教案可以幫助教師提前設計和組織教學內容和活動。引入一些互動環(huán)節(jié),促進學生的思考和互動,激發(fā)他們的學習潛力。接下來將為大家推薦一些教案范文,希望能對大家的教學工作有所啟發(fā)。
初二數(shù)學教案勾股定理篇一
本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎.
二、教學任務分析。
本節(jié)是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力.
本節(jié)課的教學目標是:
1.通過觀察圖形,探索圖形間的關系,發(fā)展學生的空間觀念.
2.在將實際問題抽象成數(shù)學問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學學習的實用性.
利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
四、教法學法。
1.教學方法。
引導—探究—歸納。
本節(jié)課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學目標,我力求以下三個方面對學生進行引導:
(1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;。
(2)從學生活動出發(fā),順勢教學過程;。
(3)利用探索研究手段,通過思維深入,領悟教學過程.
2.課前準備。
教具:教材、電腦、多媒體課件.
學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.
五、教學過程分析。
本節(jié)課設計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè).
初二數(shù)學教案勾股定理篇二
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
【過程與方法】。
經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】。
體會事物之間的聯(lián)系,感受幾何的魅力。
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的證明。
(一)導入新課。
復習勾股定理,分清其題設和結論。
提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知。
請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確。
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
初二數(shù)學教案勾股定理篇三
一、學情分析:
知識技能基礎:學生在小學已經學過分數(shù)的乘除法,掌握了分數(shù)的乘除法法則,在學習分式的乘除法法則時可通過與分數(shù)的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結果的化簡奠定基礎。
能力基礎:在過去的數(shù)學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
二、教學目標:
知識目標:1、分式的乘除運算法則。
2、會進行簡單的分式的乘除法運算。
能力目標:1、類比分數(shù)的乘除運算法則,探索分式的乘除運算法則。
2、能解決一些與分式有關的簡單的實際問題。
情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。
2、培養(yǎng)學生的創(chuàng)新意識和應用意識。
三、教學重點、難點。
重點:分式乘除法的法則及應用。
難點:分子、分母是多項式的分式的乘除法的運算。
三、教學過程:
第一環(huán)節(jié)復習舊知識。
復習小學學的分數(shù)乘除法法則,
活動目的:
復習小學學過的分數(shù)的乘除法運算,為學習分式乘除法的法則做準備。
第二環(huán)節(jié)引入新課。
活動內容。
你能總結分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動目的:
讓學生觀察運算,通過小組討論交流,并與分數(shù)的乘除法的法則類比,讓學生自己總結出分式的乘除法的法則。
第三環(huán)節(jié)知識運用。
活動內容。
例題1:。
(1)(2)例題2。
(1)(2)活動目的:
通過例題講解,使學生會根據(jù)法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數(shù)推理的能力與應用意識。需要給學生強調的是分式運算的結果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結果要化簡。
第四環(huán)節(jié)走進中考。
(2012.漳州)第五環(huán)節(jié)課時小結。
活動內容:
1.分式的乘除法的法則。
2.分式運算的結果通常要化成最簡分式或整式.
3.學會類比的數(shù)學方法。
第六環(huán)節(jié)當堂檢測。
初二數(shù)學教案勾股定理篇四
一、整個課堂設計完整、結構緊湊、邏輯嚴密、前后呼應,準備得比較充分,能引導學生循序漸進,思路很清晰,講解也很到位。
二、不搞題海戰(zhàn)術,精講精練,舉一反三、觸類旁通。題型設計選題有針對性、典型性、層次性,亦有梯度,兩位老師都設計了分層練習,作業(yè)分層設計精巧,適合滿足不同層次學生的要求。
三、兩位老師引入新課都很自然,兩位老師都能從學生的實際水平出發(fā),面向全體學生,因材施教,分層次開展教學工作,全面提高學習效率。
教師在整個教學過程中老師敢于讓學生探索、體驗,給了學生以最大的自由運用和探索規(guī)律的開闊的地帶。特別是新塘三中的曾老師在教學中,通過教師有序的導、學生積極的學習參與、體驗、討論與交流,培養(yǎng)學生具有主動、負責、開拓、創(chuàng)新的個性特征和科學的思維方式。將知識與技能,過程與方法,情感態(tài)度和價值觀完美結合。在整個教學活動中始終面對全體學生,讓每一個學生都有收獲,都得到成功的體驗,充分體現(xiàn)了全面育人的新課標精神。建議新塘二中老師盡量少講,讓學生多思,多想,多做。......
