
分析與解:由條件推出結(jié)論,我們可以考慮把已知條件的變量范圍擴大,對已知變量作運算,運用不等式的性質(zhì),或者跳出不等式去考慮一般的數(shù)學(xué)表達式。
思路一:改變的范圍,可得:
1.且;
2.且;
思路二:由已知變量作運算,可得:
3.且;
4.且;
5.且;
6.且;
7.且;
思路三:考慮含有的數(shù)學(xué)表達式具有的性質(zhì),可得:
8.(其中為實常數(shù))是三次方程;
9.(其中為常數(shù))的圖象不可能表示直線。
探究關(guān)系式是否成立的問題。
題目當(dāng)成立時,關(guān)系式是否成立?若成立,加以證明;若不成立,說明理由。
解:因為,所以,所以,
所以,
所以或。
所以或。
所以或。
所以不可能成立。
說明:像本例這樣的探索題,題目的結(jié)論是“兩可”(即兩種可能性)情形,而我們知道,說明結(jié)論不成立可像例1那樣舉一個反例就可以了。不過像本例的執(zhí)果索因的分析,不僅說明結(jié)論不成立,而且得出,必須同時大于1或同時小于1的結(jié)論。
探討增加什么條件使命題成立。
例適當(dāng)增加條件,使下列命題各命題成立:
(1)若,則;
(2)若,則;
(3)若,,則;
(4)若,則。
思路分析:本例為條件型開放題,需要依據(jù)不等式的性質(zhì),尋找使結(jié)論成立時所缺少的一個條件。
解:(1)。
(2)。當(dāng)時,
當(dāng)時,
(3)。
(4)。
引申發(fā)散對命題(3),能否增加條件,或,,使其成立?請闡述你的理由。
初中數(shù)學(xué)不等式教案篇六
重點:本節(jié)的重點是平行四邊形的概念和性質(zhì).雖然平行四邊形的概念在小學(xué)學(xué)過,但對于概念本質(zhì)屬性的理解并不深刻,為了加深學(xué)生對概念的理解,為以后學(xué)習(xí)特殊的平行四邊形打下基礎(chǔ),所以教師不要忽視平行四邊形的概念教學(xué).平行四邊形的性質(zhì)是以后證明四邊形問題的基礎(chǔ),也是學(xué)好全章的關(guān)鍵.尤其是平行四邊形性質(zhì)定理的推論,推論的應(yīng)用有兩個條件:
一個是夾在兩條平行線間;
一個是平行線段,具備這兩個條件才能得出一個結(jié)論平行線段相等,缺少任何一個條件結(jié)論都不成立,這也是學(xué)生容易犯錯的地方,教師要反復(fù)強調(diào).
難點:本節(jié)的難點是平行四邊形性質(zhì)定理的靈活應(yīng)用.為了能熟練的應(yīng)用性質(zhì)定理及其推論,要把性質(zhì)定理和推論的條件和結(jié)論給學(xué)生講清楚,哪幾個條件,決定哪個結(jié)論,如何用數(shù)學(xué)符號表示即書寫格式,都要在講練中反復(fù)強化.
3.教法建議。
(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調(diào)動學(xué)生的積極性.自己設(shè)計了一個動畫,建議老師們用它作為本節(jié)的引入,既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又可以激活學(xué)生的思維.
(2)在生產(chǎn)或生活中,平行四邊形是常見圖形之一,教師可以多給學(xué)生提供一些平行四邊形的圖片,增加學(xué)生的感性認識,然后,讓他們自己總結(jié)出平行四邊形的定義,教師最后做總結(jié).平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質(zhì).
(3)對于教師來說講課固然重要,但講完課后有目的的強化訓(xùn)練也是不可缺少的,通過做題,幫助學(xué)生更好的理解所講內(nèi)容,也就是我們平時說的要反思回顧,總結(jié)深化.
平行四邊形及其性質(zhì)第一課時。
一、素質(zhì)教育目標(biāo)。
(一)知識教學(xué)點。
1.使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.。
2.掌握平行四邊形的性質(zhì)定理1、2.。
3.并能運用這些知識進行有關(guān)的證明或計算.。
(二)能力訓(xùn)練點。
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉(zhuǎn)化思想.。
2.通過推導(dǎo)平行四邊形的性質(zhì)定理的過程,培養(yǎng)學(xué)生的推導(dǎo)、論證能力和邏輯思維能力.。
(三)德育滲透點。
通過要求學(xué)生書寫規(guī)范,培養(yǎng)學(xué)生科學(xué)嚴謹?shù)膶W(xué)風(fēng).。
(四)美育滲透點。
通過學(xué)習(xí),滲透幾何方法美和幾何語言美及圖形內(nèi)在美和結(jié)構(gòu)美。
二、學(xué)法引導(dǎo)。
閱讀、思考、講解、分析、轉(zhuǎn)化。
三、重點·難點·疑點及解決辦法。
1.教學(xué)重點:平行四邊形性質(zhì)定理的應(yīng)用。
四、課時安排。
2課時。
五、教具學(xué)具準(zhǔn)備。
教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具。
六、師生互動活動設(shè)計。
第一課時。
1.什么叫做四邊形?什么叫四邊形的一組對邊?
