最新教案高中數(shù)學(優(yōu)質(zhì)18篇)

字號:

    教案的編寫需要教師對學科知識掌握牢固,教學經(jīng)驗豐富,并結合學生的實際情況進行合理設計。編寫教案前,教師應該充分了解教學任務要求和學生的學習水平。以下是小編為大家收集的教案范文,僅供參考,希望對大家有所幫助。
    教案高中數(shù)學篇一
    理解數(shù)列的概念,掌握數(shù)列的運用。
    理解數(shù)列的概念,掌握數(shù)列的運用。
    【知識點精講】。
    1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)。
    2、通項公式:數(shù)列的.第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。
    (通項公式不)。
    3、數(shù)列的表示:。
    (1)列舉法:如1,3,5,7,9……;。
    (2)圖解法:由(n,an)點構成;。
    (3)解析法:用通項公式表示,如an=2n+1。
    5、任意數(shù)列{an}的前n項和的性質(zhì)。
    教案高中數(shù)學篇二
    掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    向量的性質(zhì)及相關知識的綜合應用。
    (一)主要知識:
    1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的`有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略。
    1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
    2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
    教案高中數(shù)學篇三
    3.進一步提高問題探究意識、知識應用意識和同伴合作意識。
    問題的提出與解決。
    如何進行問題的探究。
    啟發(fā)探究式。
    研究方向提示:
    1.數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;
    2.研究所給數(shù)列的項之間的關系;
    3.研究所給數(shù)列的子數(shù)列;
    4.研究所給數(shù)列能構造的新數(shù)列;
    5.數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;
    6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復數(shù)、圖形、實際意義等)。
    針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
    課堂小結:
    1.研究一個數(shù)列可以從哪些方面提出問題并進行研究?
    2.你最喜歡哪位同學的研究?為什么?
    開展研究性學習,培養(yǎng)問題解決能力。
    一、對“研究性學習”和“問題解決”的認識研究性學習是一種與接受性學習相對應的學習方式,泛指學生主動探究問題的學習。研究性學習也可以說是一種學習活動:學生在教師指導下,在自己的學習生活和社會生活中選擇課題,以類似科學研究的方式去主動地獲取知識、應用知識、解決問題。
    “問題解決”(problemsolving)是美國數(shù)學教育界在二十世紀八十年代的主要口號,即認為應當以“問題解決”作為學校數(shù)學教育的中心。
    問題解決能力是一種重要的數(shù)學能力,其核心是“創(chuàng)新精神”與“實踐能力”。在數(shù)學教學活動中開展研究性學習是培養(yǎng)問題解決能力的主要途徑。
    二、“問題解決”課堂教學模式的建構與實踐以研究性學習活動為載體,以培養(yǎng)問題解決能力為核心的'課堂教學模式(以下簡稱為“問題解決”課堂教學模式)試圖通過問題情境創(chuàng)設,激發(fā)學生的求知欲,以獨立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。
    (一)關于“問題解決”課堂教學模式。
    通過實施“問題解決”課堂教學模式,希望能夠達到以下的功能目標:學習發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團結協(xié)作精神,增進師生、同伴之間的情感交流,形成自覺運用數(shù)學基礎知識、基本技能和數(shù)學思想方法分析問題、解決問題的能力和意識。
    (二)數(shù)學學科中的問題解決能力的培養(yǎng)目標。
    數(shù)學問題解決能力培養(yǎng)的目標可以有不同層次的要求:會審題,會建模,會轉(zhuǎn)化,會歸類,會反思,會編題。
    (三)“問題解決”課堂教學模式的教學流程。
    (四)“問題解決”課堂教學評價標準。
    1.教學目標的確定;
    2.教學方法的選擇;
    3.問題的選擇;
    4.師生主體意識的體現(xiàn);
    5.教學策略的運用。
    (五)了解學生的數(shù)學問題解決能力的途徑。
    (六)開展研究性學習活動對教師的能力要求。
    教案高中數(shù)學篇四
    (2)理解直線與二元一次方程的關系及其證明。
    :計算機。
    :啟發(fā)引導法,討論法。
    下面給出教學實施過程設計的簡要思路:
    (一)引入的設計。
    前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
    問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
    肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
    問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
    肯定學生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”。
    啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
    學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
    【問題1】“任意直線的方程都是二元一次方程嗎?”