初二數(shù)學教案勾股定理篇五
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
(二)重點與難點。
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
初二數(shù)學教案勾股定理篇六
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。
初二數(shù)學教案勾股定理篇七
勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。
一、知識與技能。
1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
2、應用勾股定理解決簡單的實際問題。
3學會簡單的合情推理與數(shù)學說理。
二、過程與方法。
引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。
三、情感與態(tài)度目標。
通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
四、重點與難點。
一、創(chuàng)設情景,揭示課題。
1、教師展示圖片并介紹第一情景。
以中國最早的一部數(shù)學著作——《周髀算經》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR> 2、教師展示圖片并介紹第二情景。
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題。
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結論嗎?
三、得出命題。
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。
第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。
因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
五、應用舉例,拓展訓練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結。
2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流。
讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
初二數(shù)學教案勾股定理篇八
教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數(shù)"的關系,它是數(shù)形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數(shù)學教學內容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質。
2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發(fā)學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、經歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結合思想。
2、經歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、欣賞設計圖形美。
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
(一)引入。
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)。
(二)實驗探究。
設網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)。
交流后得出一般結論:(用關于a、b、c的式子表示)。
(三)探索所得結論的正確性。
當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)。
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結論。早在公元前2000年左右,大禹治水時期,就曾經用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結論命名為"勾股定理"。(點題)。
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
如圖4(構造新圖形的方法去探索)。
1、繼續(xù)收集、整理有關勾股定理的證明方的探索問題并交流。
初二數(shù)學教案勾股定理篇九
教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
初二數(shù)學教案勾股定理篇十
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3、
答:某數(shù)為3、
(其次,用代數(shù)方法來解,教師引導,學生口述完成)
解法2:設某數(shù)為x,則有3x-2=x+4、
解之,得x=3、
答:某數(shù)為3、
師生共同分析:
1、本題中給出的已知量和未知量各是什么?
2、已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以 x=50 000、
答:原來有 50 000千克面粉、
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:
(2)例2的解方程過程較為簡捷,同學應注意模仿、
依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的情況,教師總結如下:
(2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系、(這是關鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥、解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤、并嚴格規(guī)范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程: 2x=10,
所以 x=5、
其蘋果數(shù)為 3× 5+9=24、
答:第一小組有5名同學,共摘蘋果24個、
學生板演后,引導學生探討此題是否可有其他解法,并列出方程、
(設第一小組共摘了x個蘋果,則依題意,得 )
3、某工廠女工人占全廠總人數(shù)的 35%,男工比女工多 252人,求全廠總人數(shù)、
首先,讓學生回答如下問題:
1、本節(jié)課學習了哪些內容?
2、列一元一次方程解應用題的方法和步驟是什么?
3、在運用上述方法和步驟時應注意什么?
依據(jù)學生的回答情況,教師總結如下:
(2)以上步驟同學應在理解的基礎上記憶、
1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?
2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
初二數(shù)學教案勾股定理篇十一
1.勾股定理內容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
勾股定理的'證明方法很多,常見的是拼圖的方法。
(1)圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理。
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。
初二數(shù)學教案勾股定理篇十二
本節(jié)課在教材處理上,先讓學生帶著三個問題預習完成網(wǎng)上作業(yè),自制4個兩條直角邊不等的全等的直角三角形,準備一張坐標紙。從而初步了解勾股定理的歷史和內容以及證法,并制作成課件或打印資料,為課上活動做了充分的準備。為突破本課重、難點起到了至關重要的作用。勾股定理這部分內容共計兩課時,本節(jié)課是第一課時。教學重點定位為勾股定理的探索過程及簡單應用。教學難點是勾股定理的證明。把勾股定理的應用放在第二課時進行專題訓練。
自主探索、合作交流、引導點撥。
初二數(shù)學教案勾股定理篇十三
勾股定理能夠幫助我們解決直角三角形中的邊長的計算或直角三角形中線段之間的關系的證明問題。在使用勾股定理時,必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運用勾股定理進行計算,應設法添加輔助線(通常作垂線),構造直角三角形,以便正確使用勾股定理進行求解。
初二數(shù)學教案勾股定理篇十四
1.逆定理的內容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.