2.四邊形的兩組對邊在位置上有幾種可能?
(隨著學(xué)生回答畫出圖1)。
圖1。
1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.。
2.平行四邊形的表示:平行四邊形用符號“。
”表示,如圖1就是平行四邊形。
記作“。
”.。
align=middle。
圖1。
3.平行四邊形的性質(zhì)。
平行四邊形性質(zhì)定理1:平行四邊形的對角相等.。
平行四邊形性質(zhì)定理2:平行四邊形對邊相等.。
(教具用兩個全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)。
圖2如圖3。
所以四邊形是平行四邊形,所以.由此得到。
推論:夾在兩條平行線間的平行線段相等.。
圖3。
4.平行線間的距離。
我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.。
圖5。
注意:(1)兩相交直線無距離可言.。
例1已知:如圖1,
初中數(shù)學(xué)不等式教案篇七
教學(xué)目標(biāo)。
1.掌握分析法證明不等式;
2.理解分析法實質(zhì)――執(zhí)果索因;
3.提高證明不等式證法靈活性.
教學(xué)重點分析法。
教學(xué)難點分析法實質(zhì)的理解。
教學(xué)方法啟發(fā)引導(dǎo)式。
教學(xué)活動。
(一)導(dǎo)入新課。
(教師活動)教師提出問題,待學(xué)生回答和思考后點評.。
(學(xué)生活動)回答和思考教師提出的問題.。
[問題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?
[問題2]能否用比較法或綜合法證明不等式:
[點評]在證明不等式時,若用比較法或綜合法難以下手時,可采用另一種證明方法:分析法.(板書課題)。
設(shè)計意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,
(二)新課講授。
【嘗試探索、建立新知】。
[問題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時,說明了什么呢?
[問題3]說明要證明的不等式成立的理由是什么呢?
【例題示范、學(xué)會應(yīng)用】。
(學(xué)生活動)學(xué)生在教師引導(dǎo)下,研究問題,與教師一道完成問題的論證.。
初中數(shù)學(xué)不等式教案篇八
2.使學(xué)生學(xué)會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;。
3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.
教學(xué)重點和難點。
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應(yīng)關(guān)系.
課堂教學(xué)過程設(shè)計。
一、從學(xué)生原有認知結(jié)構(gòu)提出問題。
1.小學(xué)里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——.
二、講授新課。
讓學(xué)生觀察掛圖——放大的溫度計,同時教師給予語言指導(dǎo):利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))。
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例變式練習(xí)。
例1畫一個,并在上畫出表示下列各數(shù)的點:
例2指出上a,b,c,d,e各點分別表示什么數(shù).
課堂練習(xí)。
示出來.
2.說出下面上a,b,c,d,o,m各點表示什么數(shù)?
最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)。
指導(dǎo)學(xué)生閱讀教材后指出:是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學(xué)們能掌握的三要素,正確地畫出,在此還要提醒同學(xué)們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)。
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)a,h,d,e,o各點分別表示什么數(shù)?
2.在下面上,a,b,c,d各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};。
初中數(shù)學(xué)不等式教案篇九
《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點,教法學(xué)法,教學(xué)過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實際意義。同時,不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我班學(xué)生的特點,我制定了如下教學(xué)目標(biāo):
知識與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學(xué)化的能力。
教學(xué)重難點:
初中數(shù)學(xué)不等式教案篇十
填空:
教師追問:第三題()里可以填多少個數(shù)?第4題呢?
為什么3、4題()里可以填無數(shù)個數(shù)?
()里填任何數(shù)都行嗎?哪個數(shù)不行?(板書:零除外)。
這里為什么必須“零除外”?
(板書課題:分數(shù)基本性質(zhì))。
4.深入理解分數(shù)基本性質(zhì).。
教師提問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數(shù)大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習(xí).。
1.用直線把相等的分數(shù)連接起來.。
2.把下列分數(shù)按要求分類.。
和相等的分數(shù):
和相等的分數(shù):
3.判斷下列各題的對錯,并說明理由.。
4.填空并說出理由.。
5.集體練習(xí).。
四、照應(yīng)課前談話.。
問:現(xiàn)在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結(jié).。
這節(jié)課你有什么收獲?