    (二)本節(jié)主體內(nèi)容教學的設計。
    這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
    學生或獨立研究,或合作研究,教師巡視指導.。
    經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
    思路一:…。
    思路二:…。
    教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
    按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
    當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
    當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
    學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
    平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
    綜合兩種情況,我們得出如下結論:
    在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程。
    至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
    同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
    學生們不難得出:二者可以概括為統(tǒng)一的形式。
    這樣上邊的結論可以表述如下:
    在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
    啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
    【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
    師生共同討論,評價不同思路,達成共識:
    (1)當時,方程可化為。
    這是表示斜率為、在軸上的截距為的直線。
    (2)當時,由于、不同時為0,必有,方程可化為。
    這表示一條與軸垂直的直線。
    因此,得到結論:
    在平面直角坐標系中,任何形如(其中不同時為0)的二元一次方程都表示一條直線。
    為方便,我們把(其中不同時為0)稱作直線方程的一般式是合理。
    【動畫演示】。
    演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線。
    (三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計。
    略
    教案高中數(shù)學篇五
    (1)通過實物操作,增強學生的直觀感知。
    (2)能根據(jù)幾何結構特征對空間物體進行分類。
    (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
    (4)會表示有關于幾何體以及柱、錐、臺的分類。
    2.過程與方法。
    (1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
    (2)讓學生觀察、討論、歸納、概括所學的知識。
    3.情感態(tài)度與價值觀。
    (1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
    (2)培養(yǎng)學生的空間想象能力和抽象括能力。
    重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
    難點:柱、錐、臺、球的結構特征的概括。
    (1)學法:觀察、思考、交流、討論、概括。
    (2)實物模型、投影儀。
    (一)創(chuàng)設情景,揭示課題。
    1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
    2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
    (二)、研探新知。
    1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
    3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
    6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
    7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
    8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
    9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
    (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
    1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
    2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
    3.課本p8,習題1.1a組第1題。
    5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
    四、鞏固深化。
    練習:課本p7練習1、2(1)(2)。
    課本p8習題1.1第2、3、4題。
    五、歸納整理。
    由學生整理學習了哪些內(nèi)容。
    六、布置作業(yè)。
    課本p8練習題1.1b組第1題。
    課外練習課本p8習題1.1b組第2題。
    (1)掌握畫三視圖的基本技能。
    (2)豐富學生的.空間想象力。
    2.過程與方法。
    主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
    3.情感態(tài)度與價值觀。
    (1)提高學生空間想象力。
    (2)體會三視圖的作用。
    重點:畫出簡單組合體的三視圖。
    難點:識別三視圖所表示的空間幾何體。
    1.學法:觀察、動手實踐、討論、類比。
    2.教學用具:實物模型、三角板。
    (一)創(chuàng)設情景,揭開課題。
    “橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
    (二)實踐動手作圖。
    2.教師引導學生用類比方法畫出簡單組合體的三視圖。
    (1)畫出球放在長方體上的三視圖。
    (2)畫出礦泉水瓶(實物放在桌面上)的三視圖。
    學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。
    作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。
    3.三視圖與幾何體之間的相互轉(zhuǎn)化。
    (1)投影出示圖片(課本p10,圖1.2-3)。
    請同學們思考圖中的三視圖表示的幾何體是什么?
    (2)你能畫出圓臺的三視圖嗎?
    (3)三視圖對于認識空間幾何體有何作用?你有何體會?