2.利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
初二數(shù)學教案勾股定理篇十五
隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學課已不僅是一些數(shù)學知識的學習,更重要的是體現(xiàn)知識的認知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應該是學生最大限度參與的課?!稊?shù)學課程標準》中指出學生的數(shù)學學習應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內容要有利與學生主動進行觀察、實驗、猜想、驗證、推理與交流。內容的呈現(xiàn)應采取不同的表達方式,以滿足多樣化的學習需求。數(shù)學活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。
本節(jié)知識是在學生掌握了直角三角形的三個性質:直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎上展開的。勾股定理是直角三角形的一個非常重要的性質,它揭示了一個直角三角形三邊的數(shù)量關系,可解決直角三角形的許多有關的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經常出現(xiàn)。貫穿了整個幾何學習,更是數(shù)形結合的重要典范。更重要的是學生在探索定理的過程中,無論是課前準備和課上交流以及課下活動都讓學生充分感受到學習、思考的重要性,與人合作的重要性以及數(shù)學在實際生活中的重要作用,是進行愛國教育的重要題材!
本節(jié)課的教育對象是初二下的學生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學學習習慣。
初二數(shù)學教案勾股定理篇十六
如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗證勾股定理的思路是:
(1)圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理。
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。
如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
能夠構成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù).
由直角三角形三邊為邊長所構成的三個正方形滿足“兩個較小面積和等于較大面積”。
解決圓柱側面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。
初二數(shù)學教案勾股定理篇十七
1、學生的認知基礎:學生已學過三角形的內角和定理,以及三角形的邊、頂點、內角等概念,并且已初步了解四邊形可分成兩個三角形來求內角和,這為本節(jié)課的學習打下了基礎。因而學生在探索多邊形內角和時,便會很容易想到“拼”和“量”和把多邊形轉化成三角形等方法。另外,在以往的學習中,學生的動手實踐、自主探索及合作探究能力都得到一定的訓練,本節(jié)將進一步培養(yǎng)學生這些方面的能力。
2、學生的年齡心理特點:八年級的學生具有很強的感性認知基礎,對一些具體的實踐活動十分感興趣?;顫姾脛?,思維敏捷,表現(xiàn)欲強,但思考問題不全面。
二、教學目標。
1、知識與技能目標:
(1)理解多邊形及正多邊形的定義。
(2)掌握多邊形內角和公式。
2、過程與方法目標:
(1)掌握類比歸納、轉化的學習方法;。
(2)培養(yǎng)學生說理和簡單推理的意識及能力。
3、情感、態(tài)度與價值觀目標:
讓學生經歷探索多邊形內角和的過程,進一步發(fā)展學生的合情推理意識、主動探究的學習習慣;通過實際情景的引入,讓學生進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
三、教學重、難點。
教學重點:(1)多邊形內角和公式。
(2)計算多邊形的內角和及依據(jù)內角和確定多邊形邊數(shù)。
教學難點:多邊形內角和公式的推導。
四、方法和手段:
方法:綜合運用自主探究、合作交流、問題解決及研究式學習等方法。
手段:本節(jié)課采用多媒體與學科教學整和,以增大課堂信息量,加強直觀性及趣味性,有利于學生觀察、探究能力的提高。
五、教具、學具。
多媒體課件、三角板。
六、教學過程。
教師活動學生活動。
教學說明。
(一)創(chuàng)設情境。
1、在現(xiàn)實生活中,蘊含著豐富的幾何圖形。
2、觀察圖片找學過的幾何圖形?
(二)多邊形的概念。
1、那么什么樣的圖形是三角形呢?怎樣的圖形叫做四邊形呢?
3、多邊形的相關概念:多邊形的對角線、邊、頂點、內角、內角和等。
教師邊畫圖邊說明。
4、凸多邊形和凹多邊形的概念。
(三)探究活動:公式的推導。
1、提出問題。
(1)、我們學過的三角形的內角和是多少呢?
(2)、那么四邊形的內角和又是多少呢?你是怎么得到的?
(3)、那么五邊形、常見的六邊形。
的螺帽的內角和有沒有計算方法呢?
今天我們就來探索多邊形的內角和(板書課題)。
2、動手操作實踐,自己探索。
歸納為以下幾種方法:
方法1、過四邊形的一個頂點連對角線,把四邊形分割成兩個三角形。
方法2、過四邊形內任意一點與四邊形的各頂點連結,把四邊形分成三角形。
方法3、在四邊形的任一邊上取一點,與不相鄰的各頂點連結,把四邊形分成四個三角形。
方法4、在四邊形外任取一點,把這點與各頂點連結。
3、觀察、尋找規(guī)律。
五、六、七邊形內角和之間有何規(guī)律?
3、猜想。
那么對于n邊形猜想一下內角和計算公式是什么?
4、驗證。
就我們已求出的特殊多邊形的內角和,通過公式再求一次是否相符?