六、布置作業(yè).。
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.。
2.在下面的括號里填上適當(dāng)?shù)臄?shù).。
將本文的word文檔下載到電腦,方便收藏和打印。
初中數(shù)學(xué)不等式教案篇十一
本節(jié)課的內(nèi)容,是人教版七年級下冊第九章第二節(jié)“實際問題與一元一次不等式”。它是在學(xué)習(xí)不等式的概念、性質(zhì)及其解法和運用一元一次方程(或方程組)解決實際問題等知識的基礎(chǔ)上,利用不等式解決實際問題。這既是對已學(xué)知識的運用和深化,又為今后在解決實際問題中提供另一種有效的解決途徑。通過實際問題的探究,讓學(xué)生學(xué)會列一元一次不等式,解決具有不等關(guān)系的實際問題。經(jīng)歷由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的過程,掌握利用一元一次不等式解決問題的基本過程。促進學(xué)生的數(shù)學(xué)思維意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。同時向?qū)W生滲透由特殊到一般、類比、建模和分類考慮問題的思想方法。不等式與現(xiàn)實生活中聯(lián)系非常緊密,解決好這類應(yīng)用題,有助于學(xué)生在以后的日常生活中自主靈活應(yīng)用所學(xué)知識解決實際問題。
七2班班現(xiàn)有56名同學(xué),部分學(xué)生基礎(chǔ)較差,拔尖學(xué)生少,尤其個別學(xué)生底子太薄,學(xué)生學(xué)習(xí)較為被動,預(yù)習(xí)工作做得不夠認真,同時學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性不高,基本能力較差,解決問題的能力不強,知識掌握不夠扎實,運用不夠靈活。從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認知特點來說:學(xué)生已經(jīng)在前一階段學(xué)習(xí)的學(xué)習(xí)中已經(jīng)具備了實際問題建立一元一次方程和解一元一次方程的一般步驟的基礎(chǔ),能進行數(shù)學(xué)建模和簡單的解釋應(yīng)用。雖然初一學(xué)生對消費問題比較熱心,但由于年紀(jì)太小,缺少生活經(jīng)驗,由于本節(jié)問題的背景和表達都比較貼近實際,其中有些數(shù)量關(guān)系比較隱蔽,可能會產(chǎn)生一定的障礙。
一元一次不等式的應(yīng)用,是中學(xué)數(shù)學(xué)的重要內(nèi)容,和一元一次方程應(yīng)用相似,對培養(yǎng)學(xué)生分析問題、解決問題的能力,體會數(shù)學(xué)的價值都有較大的意義,對實際生活中的不等量關(guān)系、數(shù)量大小比較等知識,學(xué)生在小學(xué)階段已經(jīng)有所了解,但用不等式表示,并對不等式的相關(guān)性質(zhì)進行探究,對學(xué)生是新的內(nèi)容。這些問題能培養(yǎng)學(xué)生思維的深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì)。分組活動,先獨立思考,再組內(nèi)交流,然后各組匯報討論結(jié)果,可極大調(diào)動學(xué)生的創(chuàng)造積極性,應(yīng)把握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。在實施教學(xué)時,要根據(jù)課程改革的基本理念和教材特點組織教學(xué),結(jié)合具體內(nèi)容,讓學(xué)生經(jīng)歷知識的形成與應(yīng)用過程。
知識目標(biāo):能進一步熟練的解一元一次不等式,會從實際問題中抽象出數(shù)學(xué)模型,會用一元一次不等式解決簡單的實際問題。
能力目標(biāo):通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,形成實事求是的態(tài)度和獨立思考的習(xí)慣;學(xué)會在解決問題時,與其他同學(xué)交流,培養(yǎng)互相合作精神。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實際中抽象出數(shù)量關(guān)系。注意問題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
創(chuàng)設(shè)情境,研究新知。
初中數(shù)學(xué)不等式教案篇十二
用“”或“”號表示大小關(guān)系的式子叫做不等式。
能使不等式成立的未知數(shù)的。取值范圍,叫做不等式解的集合,簡稱解集。
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
不等式有以下性質(zhì):
不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。
不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。
不等式的性質(zhì)3不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變。
解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa)的形式。
把兩個不等式合起來,就組成了一個一元一次不等式組。
的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。
初中數(shù)學(xué)不等式教案篇十三
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集.
(二)內(nèi)容解析。
現(xiàn)實生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實際出發(fā)導(dǎo)入常見行程問題的不等關(guān)系,使學(xué)生充分認識到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學(xué)過方程、方程的解、解方程的概念.通過類比教學(xué)、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學(xué)者而言,不等式的解集的理解就有一定的難度.因此教材又進行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.
基于以上分析,可以確定本節(jié)課的教學(xué)重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上.
二、目標(biāo)和目標(biāo)解析。
(一)教學(xué)目標(biāo)。
1.理解不等式的概念。
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系。
3.了解解不等式的概念。
4.用數(shù)軸來表示簡單不等式的解集。
(二)目標(biāo)解析。
1.達成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式.
2.達成目標(biāo)2的標(biāo)志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個過程.
4、達成目標(biāo)4的標(biāo)志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標(biāo)出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學(xué)問題診斷分析。
本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學(xué),學(xué)生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學(xué)難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.
四、教學(xué)支持條件分析。
利用多媒體直觀演示課前引入問題,激發(fā)學(xué)生的學(xué)習(xí)興趣.
五、教學(xué)過程設(shè)計。
(一)動畫演示情景激趣。
設(shè)計意圖:通過實例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣.
(二)立足實際引出新知。
小組討論,合作交流,然后小組反饋交流結(jié)果.