    教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。
    4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
    (三)鞏固練習。
    課本p12練習1、2p18習題1.2a組1。
    (四)歸納整理。
    請學生回顧發(fā)表如何作好空間幾何體的三視圖。
    (五)課外練習。
    1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
    2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
    (1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
    (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
    2.過程與方法。
    學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
    3.情感態(tài)度與價值觀。
    (1)提高空間想象力與直觀感受。
    (2)體會對比在學習中的作用。
    (3)感受幾何作圖在生產(chǎn)活動中的應用。
    重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
    1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
    2.教學用具:三角板、圓規(guī)。
    (一)創(chuàng)設情景,揭示課題。
    1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱。
    把實物圓柱放在講臺上讓學生畫。
    2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
    (二)研探新知。
    1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
    畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
    根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
    2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
    教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
    教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
    3.探求空間幾何體的直觀圖的畫法。
    (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
    教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
    (2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
    4.平行投影與中心投影。
    投影出示課本p17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
    5.鞏固練習,課本p16練習1(1),2,3,4。
    三、歸納整理。
    學生回顧斜二測畫法的關鍵與步驟。
    四、作業(yè)。
    1.書畫作業(yè),課本p17練習第5題。
    2.課外思考課本p16,探究(1)(2)。
    教案高中數(shù)學篇六
    三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教b版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法。
    通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
    以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
    借助單位圓探究誘導公式。
    能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
    誘導公式(三)的推導及應用。
    誘導公式的應用。
    多媒體。
    1.誘導公式(一)(二)。
    2.角(終邊在一條直線上)。
    3.思考:下列一組角有什么特征?()能否用式子來表示?
    已知由。
    可知。
    而(課件演示,學生發(fā)現(xiàn))。
    所以。
    于是可得:(三)。
    設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
    由公式(一)(三)可以看出,角角相等。即:
    公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
    設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。
    1.練習。
    (1)。
    設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
    (學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結公式。)。
    例3:求下列各三角函數(shù)值:
    (1)。
    (2)。
    (3)。
    (4)。
    設計意圖:利用公式解決問題。
    練習:
    (1)。
    (2)(學生板演,師生點評)。
    設計意圖:觀察公式特點,選擇公式解決問題。
    四.課堂小結:將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
    很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
    1.要認真的研讀新課標,對教學的目標,重難點把握要到位。
    2.注意板書設計,注重細節(jié)的東西,語速需要改正。
    3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作。
    5.上課的生動化,形象化需要加強。
    1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的`,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側(cè)重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。
    2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
    3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經(jīng)驗。
    4.評議者:引導學生通過網(wǎng)絡進行探究。
    建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
    (1)給學生思考的時間較長,語調(diào)相對平緩,總結時,給學生一些激勵的語言更好。
    (2)這樣子的教學可以提高上課效率,讓學生更多的時間思考。
    (4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來。
    (5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少。
    (6)讓學生多探究,課堂會更熱鬧。
    (7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習。
    (8)教學模式相對簡單重復。
    (9)思路較為清晰,規(guī)范化的推理。
    教案高中數(shù)學篇七
    數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
    (1)、基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。
    1、教學重點。
    理解并掌握誘導公式、
    2、教學難點。
    正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式、
    1、教法。
    2、學法。
    3、預期效果。
    (一)創(chuàng)設情景。
    1、復習銳角300,450,600的三角函數(shù)值;。
    2、復習任意角的三角函數(shù)定義;。
    3、問題:由,你能否知道sin2100的值嗎?引如新課、
    教案高中數(shù)學篇八
    難點是解組合的應用題.。
    (一)導入新課。
    (教師活動)提出下列思考問題,打出字幕.。
    [字幕]一條鐵路線上有6個火車站。
    (1)需準備多少種不同的普通客車票?
    (學生活動)討論并回答。
    答案提示:
    (1)排列;
    (2)組合。
    [評述]問題。
    (二)新課講授。
    [提出問題創(chuàng)設情境]。
    (教師活動)指導學生帶著問題閱讀課文。
    [字幕]。
    1.排列的定義是什么?
    2.舉例說明一個組合是什么?
    3.一個組合與一個排列有何區(qū)別?
    (學生活動)閱讀回答.。
    (教師活動)對照課文,逐一評析.。
    設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環(huán)境。
    【歸納概括建立新知】。
    (教師活動)承接上述問題的回答,展示下面知識.。
    (學生活動)傾聽、思索、記錄。
    (教師活動)提出思考問題。
    [投影]與的關系如何?