5、小結歸納。
(四)課堂練習。
1、求12邊形的內角和度數(shù)。
2、如果n邊形的內角和為1080°,求這個多邊形的邊數(shù)。
3、從一個多邊形一個頂點的所有對角線,將這個多邊形分成7個三角形,這個多邊形是__________邊形,它的內角和是____________________.
(五)正多邊形的概念。
1、正多邊形的概念:
(1)、一個多邊形的每一個內角都相等,它的邊一定相等嗎?
(2)、一個多邊形的邊相等,它的內角一定相等嗎?
(3)正多邊形的概念:在平面內,內角都相等,邊也都相等的多邊形叫做正多邊形。
2、鞏固練習。
(1)正三角形、正四邊形、正五邊形、正六邊形的內角分別是多少度?
(2)正多邊形在自然界中也常見,如蜜蜂的蜂房就是一個正六邊形的形狀,
(五)課堂小結。
今天你學到了什么知識?要求用自己的話說出來?
(六)課外作業(yè):
教科書第110頁習題1、2、3。
讓學生說說自己的想法。
學生通過觀察發(fā)現(xiàn):
三角形、四邊形、五邊形。
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
在平面內,由不在同一直線上的四條線段首尾順次相接所組成的圖形叫做四邊形。
三角形的內角和為180°。
四邊形的內角和為360°。
學生口述得到四邊形內角和為360°的方法。
1、正方形、矩形的內角和為4×90°。
一般的四邊形呢?
學生思考、討論得到解法。
完成表格。
學生分組根據(jù)自己所找到的求四邊形的內角和度數(shù)的方法,分別求出五邊形、六邊形、七邊形的內角和,并歸納得出:
n邊形的內角和的計算公式:。
(n-2)·180°。
讓學生獨立完成。
不一定,如矩形。
不一定,如菱形。
等邊三角形、正方形。
1、多邊形內角和公式。
2、探索多邊形內角和公式的方法。
從現(xiàn)實生活中引入,讓學生感受生活中處處有數(shù)學。(通過課件展示圖片,讓學生直觀感受。)。
學生利用三角形、四邊形的定義進行知識的遷移,獲得多邊形的概念。
學生自己動手畫圖,有助于幫助理解概念。
從學生感興趣的問題出發(fā),設置懸念,引入課題。
要給學生一定的思考、交流的時間,鼓勵學生大膽的發(fā)言,尋找多種方法求得五邊形內角和的度數(shù)。(利用在課件中設置觸發(fā)器的方法,可以靈活的演示學生的分割方法。)。
鼓勵學生大膽猜想、大膽發(fā)現(xiàn)。
通過類比、歸納,完成從特殊到一般的認識,體現(xiàn)數(shù)學認識的一般過程。
培養(yǎng)學生解決問題的能力,鞏固對n邊形的內角和公式的掌握:。
讓學生理解一個多邊形的邊相等,但角并不一定相等;。
角相等,但邊也并不。
一定相等。
鞏固學生對n邊形的內角和的公式的掌握,培養(yǎng)學生的解題能力:。
鞏固推導公式的方法和多邊形公式的掌握。
七、教學反思。
本節(jié)課從實際問題入手,在引課時出示了多幅日常生活用品和建筑的圖片,加強了數(shù)學與實際生活的聯(lián)系,讓學生感到數(shù)學離自己很近,激發(fā)了學生的求知欲。創(chuàng)設了良好的教學氛圍。其次注重讓學生在學習活動中領悟數(shù)學思想方法。數(shù)學的思想方法比有限的數(shù)學知識更為重要。學生在探索多邊形內角和的過程中先把五邊形轉化成三角形.進而求出內角和,這體現(xiàn)了由未知轉化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領會數(shù)學思想方法,真正理解和掌握數(shù)學的知識、技能,增強空間觀念及數(shù)學思考能力培養(yǎng),并獲得數(shù)學活動經驗。同時,恰當?shù)氖褂谜n件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。課件的使用提高了課堂效率,為學生的探索討論贏得了時間。同時也加大了練習量,有助于學生知識可鞏固和提高。
整節(jié)課學生的情緒飽滿,思維活躍,在教師適當?shù)囊龑?,學生能夠合作交流和自主探究,成功的利用四種方法探索出了多邊形的內角和公式,較好的完成了本節(jié)課的教學目標。
初二數(shù)學教案勾股定理篇十八
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,20國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
初二數(shù)學教案勾股定理篇十九
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
已知一直角三角形的兩邊,如何求第三邊?