最后,老師將小組反饋意見進行整理(學(xué)生沒有討論出來的思路老師進行補充)。
初中數(shù)學(xué)不等式教案篇十四
《不等式的基本性質(zhì)》它是北師大版八年級下冊第一章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點,教法學(xué)法,教學(xué)過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實際意義。同時,不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的`內(nèi)容兼顧我校八年級學(xué)生的特點,我制定了如下教學(xué)目標(biāo):
知識與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學(xué)化的能力。
教學(xué)重難點:
初中數(shù)學(xué)不等式教案篇十五
2、能力目標(biāo):通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題。
3、情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,形成實事求是的態(tài)度和獨立思考的`習(xí)。
慣;學(xué)會在解決問題時,與其他同學(xué)交流,培養(yǎng)互相合作精神。
重點:一元一次不等式在實際問題中的應(yīng)用。難點:在實際問題中建立一元一次不等式的數(shù)量關(guān)系。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實際中抽象出數(shù)量關(guān)系。注意問題中隱含的。
不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
這個周末我們要去杜氏旅游渡假村,為此我們要做兩個準(zhǔn)備:先選擇一家旅行社,然后購買一些必需的旅游用品。在這個過程中,我們會碰到一些問題,看同學(xué)們能不能用數(shù)學(xué)知識來解決。
選定了旅行社以后,咱們要去購物了,正好商店為了吸引顧客在舉行優(yōu)惠打折活動。
問題2:
(1)如果累計購物不超過50元,則在兩店購物花費有區(qū)別嗎?
(2)如果累計購物超過50元,則在哪家商店購物花費???為什么?
關(guān)鍵是對于第二個問題的分類,鼓勵學(xué)生大膽猜想,對研究的問題發(fā)表見解,進行探索、合作與交流,涌現(xiàn)出多樣化的解題思路.教師及時予以引導(dǎo)、歸納和總結(jié),讓學(xué)生感知不等式的建模,在活動中體會不等式的實際作用。
1、根據(jù)設(shè)置恰當(dāng)?shù)奈粗獢?shù)。
2、用代數(shù)式表示各過程量。
3、尋找問題中的不等關(guān)系列出不等式。
解不等式注意不等式基本性質(zhì)的運用。
(本環(huán)節(jié)我設(shè)置學(xué)生分組合作共同討論,由學(xué)生代表發(fā)言,互相補充,最后總結(jié)。學(xué)生會體會到本節(jié)課我們不僅僅是解了如何分析問題中的不等關(guān)系列出不等式,也嘗試了利用分類的方法考慮問題,同時還學(xué)到了一種新的比較兩個量大小的方法:求差比較法。體現(xiàn)了新課標(biāo)提倡的學(xué)生主動,師生互動,生生互動的新的總結(jié)方式。)預(yù)留懸念要出游旅行,目的地的天氣情況也是我們很關(guān)注的問題,下節(jié)課咱們再一起看看杜氏旅游渡假村所在地的天氣如何,大家可以自己先去查查相關(guān)的資料。
(拋出學(xué)生感興趣的問題,為下節(jié)課的教學(xué)內(nèi)容打下了伏筆,做了很好的鋪墊)。
一元一次不等式的實際應(yīng)用是人教版七年級下冊第九章第二小節(jié)內(nèi)容,是在學(xué)習(xí)了一元一次不等式的性質(zhì)及其解法、用一元一次方程解決實際問題等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運用和深化,又為下節(jié)一元一次不等式組的學(xué)習(xí)奠定基礎(chǔ),具有承上啟下的作用;同時通過本節(jié)的學(xué)習(xí),向?qū)W生滲透“求差比較兩個量的大小”的方法,和分類考慮問題的探究方式,可以提高學(xué)生分析、解決問題的能力。
1。、教學(xué)內(nèi)容:
本節(jié)課的教學(xué)內(nèi)容大多以實際生活中的問題情景呈現(xiàn)出來,給學(xué)生以親切感,可以提高學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到數(shù)學(xué)來源于生活,學(xué)生通過合作、努力解決問題,體會到學(xué)習(xí)數(shù)學(xué)的價值。
2、組織形式:
本節(jié)課以開放式的課堂形式組織教學(xué),讓學(xué)生進行合作學(xué)習(xí),共同操作與探索、共同研究、解決問題。由于本節(jié)教學(xué)內(nèi)容的特點,教師無須過多講解,只需引導(dǎo)、組織學(xué)生活動,有意識的讓學(xué)生主動去觀察、比較、分類、歸納,積極思考,并真正參與到學(xué)生的討論之中。這節(jié)課成功與否,不在于教師的講解本領(lǐng),而在于調(diào)動、啟發(fā)學(xué)生、提出問題的水平以及激起學(xué)生求知欲、培養(yǎng)他們學(xué)習(xí)數(shù)學(xué)的主動性的藝術(shù)高低。
3、學(xué)習(xí)方式:
動手實踐、自主探索是學(xué)習(xí)數(shù)學(xué)的重要方式,因此本節(jié)課改變了過去接受式的學(xué)習(xí)方式,學(xué)生不是等待知識的傳遞,而是主動的參與到學(xué)習(xí)活動中,成為學(xué)習(xí)的主體。
4、評價方式:
教師在教學(xué)中關(guān)注的是學(xué)生對待學(xué)習(xí)的態(tài)度是否積極,關(guān)注的是學(xué)生思考。
初中數(shù)學(xué)不等式教案篇十六
3、情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,形成實事求是的態(tài)度和獨立思考的習(xí)慣;學(xué)會在解決問題時,與其他同學(xué)交流,培養(yǎng)互相合作精神。
關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實際中抽象出數(shù)量關(guān)系。注意問題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。
創(chuàng)設(shè)情境,研究新知。
這個周末我們要去四明山旅游渡假村,為此我們要做兩個準(zhǔn)備:先選擇一家旅行社,然后購買一些必需的旅游用品。在這個過程中,我們會碰到一些問題,看同學(xué)們能不能用數(shù)學(xué)知識來解決。
(從生活中的實際問題入手,激發(fā)學(xué)生探究問題的興趣,這是一個最優(yōu)方案的選擇問題,具有一定的開放性和探索性,解決這類問題,一般要根據(jù)題目的條件,分別計算結(jié)果,再比較、擇優(yōu)。本題通過問題設(shè)置,培養(yǎng)學(xué)生分析題意的能力,分析題中相關(guān)條件,找到不等關(guān)系。讓學(xué)生充分進行討論交流,在活動中體會不等式的應(yīng)用。在分析問題的過程中運用了“求差值比較大小”這一方式,使學(xué)生又掌握了一種新的比較兩個量之間大小的方式;同時體會到分類考慮問題的思考方式)。
觀察探討,實際操作。
選定了旅行社以后,咱們要去購物了,正好商店為了吸引顧客在舉行優(yōu)惠打折活動。
問題2:
分析:這個問題較復(fù)雜,從何處入手呢?