    (師生活動)共同探討.求從個不同元素中取出個元素的排列數(shù),可分為以下兩步:
    第1步,先求出從這個不同元素中取出個元素的組合數(shù)為;
    第2步,求每一個組合中個元素的全排列數(shù)為。
    根據(jù)分步計數(shù)原理,得到。
    [字幕]公式1:
    公式2:
    (學生活動)驗算,即一條鐵路上6個火車站有15種不同的票價的普通客車票。
    (三)小結。
    (師生活動)共同小結。
    本節(jié)主要內(nèi)容有。
    1.組合概念。
    2.組合數(shù)計算的兩個公式。
    (四)布置作業(yè)。
    1.課本作業(yè):習題103第1(1)、(4),3題。
    3.研究性題:
    (五)課后點評。
    3.能組成(注意不能用點為頂點)個四邊形,個三角形.。
    探究活動。
    解設四人分別為甲、乙、丙、丁,可從多種角度來解。
    教案高中數(shù)學篇九
    2、能識別和理解簡單的框圖的功能。
    3。、能運用三種基本邏輯結構設計流程圖以解決簡單的問題。
    1。、通過模仿、操作、探索,經(jīng)歷設計流程圖表達求解問題的過程,加深對流程圖的感知。
    2。、在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構。
    一、問題情境。
    1、情境:
    某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為x。
    其中(單位:)為行李的重量.。
    試給出計算費用(單位:元)的一個算法,并畫出流程圖。
    二、學生活動。
    學生討論,教師引導學生進行表達。
    解算法為:
    輸入行李的重量;
    如果,那么,
    否則;
    輸出行李的重量和運費.。
    上述算法可以用流程圖表示為:
    教師邊講解邊畫出第10頁圖1—2—6.。
    在上述計費過程中,第二步進行了判斷.。
    1、選擇結構的概念:
    先根據(jù)條件作出判斷,再決定執(zhí)行哪一種操作的結構稱為選擇結構。
    (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和兩個退出點。
    3、思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
    教案高中數(shù)學篇十
    (1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
    (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
    2、過程與方法。
    學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
    3、情感態(tài)度與價值觀。
    (1)提高空間想象力與直觀感受。
    (2)體會對比在學習中的作用。
    (3)感受幾何作圖在生產(chǎn)活動中的應用。
    重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
    1、學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
    2、教學用具:三角板、圓規(guī)。
    (一)創(chuàng)設情景,揭示課題。
    1、我們都學過畫畫,這節(jié)課我們畫一物體:圓柱。
    把實物圓柱放在講臺上讓學生畫。
    2、學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
    (二)研探新知。
    1、例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
    畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
    練習反饋。
    根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
    2、例2,用斜二測畫法畫水平放置的圓的直觀圖。
    教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的`直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
    教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
    3、探求空間幾何體的直觀圖的畫法。
    (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
    教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
    (2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
    4、平行投影與中心投影。
    投影出示課本p17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
    5、鞏固練習,課本p16練習1(1),2,3,4。
    三、歸納整理。
    學生回顧斜二測畫法的關鍵與步驟。
    四、作業(yè)。
    1、書畫作業(yè),課本p17練習第5題。
    教案高中數(shù)學篇十一
    【知識與技能】。
    在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
    【過程與方法】。
    通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
    【情感態(tài)度與價值觀】。
    滲透數(shù)形結合、化歸與轉(zhuǎn)化等數(shù)學思想方法,提高學生的整體素質(zhì),激勵學生創(chuàng)新,勇于探索。
    【重點】。
    掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
    【難點】。
    二元二次方程與圓的一般方程及標準圓方程的'關系。
    三、教學過程。
    (一)復習舊知,引出課題。
    1、復習圓的標準方程,圓心、半徑。
    2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
    教案高中數(shù)學篇十二
    1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
    2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
    3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
    難點:識別三視圖所表示的空間幾何體。
    觀察、動手實踐、討論、類比。
    (一)創(chuàng)設情景,揭開課題
    展示廬山的風景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
    (二)講授新課
    1、中心投影與平行投影:
    中心投影:光由一點向外散射形成的投影;
    平行投影:在一束平行光線照射下形成的投影。
    正投影:在平行投影中,投影線正對著投影面。
    2、三視圖:
    正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
    側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
    俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
    三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
    三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
    長對正:正視圖與俯視圖的長相等,且相互對正;
    高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
    寬相等:俯視圖與側(cè)視圖的寬度相等。