學習了今天的這節(jié)課后,同學們就會有辦法解決了。
(二)學習新課。
初二數(shù)學教案勾股定理篇二十
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
初二數(shù)學教案勾股定理篇一
本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎.
二、教學任務分析。
本節(jié)是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力.
本節(jié)課的教學目標是:
1.通過觀察圖形,探索圖形間的關系,發(fā)展學生的空間觀念.
2.在將實際問題抽象成數(shù)學問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學學習的實用性.
利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
四、教法學法。
1.教學方法。
引導—探究—歸納。
本節(jié)課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學目標,我力求以下三個方面對學生進行引導:
(1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;。
(2)從學生活動出發(fā),順勢教學過程;。
(3)利用探索研究手段,通過思維深入,領悟教學過程.
2.課前準備。
教具:教材、電腦、多媒體課件.
學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.
五、教學過程分析。
本節(jié)課設計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè).
初二數(shù)學教案勾股定理篇二
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
【過程與方法】。
經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】。
體會事物之間的聯(lián)系,感受幾何的魅力。
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的證明。
(一)導入新課。
復習勾股定理,分清其題設和結論。
提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知。
請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確。
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
初二數(shù)學教案勾股定理篇三
一、學情分析:
知識技能基礎:學生在小學已經學過分數(shù)的乘除法,掌握了分數(shù)的乘除法法則,在學習分式的乘除法法則時可通過與分數(shù)的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結果的化簡奠定基礎。
能力基礎:在過去的數(shù)學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
二、教學目標:
知識目標:1、分式的乘除運算法則。
2、會進行簡單的分式的乘除法運算。
能力目標:1、類比分數(shù)的乘除運算法則,探索分式的乘除運算法則。
2、能解決一些與分式有關的簡單的實際問題。
情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。
2、培養(yǎng)學生的創(chuàng)新意識和應用意識。
三、教學重點、難點。
重點:分式乘除法的法則及應用。
難點:分子、分母是多項式的分式的乘除法的運算。
三、教學過程:
第一環(huán)節(jié)復習舊知識。
復習小學學的分數(shù)乘除法法則,
活動目的:
復習小學學過的分數(shù)的乘除法運算,為學習分式乘除法的法則做準備。
第二環(huán)節(jié)引入新課。
活動內容。
你能總結分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動目的:
讓學生觀察運算,通過小組討論交流,并與分數(shù)的乘除法的法則類比,讓學生自己總結出分式的乘除法的法則。
第三環(huán)節(jié)知識運用。
活動內容。
例題1:。
(1)(2)例題2。
(1)(2)活動目的:
通過例題講解,使學生會根據(jù)法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數(shù)推理的能力與應用意識。需要給學生強調的是分式運算的結果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結果要化簡。
第四環(huán)節(jié)走進中考。
(2012.漳州)第五環(huán)節(jié)課時小結。
活動內容:
1.分式的乘除法的法則。
2.分式運算的結果通常要化成最簡分式或整式.
3.學會類比的數(shù)學方法。
第六環(huán)節(jié)當堂檢測。
初二數(shù)學教案勾股定理篇四
一、整個課堂設計完整、結構緊湊、邏輯嚴密、前后呼應,準備得比較充分,能引導學生循序漸進,思路很清晰,講解也很到位。
二、不搞題海戰(zhàn)術,精講精練,舉一反三、觸類旁通。題型設計選題有針對性、典型性、層次性,亦有梯度,兩位老師都設計了分層練習,作業(yè)分層設計精巧,適合滿足不同層次學生的要求。
三、兩位老師引入新課都很自然,兩位老師都能從學生的實際水平出發(fā),面向全體學生,因材施教,分層次開展教學工作,全面提高學習效率。
教師在整個教學過程中老師敢于讓學生探索、體驗,給了學生以最大的自由運用和探索規(guī)律的開闊的地帶。特別是新塘三中的曾老師在教學中,通過教師有序的導、學生積極的學習參與、體驗、討論與交流,培養(yǎng)學生具有主動、負責、開拓、創(chuàng)新的個性特征和科學的思維方式。將知識與技能,過程與方法,情感態(tài)度和價值觀完美結合。在整個教學活動中始終面對全體學生,讓每一個學生都有收獲,都得到成功的體驗,充分體現(xiàn)了全面育人的新課標精神。建議新塘二中老師盡量少講,讓學生多思,多想,多做。......
初二數(shù)學教案勾股定理篇五
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
(二)重點與難點。
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
初二數(shù)學教案勾股定理篇六
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。
初二數(shù)學教案勾股定理篇七
勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。
一、知識與技能。
1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
2、應用勾股定理解決簡單的實際問題。
3學會簡單的合情推理與數(shù)學說理。
二、過程與方法。
引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。
三、情感與態(tài)度目標。
通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
四、重點與難點。
一、創(chuàng)設情景,揭示課題。
1、教師展示圖片并介紹第一情景。
以中國最早的一部數(shù)學著作——《周髀算經》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR> 2、教師展示圖片并介紹第二情景。
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題。
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結論嗎?
三、得出命題。
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。
第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。
因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
五、應用舉例,拓展訓練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結。
2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流。
讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
初二數(shù)學教案勾股定理篇八
教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數(shù)"的關系,它是數(shù)形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數(shù)學教學內容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質。
2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發(fā)學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、經歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結合思想。
2、經歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、欣賞設計圖形美。
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
(一)引入。
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)。
(二)實驗探究。
設網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)。
交流后得出一般結論:(用關于a、b、c的式子表示)。
(三)探索所得結論的正確性。
當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)。
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結論。早在公元前2000年左右,大禹治水時期,就曾經用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結論命名為"勾股定理"。(點題)。
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
如圖4(構造新圖形的方法去探索)。
1、繼續(xù)收集、整理有關勾股定理的證明方的探索問題并交流。
初二數(shù)學教案勾股定理篇九
教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
初二數(shù)學教案勾股定理篇十
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3、
答:某數(shù)為3、
(其次,用代數(shù)方法來解,教師引導,學生口述完成)
解法2:設某數(shù)為x,則有3x-2=x+4、
解之,得x=3、
答:某數(shù)為3、
師生共同分析:
1、本題中給出的已知量和未知量各是什么?
2、已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以 x=50 000、
答:原來有 50 000千克面粉、
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:
(2)例2的解方程過程較為簡捷,同學應注意模仿、
依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的情況,教師總結如下:
(2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系、(這是關鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥、解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤、并嚴格規(guī)范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程: 2x=10,
所以 x=5、
其蘋果數(shù)為 3× 5+9=24、
答:第一小組有5名同學,共摘蘋果24個、
學生板演后,引導學生探討此題是否可有其他解法,并列出方程、
(設第一小組共摘了x個蘋果,則依題意,得 )
3、某工廠女工人占全廠總人數(shù)的 35%,男工比女工多 252人,求全廠總人數(shù)、
首先,讓學生回答如下問題:
1、本節(jié)課學習了哪些內容?
2、列一元一次方程解應用題的方法和步驟是什么?
3、在運用上述方法和步驟時應注意什么?
依據(jù)學生的回答情況,教師總結如下:
(2)以上步驟同學應在理解的基礎上記憶、
1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?
2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
初二數(shù)學教案勾股定理篇十一
1.勾股定理內容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
勾股定理的'證明方法很多,常見的是拼圖的方法。
(1)圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理。
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。
初二數(shù)學教案勾股定理篇十二
本節(jié)課在教材處理上,先讓學生帶著三個問題預習完成網(wǎng)上作業(yè),自制4個兩條直角邊不等的全等的直角三角形,準備一張坐標紙。從而初步了解勾股定理的歷史和內容以及證法,并制作成課件或打印資料,為課上活動做了充分的準備。為突破本課重、難點起到了至關重要的作用。勾股定理這部分內容共計兩課時,本節(jié)課是第一課時。教學重點定位為勾股定理的探索過程及簡單應用。教學難點是勾股定理的證明。把勾股定理的應用放在第二課時進行專題訓練。
自主探索、合作交流、引導點撥。
初二數(shù)學教案勾股定理篇十三
勾股定理能夠幫助我們解決直角三角形中的邊長的計算或直角三角形中線段之間的關系的證明問題。在使用勾股定理時,必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運用勾股定理進行計算,應設法添加輔助線(通常作垂線),構造直角三角形,以便正確使用勾股定理進行求解。
初二數(shù)學教案勾股定理篇十四
1.逆定理的內容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.