甲商店優(yōu)惠方案的起點為購物款達__元后;
乙商店優(yōu)惠方案的起點為購物款過__元后、
啟發(fā)提問:我們是否應(yīng)分情況考慮?可以怎樣分情況呢?
(1)如果累計購物不超過50元,則在兩店購物花費有區(qū)別嗎?
(2)如果累計購物超過50元,則在哪家商店購物花費???為什么?
關(guān)鍵是對于第二個問題的分類,鼓勵學(xué)生大膽猜想,對研究的問題發(fā)表見解,進行探索、合作與交流,涌現(xiàn)出多樣化的解題思路.教師及時予以引導(dǎo)、歸納和總結(jié),讓學(xué)生感知不等式的建模,在活動中體會不等式的實際作用。
實際問題從關(guān)鍵語句中找條件。
符號表達1、根據(jù)題意設(shè)置恰當(dāng)?shù)奈粗獢?shù)。
2、用代數(shù)式表示各過程量。
3、尋找問題中的不等關(guān)系列出不等式。
解不等式注意不等式基本性質(zhì)的運用。
(本環(huán)節(jié)我設(shè)置學(xué)生分組合作共同討論,由學(xué)生代表發(fā)言,互相補充,最后總結(jié)。學(xué)生會體會到本節(jié)課我們不僅僅是解了如何分析問題中的不等關(guān)系列出不等式,也嘗試了利用分類的方法考慮問題,同時還學(xué)到了一種新的比較兩個量大小的方法:求差比較法。體現(xiàn)了新課標(biāo)提倡的學(xué)生主動,師生互動,生生互動的新的總結(jié)方式。)。
一元一次不等式的實際應(yīng)用是浙教版八年級上冊第五章內(nèi)容,是在學(xué)習(xí)了一元一次不等式的性質(zhì)及其解法、用一元一次方程解決實際問題等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運用和深化,又為下節(jié)一元一次不等式組的學(xué)習(xí)奠定基礎(chǔ),具有承上啟下的作用;同時通過本節(jié)的學(xué)習(xí),向?qū)W生滲透“求差比較兩個量的大小”的方法,和分類考慮問題的探究方式,可以提高學(xué)生分析問題、解決問題的能力。
本節(jié)課的教學(xué)設(shè)計從以下幾個方面進行設(shè)置:
1、教學(xué)內(nèi)容:本節(jié)課的教學(xué)內(nèi)容大多以實際生活中的問題情景呈現(xiàn)出來,給學(xué)生以親切感,可以提高學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到數(shù)學(xué)來源于生活,學(xué)生通過合作、努力解決問題,體會到學(xué)習(xí)數(shù)學(xué)的價值。
2、組織形式:本節(jié)課以開放式的課堂形式組織教學(xué),讓學(xué)生進行合作學(xué)習(xí),共同操作與探索、共同研究、解決問題。由于本節(jié)教學(xué)內(nèi)容的特點,教師無須過多講解,只需引導(dǎo)、組織學(xué)生活動,有意識的讓學(xué)生主動去觀察、比較、分類、歸納,積極思考,并真正參與到學(xué)生的討論之中。這節(jié)課成功與否,不在于教師的講解本領(lǐng),而在于調(diào)動、啟發(fā)學(xué)生、提出問題的水平以及激起學(xué)生求知欲、培養(yǎng)他們學(xué)習(xí)數(shù)學(xué)的主動性的藝術(shù)高低。
3、學(xué)習(xí)方式:動手實踐、自主探索是學(xué)習(xí)數(shù)學(xué)的重要方式,因此本節(jié)課改變了過去接受式的學(xué)習(xí)方式,學(xué)生不是等待知識的傳遞,而是主動的參與到學(xué)習(xí)活動中,成為學(xué)習(xí)的主體。
4、評價方式:教師在教學(xué)中關(guān)注的是學(xué)生對待學(xué)習(xí)的態(tài)度是否積極,關(guān)注的是學(xué)生思考了沒有,參與了沒有,關(guān)注學(xué)生能否從數(shù)學(xué)的角度考慮問題。也就是說:教師關(guān)注的是過程,而不是結(jié)果。另外,在課堂教學(xué)中,給了學(xué)生更多的展示自己的機會,并且教師的鼓勵與欣賞有助于學(xué)生認識自我,建立自信,發(fā)揮評價的教育功能。
初中數(shù)學(xué)不等式教案篇十七
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介。
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、教育教學(xué)觀。
1、學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、重過程。按照認知規(guī)律及學(xué)生認知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納……猜想……結(jié)論……驗證應(yīng)用”的循環(huán)往復(fù)的認知過程。