    3、畫長方體的三視圖:
    正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
    長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
    4、畫圓柱、圓錐的三視圖:
    5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
    (三)鞏固練習
    課本p15練習1、2;p20習題1.2[a組]2。
    (四)歸納整理
    請學生回顧發(fā)表如何作好空間幾何體的三視圖
    (五)布置作業(yè)
    課本p20習題1.2[a組]1。
    教案高中數(shù)學篇十三
    1.在九年義務教育基礎上,使學生進一步學習并掌握職業(yè)崗位和生活中所必要的數(shù)學基礎知識。2.培養(yǎng)學生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學思維能力。
    本課程的教學內(nèi)容由基礎模塊、職業(yè)模塊和拓展模塊三個部分構成。
    1.基礎模塊是各專業(yè)學生必修的基礎性內(nèi)容和應達到的基本要求,教學時數(shù)為128學時。2.職業(yè)模塊是適應學生學習相關專業(yè)需要的限定選修內(nèi)容,各學校根據(jù)實際情況進行選擇和安排教學,教學時數(shù)為32~64學時。
    (一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
    了解:初步知道知識的含義及其簡單應用。
    理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關知識的聯(lián)系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
    計算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數(shù)學工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關系或圖形、圖示,描述其規(guī)律。
    空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據(jù)條件畫出圖形。
    分析與解決問題能力:能對工作和生活中的簡單數(shù)學相關問題,作出分析并運用適當?shù)臄?shù)學方法予以解決。
    數(shù)學思維能力:依據(jù)所學的數(shù)學知識,運用類比、歸納、綜合等方法,對數(shù)學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
    (二)教學內(nèi)容與要求1.基礎模塊(128學時)第1單元集合(10學時)
    第2單元不等式(8學時)
    第3單元函數(shù)(12學時)
    第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學時)
    第5單元三角函數(shù)(18學時)
    第6單元數(shù)列(10學時)
    第7單元平面向量(矢量)(10學時)
    第8單元直線和圓的方程(18學時)
    第9單元立體幾何(14學時)
    第10單元概率與統(tǒng)計初步(16學時)
    2.職業(yè)模塊
    第1單元三角計算及其應用(16學時)
    第2單元坐標變換與參數(shù)方程(12學時)
    第3單元復數(shù)及其應用(10學時)
    教案高中數(shù)學篇十四
    掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
    【過程與方法】
    經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。
    【情感態(tài)度價值觀】
    在猜想計算的過程中,提高學習數(shù)學的興趣。
    【教學重點】
    三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
    【教學難點】
    探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。
    (一)引入新課
    提出問題:如何研究三角函數(shù)的單調(diào)性
    (四)小結作業(yè)
    提問:今天學習了什么?
    引導學生回顧:基本不等式以及推導證明過程。
    課后作業(yè):
    思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
    教案高中數(shù)學篇十五
    集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。
    教學重點.難點
    重點:集合的含義與表示方法.
    難點:表示法的恰當選擇.
    教學目標
    l.知識與技能
    (1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
    (2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
    (4)會用集合語言表示有關數(shù)學對象;
    2.過程與方法
    (1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
    (2)讓學生歸納整理本節(jié)所學知識.
    3.情感.態(tài)度與價值觀
    使學生感受到學習集合的必要性,增強學習的積極性.
    1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
    (一)創(chuàng)設情景,揭示課題
    1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。
    (2)問題:像“家庭”、“學?!?、“班級”等,有什么共同特征?
    引導學生互相交流.與此同時,教師對學生的活動給予評價.
    2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
    由此引出這節(jié)要學的內(nèi)容。
    設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
    (二)研探新知,建構概念
    1.教師利用多媒體設備向?qū)W生投影出下面7個實例:
    (1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;
    (3)所有的安理會常任理事國; (4)所有的正方形;
    (5)海南省在20xx年9月之前建成的所有立交橋;
    (6)到一個角的兩邊距離相等的所有的點;
    (7)國興中學20xx年9月入學的高一學生的全體.
    2.教師組織學生分組討論:這7個實例的共同特征是什么?
    3.每個小組選出——位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
    4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.
    設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
    (三)質(zhì)疑答辯,發(fā)展思維
    1.教師引導學生閱讀教材中的相關內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
    2.教師組織引導學生思考以下問題:
    判斷以下元素的全體是否組成集合,并說明理由:
    (1)大于3小于11的偶數(shù);(2)我國的小河流.讓學生充分發(fā)表自己的建解.
    3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
    4.教師提出問題,讓學生思考
    高一(4)班的一位同學,那么a,b與集合a分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
    如果a是集合a的元素,就說a屬于集合a,記作a?a.