2.利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
初二數(shù)學教案勾股定理篇十五
隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學課已不僅是一些數(shù)學知識的學習,更重要的是體現(xiàn)知識的認知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應該是學生最大限度參與的課?!稊?shù)學課程標準》中指出學生的數(shù)學學習應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內容要有利與學生主動進行觀察、實驗、猜想、驗證、推理與交流。內容的呈現(xiàn)應采取不同的表達方式,以滿足多樣化的學習需求。數(shù)學活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。
本節(jié)知識是在學生掌握了直角三角形的三個性質:直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎上展開的。勾股定理是直角三角形的一個非常重要的性質,它揭示了一個直角三角形三邊的數(shù)量關系,可解決直角三角形的許多有關的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經常出現(xiàn)。貫穿了整個幾何學習,更是數(shù)形結合的重要典范。更重要的是學生在探索定理的過程中,無論是課前準備和課上交流以及課下活動都讓學生充分感受到學習、思考的重要性,與人合作的重要性以及數(shù)學在實際生活中的重要作用,是進行愛國教育的重要題材!
本節(jié)課的教育對象是初二下的學生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學學習習慣。
初二數(shù)學教案勾股定理篇十六
如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗證勾股定理的思路是:
(1)圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理。
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。
如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
能夠構成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù).
由直角三角形三邊為邊長所構成的三個正方形滿足“兩個較小面積和等于較大面積”。
解決圓柱側面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。
初二數(shù)學教案勾股定理篇十七
1、學生的認知基礎:學生已學過三角形的內角和定理,以及三角形的邊、頂點、內角等概念,并且已初步了解四邊形可分成兩個三角形來求內角和,這為本節(jié)課的學習打下了基礎。因而學生在探索多邊形內角和時,便會很容易想到“拼”和“量”和把多邊形轉化成三角形等方法。另外,在以往的學習中,學生的動手實踐、自主探索及合作探究能力都得到一定的訓練,本節(jié)將進一步培養(yǎng)學生這些方面的能力。
2、學生的年齡心理特點:八年級的學生具有很強的感性認知基礎,對一些具體的實踐活動十分感興趣?;顫姾脛?,思維敏捷,表現(xiàn)欲強,但思考問題不全面。
二、教學目標。
1、知識與技能目標:
(1)理解多邊形及正多邊形的定義。
(2)掌握多邊形內角和公式。
2、過程與方法目標:
(1)掌握類比歸納、轉化的學習方法;。
(2)培養(yǎng)學生說理和簡單推理的意識及能力。
3、情感、態(tài)度與價值觀目標:
讓學生經歷探索多邊形內角和的過程,進一步發(fā)展學生的合情推理意識、主動探究的學習習慣;通過實際情景的引入,讓學生進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
三、教學重、難點。
教學重點:(1)多邊形內角和公式。
(2)計算多邊形的內角和及依據(jù)內角和確定多邊形邊數(shù)。
教學難點:多邊形內角和公式的推導。
四、方法和手段:
方法:綜合運用自主探究、合作交流、問題解決及研究式學習等方法。
手段:本節(jié)課采用多媒體與學科教學整和,以增大課堂信息量,加強直觀性及趣味性,有利于學生觀察、探究能力的提高。
五、教具、學具。
多媒體課件、三角板。
六、教學過程。
教師活動學生活動。
教學說明。
(一)創(chuàng)設情境。
1、在現(xiàn)實生活中,蘊含著豐富的幾何圖形。
2、觀察圖片找學過的幾何圖形?
(二)多邊形的概念。
1、那么什么樣的圖形是三角形呢?怎樣的圖形叫做四邊形呢?
3、多邊形的相關概念:多邊形的對角線、邊、頂點、內角、內角和等。
教師邊畫圖邊說明。
4、凸多邊形和凹多邊形的概念。
(三)探究活動:公式的推導。
1、提出問題。
(1)、我們學過的三角形的內角和是多少呢?
(2)、那么四邊形的內角和又是多少呢?你是怎么得到的?
(3)、那么五邊形、常見的六邊形。
的螺帽的內角和有沒有計算方法呢?
今天我們就來探索多邊形的內角和(板書課題)。
2、動手操作實踐,自己探索。
歸納為以下幾種方法:
方法1、過四邊形的一個頂點連對角線,把四邊形分割成兩個三角形。
方法2、過四邊形內任意一點與四邊形的各頂點連結,把四邊形分成三角形。
方法3、在四邊形的任一邊上取一點,與不相鄰的各頂點連結,把四邊形分成四個三角形。
方法4、在四邊形外任取一點,把這點與各頂點連結。
3、觀察、尋找規(guī)律。
五、六、七邊形內角和之間有何規(guī)律?
3、猜想。
那么對于n邊形猜想一下內角和計算公式是什么?
4、驗證。
就我們已求出的特殊多邊形的內角和,通過公式再求一次是否相符?
5、小結歸納。
(四)課堂練習。
1、求12邊形的內角和度數(shù)。
2、如果n邊形的內角和為1080°,求這個多邊形的邊數(shù)。
3、從一個多邊形一個頂點的所有對角線,將這個多邊形分成7個三角形,這個多邊形是__________邊形,它的內角和是____________________.
(五)正多邊形的概念。
1、正多邊形的概念:
(1)、一個多邊形的每一個內角都相等,它的邊一定相等嗎?
(2)、一個多邊形的邊相等,它的內角一定相等嗎?
(3)正多邊形的概念:在平面內,內角都相等,邊也都相等的多邊形叫做正多邊形。
2、鞏固練習。
(1)正三角形、正四邊形、正五邊形、正六邊形的內角分別是多少度?
(2)正多邊形在自然界中也常見,如蜜蜂的蜂房就是一個正六邊形的形狀,
(五)課堂小結。
今天你學到了什么知識?要求用自己的話說出來?
(六)課外作業(yè):
教科書第110頁習題1、2、3。
讓學生說說自己的想法。
學生通過觀察發(fā)現(xiàn):
三角形、四邊形、五邊形。
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
在平面內,由不在同一直線上的四條線段首尾順次相接所組成的圖形叫做四邊形。
三角形的內角和為180°。
四邊形的內角和為360°。
學生口述得到四邊形內角和為360°的方法。
1、正方形、矩形的內角和為4×90°。
一般的四邊形呢?
學生思考、討論得到解法。
完成表格。
學生分組根據(jù)自己所找到的求四邊形的內角和度數(shù)的方法,分別求出五邊形、六邊形、七邊形的內角和,并歸納得出:
n邊形的內角和的計算公式:。
(n-2)·180°。
讓學生獨立完成。
不一定,如矩形。
不一定,如菱形。
等邊三角形、正方形。
1、多邊形內角和公式。
2、探索多邊形內角和公式的方法。
從現(xiàn)實生活中引入,讓學生感受生活中處處有數(shù)學。(通過課件展示圖片,讓學生直觀感受。)。
學生利用三角形、四邊形的定義進行知識的遷移,獲得多邊形的概念。
學生自己動手畫圖,有助于幫助理解概念。
從學生感興趣的問題出發(fā),設置懸念,引入課題。
要給學生一定的思考、交流的時間,鼓勵學生大膽的發(fā)言,尋找多種方法求得五邊形內角和的度數(shù)。(利用在課件中設置觸發(fā)器的方法,可以靈活的演示學生的分割方法。)。
鼓勵學生大膽猜想、大膽發(fā)現(xiàn)。
通過類比、歸納,完成從特殊到一般的認識,體現(xiàn)數(shù)學認識的一般過程。
培養(yǎng)學生解決問題的能力,鞏固對n邊形的內角和公式的掌握:。
讓學生理解一個多邊形的邊相等,但角并不一定相等;。
角相等,但邊也并不。
一定相等。
鞏固學生對n邊形的內角和的公式的掌握,培養(yǎng)學生的解題能力:。
鞏固推導公式的方法和多邊形公式的掌握。
七、教學反思。
本節(jié)課從實際問題入手,在引課時出示了多幅日常生活用品和建筑的圖片,加強了數(shù)學與實際生活的聯(lián)系,讓學生感到數(shù)學離自己很近,激發(fā)了學生的求知欲。創(chuàng)設了良好的教學氛圍。其次注重讓學生在學習活動中領悟數(shù)學思想方法。數(shù)學的思想方法比有限的數(shù)學知識更為重要。學生在探索多邊形內角和的過程中先把五邊形轉化成三角形.進而求出內角和,這體現(xiàn)了由未知轉化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領會數(shù)學思想方法,真正理解和掌握數(shù)學的知識、技能,增強空間觀念及數(shù)學思考能力培養(yǎng),并獲得數(shù)學活動經驗。同時,恰當?shù)氖褂谜n件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。課件的使用提高了課堂效率,為學生的探索討論贏得了時間。同時也加大了練習量,有助于學生知識可鞏固和提高。
整節(jié)課學生的情緒飽滿,思維活躍,在教師適當?shù)囊龑?,學生能夠合作交流和自主探究,成功的利用四種方法探索出了多邊形的內角和公式,較好的完成了本節(jié)課的教學目標。
初二數(shù)學教案勾股定理篇十八
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,20國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
初二數(shù)學教案勾股定理篇十九
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
已知一直角三角形的兩邊,如何求第三邊?
學習了今天的這節(jié)課后,同學們就會有辦法解決了。
(二)學習新課。
初二數(shù)學教案勾股定理篇二十
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。