3、重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴謹?shù)膫€性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機啟發(fā),恰當(dāng)點撥,促進學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、教學(xué)目標(biāo)。
基于上述認識,及不等式的.基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)。
3、情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴謹求實的態(tài)度。
四、教與學(xué)重點、難點。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
五、教法與學(xué)法。
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強主動學(xué)習(xí)的指導(dǎo)。基于此,在學(xué)生初中知識經(jīng)驗的基礎(chǔ)上,以舊探新;以一系列問題,促進主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當(dāng)時機進行點撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達到知識與能力的目標(biāo)。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
初中數(shù)學(xué)不等式教案篇十八
知識與技能:會解含有分母的一元一次不等式;能夠用不等式表達數(shù)量之間的不等關(guān)系;能夠確定不等式的整數(shù)解。
過程與方法:經(jīng)歷解方程和解不等式兩種過程的比較,體會類比思想,發(fā)展學(xué)生的數(shù)學(xué)思考水平。
情感態(tài)度、價值觀:通過一元一次不等式的學(xué)習(xí),培養(yǎng)學(xué)生認真、堅持等良好學(xué)習(xí)習(xí)慣。.
本節(jié)教材首先讓學(xué)生動手做一做解兩個不等式;之后讓大家談?wù)劷庖辉淮尾坏仁脚c解一元一次方程的異同點;最后是關(guān)于通過列不等式表示數(shù)量之間不等關(guān)系的例題2、3,其中例3涉及到了不等式的正解數(shù)解問題。關(guān)于解含有分母的一元一次不等式,學(xué)生在去分母這一部可能容易出錯,可以采用通過學(xué)生深度解決、師生總結(jié)交流方法、鞏固應(yīng)用等方式處理。關(guān)于一元一次不等式的整數(shù)解問題,學(xué)生確實會有一定困難,主要是思考不夠認真,缺少方法等原因,教師要注重借助數(shù)軸的學(xué)法指導(dǎo)。
2、用不等式表達數(shù)量之間的不等關(guān)系。
3、確定不等式的整數(shù)解。
1、解含有分母的一元一次不等式時,去分母這一部的準(zhǔn)確性。
2、不等式的整數(shù)解的確定。
一、直接引入。
我們學(xué)習(xí)了解一元一次方程和解一元一次不等式,它們之間有怎樣的區(qū)別和聯(lián)系呢今天我們來探究一下。
二、探究新知。
1、出示問題,讓學(xué)生板演。
找兩名同學(xué),分別解下面兩個問題:
(1)解方程:﹦。
(2)解不等式:
2、小組討論解一元一次方程和解一元一次不等式的過程的異同點。
3、師生交流。
相同點:解一元一次方程和解一元一次不等式的步驟相同,依次為:去分母去括號移項,合并同類項化系數(shù)為1。
不同點:在解一元一次不等式的化系數(shù)為1時,要注意不等式兩邊乘或除以同一個負數(shù)時,不等號要改變方向。
4、運用新知。
將下列不等式中的分母化去:
初中數(shù)學(xué)不等式教案篇十九
《一元一次不等式組》是華東師大版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)七年級下冊第八章第三節(jié),我把本節(jié)內(nèi)容分為兩個課時,第一課時是一元一次不等式組的概念及解法,第二課時是不等式組的實踐與探索。今天,我說課的內(nèi)容是第一課時。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)的要求是:充分感受生活中存在著大量的不等關(guān)系,了解不等式組的意義;會解簡單的一元一次不等式組,并會用數(shù)軸確定解集。
《一元一次不等式》的主要內(nèi)容是一元一次不等式(不等式組)的解法及其簡單應(yīng)用。是在學(xué)習(xí)了有理數(shù)的大小比較、等式及其性質(zhì)、一元一次方程的基礎(chǔ)上,開始學(xué)習(xí)簡單的數(shù)量之間的不等關(guān)系,進一步探究現(xiàn)實世界數(shù)量關(guān)系的重要內(nèi)容,是繼一元一次方程和二元一次方程組之后,又一次數(shù)學(xué)建模思想的學(xué)習(xí),也是后繼學(xué)習(xí)一元二次方程、函數(shù)及進一步學(xué)習(xí)不等式的重要基礎(chǔ),具有承前啟后的重要作用。
《一元一次不等式組》是本章的最后一節(jié),是一元一次不等式知識的綜合運用和拓展延伸,是進一步刻畫現(xiàn)實世界數(shù)量關(guān)系的數(shù)學(xué)模型,是下一節(jié)利用一元一次不等式組解決實際問題的關(guān)鍵。因此,我把本節(jié)課的教學(xué)重點確定為一元一次不等式組的解法。
數(shù)學(xué)課程應(yīng)當(dāng)從學(xué)生熟悉的現(xiàn)實生活開始,沿著數(shù)學(xué)發(fā)現(xiàn)過程中人類的活動軌跡,從生活中的問題到數(shù)學(xué)問題,從具體問題到抽象概念,從特殊關(guān)系到一般規(guī)則,逐步通過學(xué)生自己的發(fā)現(xiàn)去學(xué)習(xí)數(shù)學(xué)、獲取知識。得到抽象化的數(shù)學(xué)知識之后,再及時地把它們應(yīng)用到新的現(xiàn)實問題上去。按照這樣的途徑發(fā)展,數(shù)學(xué)教育才能較好地溝通生活中的數(shù)學(xué)與課堂上的數(shù)學(xué)的聯(lián)系,才能有益于學(xué)生理解數(shù)學(xué),熱愛數(shù)學(xué)和使數(shù)學(xué)成為生活中有用的本領(lǐng)。
本節(jié)課,既有概念教學(xué)又有解題教學(xué),而概念教學(xué),應(yīng)該從生活、生產(chǎn)實例或?qū)W生熟悉的已有知識引入,引導(dǎo)學(xué)生通過觀察、比較、分析、綜合,抽取共性,得到概念的本質(zhì)屬性。在此基礎(chǔ)上歸納概括出概念的定義,并引導(dǎo)學(xué)生弄清定義中每一個字、詞的確切含義。華師版的教科書中,只設(shè)計了一個問題情境,我感覺還不夠,不能從一個問題抽象出概念的本質(zhì)。因此,在這里我又增加了一個問題情境,以增加對不等式組概念的理解,加強數(shù)學(xué)應(yīng)用意識的培養(yǎng)。
從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認知特點來說,學(xué)生已經(jīng)學(xué)習(xí)了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數(shù)學(xué)模型,有一定的數(shù)學(xué)化能力。但學(xué)生將兩個一元一次不等式的解集在同一數(shù)軸上表示會產(chǎn)生一定的困惑。這個年齡段的學(xué)生,以感性認識為主,并向理性認知過渡,所以,我對本節(jié)課的設(shè)計是通過兩個學(xué)生所熟悉的問題情境,讓學(xué)生獨立思考,合作交流,從而引導(dǎo)其自主學(xué)習(xí)。
基于對學(xué)情的分析,我確定了本節(jié)課的教學(xué)難點是:正確理解不等式組的解集。
在教材分析和學(xué)情分析的基礎(chǔ)上,結(jié)合預(yù)設(shè)的教學(xué)方法,確定了本節(jié)課的教學(xué)目標(biāo)如下:
1通過實例體會一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。
4培養(yǎng)學(xué)生分析、解決實際問題的能力。
5通過實際問題的解決,體會數(shù)學(xué)知識在生活中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數(shù)學(xué)的價值。
本節(jié)課采用多媒體教學(xué),利用多媒體教學(xué)信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學(xué)內(nèi)容,這樣不但可以提高學(xué)習(xí)效率和質(zhì)量,而且容易激發(fā)學(xué)生學(xué)習(xí)的興趣,調(diào)動積極性。
本節(jié)課的教學(xué)流程如下:實際問題——一元一次不等式組——解集——解法——應(yīng)用。
本節(jié)課我設(shè)計了五個活動。
活動一、實際問題,創(chuàng)設(shè)情境。
問題1。
(1)從蹺蹺板的狀況你可以找出怎樣的不等關(guān)系?
(2)你認為怎樣求x的范圍,可以盡可能地接近小寶的體重?
我提出問題(1),學(xué)生獨立思考,回答問題。
考察學(xué)生對應(yīng)用一元一次不等式解決實際問題的能力,并引出新知。
教師提出問題(2),學(xué)生小組合作、探索交流,回答問題。
我預(yù)計學(xué)生對于這個問題會產(chǎn)生兩種不同的看法:一種方法是利用估算的方法將特殊值代入來求出適合不等式組的特殊解;另一種方法是求出兩個不等式的解集,并分別將這兩個解集在數(shù)軸上表示。因此教師應(yīng)引導(dǎo)學(xué)生進一步理解本題的實際意義,能將兩個不等式的解集綜合分析。
這里是通過對數(shù)量關(guān)系的分析、抽象,突出數(shù)學(xué)建模思想的教學(xué),注重對學(xué)生進行引導(dǎo),讓學(xué)生充分發(fā)表意見,并鼓勵學(xué)生提出不同的解法。
問題2。
教師提出問題,學(xué)生獨立思考,回答問題。
教學(xué)效果預(yù)估與對策:預(yù)計學(xué)生對三角形三邊關(guān)系可能有所遺忘,教師應(yīng)給予提示。
設(shè)計意圖:這是一個與三角形相關(guān)的問題,要。
求學(xué)生能綜合運用已有的知識,獨立思考、自主探索、嘗試解決,促使學(xué)生在探索和解決問題的過程中獲得體驗、得到發(fā)展,學(xué)會新的東西,發(fā)展自己的思維能力。
活動二、總結(jié)歸納,得出概念。
通過上面兩個實際問題的探究,歸納概括出一元一次不等式組的概念和一元一次不等式組解集的概念。
同時滿足不等式(1)、(2)的未知數(shù)x應(yīng)是這兩個不等式解集的公共部分。在同一數(shù)軸上表示出這兩個解集,找到公共部分,就是所列不等式組的解集。
不等式組中幾個不等式的解集的公共部分,叫做這個不等式組的解集。
師生活動:在活動一的基礎(chǔ)上,將學(xué)生得出的結(jié)論進行歸納總結(jié)。教師要注意傾聽學(xué)生敘述問題的準(zhǔn)確性和全面性。
教學(xué)效果預(yù)估與對策:估計多數(shù)學(xué)生在經(jīng)歷了上述的探索過程后,能夠?qū)@個結(jié)論有所認識,但是未必能夠全面得出結(jié)論。因此,教師要耐心加以引導(dǎo)。
通過學(xué)生的自主探究,合作交流,培養(yǎng)學(xué)生的總結(jié)歸納能力。
活動三、解釋應(yīng)用、拓展延伸。
例題。
解下列不等式組,并把它們的解集在數(shù)軸上表示出來:
師生活動:師生共同完成,教師板書。
在對一元一次不等式意義理解的基礎(chǔ)上,會解一元一次不等式組。(2)是對解一元一次不等式組的拓展延伸。
練習(xí)1:
練習(xí)2:
師生活動:教師展示多媒體課件,學(xué)生獨立完成。
設(shè)計意圖:培養(yǎng)學(xué)生分析、解決實際問題的能力。
練習(xí)3:
求不等式組的解集。
練習(xí)4:
求不等式組的正整數(shù)解。
師生活動:教師展示多媒體課件,學(xué)生獨立完成。
設(shè)計意圖:這兩道習(xí)題的設(shè)置讓學(xué)生進一步理解一元一次不等式組解集的概念,會用數(shù)軸表示一元一次不等式組的解集。
活動四、課堂小結(jié)。
我提出了三個問題:
1通過本課的學(xué)習(xí),你學(xué)到了哪些新的知識?
2一元一次不等式組與不等式在解法和解集上有什么聯(lián)系?
3在學(xué)習(xí)這些知識的過程中,你的經(jīng)驗與教訓(xùn)是什么?
在學(xué)生回答的基礎(chǔ)上,教師作如下的歸納總結(jié):
1學(xué)習(xí)一元一次不等式組是數(shù)學(xué)知識拓展的需要,也是現(xiàn)實生活的需要,不等式組的知識源于生活實際,要學(xué)會分析現(xiàn)實世界中量與量的不等關(guān)系,解一元一次不等式組。
2將一元一次不等式組的解集在數(shù)軸上表示可以加深對一元一次不等式組解集的理解,也便于直觀地得到一元一次不等式組的解集,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法。
在課堂小結(jié)的過程中,教師提出問題,學(xué)生回答,互相補充.。
教學(xué)效果預(yù)估與對策:預(yù)計學(xué)生在利用本節(jié)知識解決所提出的問題的過程中,能夠總結(jié)出經(jīng)驗和教訓(xùn),有所收獲。教師要加以引導(dǎo),師生之間相互加以完善。
設(shè)計意圖:學(xué)生通過第一個問題,可以回顧出本節(jié)課所學(xué)到的知識;通過第二個問題,使學(xué)生在與一元一次不等式的對比中加深對一元一次不等式組的理解,并形成知識網(wǎng)絡(luò)。通過第三個問題,培養(yǎng)學(xué)生克服困難的自信心、意志力,并獲得成功的體驗,有助于學(xué)生全面認識數(shù)學(xué)的價值。
活動五、課后作業(yè)。
1教材p53練習(xí)1、2、4;
2p55復(fù)習(xí)題a組5、6。
教師布置作業(yè),學(xué)生記錄作業(yè).。
估計大部分學(xué)生可以較為順利完成作業(yè)1;作業(yè)2具有一定的難度,需要學(xué)生首先進行判斷,如果思維上存在障礙,可降低思維難度。
作業(yè)的設(shè)計,可以讓學(xué)生鞏固所學(xué)知識,讓學(xué)生在這個環(huán)節(jié)中,進一步理解和體會數(shù)學(xué)建模思想在實際問題中的應(yīng)用。
初中數(shù)學(xué)不等式教案篇二十
1、地位和價值。
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介。
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、教育教學(xué)觀。
1、學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、重過程。按照認知規(guī)律及學(xué)生認知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納……猜想……結(jié)論……驗證應(yīng)用”的循環(huán)往復(fù)的認知過程。
3、重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴謹?shù)腵個性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機啟發(fā),恰當(dāng)點撥,促進學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、教學(xué)目標(biāo)。
基于上述認識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)。
3、情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴謹求實的態(tài)度。
四、教與學(xué)重點、難點。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。