    如果a不是集合a的元素,就說a不屬于集合a,記作a?a.
    (2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關系分別是什么?請用數(shù)學符號分別表示.
    (3)讓學生完成教材第6頁練習第1題.
    5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1a組第1題.
    6.教師引導學生閱讀教材中的相關內(nèi)容,并思考.討論下列問題:
    (1)要表示一個集合共有幾種方式?
    (2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
    (3)如何根據(jù)問題選擇適當?shù)募媳硎痉?
    使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
    設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
    (四)鞏固深化,反饋矯正
    教師投影學習:
    (3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.
    設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
    (五)歸納小結,布置作業(yè)
    小結:在師生互動中,讓學生了解或體會下例問題:
    1.本節(jié)課我們學習了哪些知識內(nèi)容? 2.你認為學習集合有什么意義?
    3.選擇集合的表示法時應注意些什么?
    設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
    作業(yè):1.課后書面作業(yè):第13頁習題1.1a組第4題.
    2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
    呢?如何表示?請同學們通過預習教材.
    教案高中數(shù)學篇十六
    下面給出教學實施過程設計的簡要思路:
    (一)引入的設計
    前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
    問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
    肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
    問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
    啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
    學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
    【問題1】“任意直線的方程都是二元一次方程嗎?”
    (二)本節(jié)主體內(nèi)容教學的設計
    學生或獨立研究,或合作研究,教師巡視指導.
    經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
    思路一:…
    思路二:…
    ……
    教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
    按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
    當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
    當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
    學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
    綜合兩種情況,我們得出如下結論:
    同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
    學生們不難得出:二者可以概括為統(tǒng)一的形式.
    這樣上邊的結論可以表述如下:
    啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
    【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
    師生共同討論,評價不同思路,達成共識:
    (1)當 時,方程可化為
    這是表示斜率為 、在 軸上的截距為 的直線.
    (2)當 時,由于 、 不同時為0,必有 ,方程可化為
    這表示一條與 軸垂直的直線.
    因此,得到結論:
    為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
    【動畫演示】
    演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
    (三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計
    略
    教案高中數(shù)學篇十七
    三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教b版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法。
    通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
    以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
    借助單位圓探究誘導公式。
    能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
    誘導公式(三)的推導及應用。
    誘導公式的應用。
    多媒體。
    1. 誘導公式(一)(二)。
    2. 角 (終邊在一條直線上)
    3. 思考:下列一組角有什么特征?( )能否用式子來表示?
    已知 由
    可知
    而 (課件演示,學生發(fā)現(xiàn))
    所以
    于是可得: (三)
    設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
    由公式(一)(三)可以看出,角 角 相等。即:
    .
    公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
    設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。
    1. 練習
    (1)
    設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
    (學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結公式。)
    例3:求下列各三角函數(shù)值:
    (1)
    (2)
    (3)
    (4)
    設計意圖:利用公式解決問題。
    練習:
    (1)
    (2) (學生板演,師生點評)
    設計意圖:觀察公式特點,選擇公式解決問題。
    四.課堂小結:將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
    很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
    1.要認真的研讀新課標,對教學的目標,重難點把握要到位
    2.注意板書設計,注重細節(jié)的東西,語速需要改正
    3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作
    5.上課的生動化,形象化需要加強
    1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側(cè)重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。
    2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
    3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經(jīng)驗。
    4.評議者:引導學生通過網(wǎng)絡進行探究。
    建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
    ( 1)給學生思考的時間較長,語調(diào)相對平緩,總結時,給學生一些激勵的語言更好
    ( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
    ( 4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
    ( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
    ( 6)讓學生多探究,課堂會更熱鬧
    ( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
    ( 8)教學模式相對簡單重復
    ( 9)思路較為清晰,規(guī)范化的推理
    教案高中數(shù)學篇十八
    了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質(zhì)。
    【自學質(zhì)疑】
    漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
    2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
    3.經(jīng)過兩點 的雙曲線的標準方程是 。
    4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
    5.與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為
    【例題精講】
    1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
    2.已知橢圓具有性質(zhì):若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。
    3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
    【矯正鞏固】
    1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
    2.與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。
    3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
    4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
    【遷移應用】
    2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
    3. 雙曲線 的焦距為
    4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
    5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .