函數(shù)的教案(熱門20篇)

字號:

    教案中包含了教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法以及教學(xué)評價等要素。教案編寫要注意教學(xué)步驟的合理安排和時間的合理分配,確保教學(xué)進(jìn)度的順利進(jìn)行。以下是小編為大家收集的教案范例,供大家參考和借鑒。
    函數(shù)的教案篇一
    1、使學(xué)生掌握的概念,圖象和性質(zhì)。
    (1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
    (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì)。
    (3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
    2、x通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
    3、通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
    (1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
    (2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
    (3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
    (1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。
    (2)對底數(shù)x的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。
    關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點(diǎn)得圖象。
    1、x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
    2、x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
    3、x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
    重點(diǎn)是理解的定義,把握圖象和性質(zhì)。
    難點(diǎn)是認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。
    投影儀。
    啟發(fā)討論研究式。
    一、x引入新課。
    我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的.常見函數(shù)。
    1、6、(板書)。
    這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:
    由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
    問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
    由學(xué)生回答:x。
    在以上兩個實(shí)例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
    x的概念(板書)。
    1、定義:形如x的函數(shù)稱為。(板書)。
    教師在給出定義之后再對定義作幾點(diǎn)說明。
    2、幾點(diǎn)說明x(板書)。
    (1)x關(guān)于對x的規(guī)定:
    教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
    若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
    (2)關(guān)于的定義域x(板書)。
    教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實(shí)數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個原因是因?yàn)槭顾叽砀袘?yīng)用價值。
    (3)關(guān)于是否是的判斷(板書)。
    剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
    (4)x,x。
    (5)x。
    學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
    最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
    3、歸納性質(zhì)。
    作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
    函數(shù)。
    1、定義域x:
    2、值域:
    3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)。
    4、截距:在x軸上沒有,在x軸上為1。
    對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)。
    在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個數(shù)不能太少。
    此處教師可利用計算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
    二、圖象與性質(zhì)(板書)。
    1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。
    2、草圖:
    當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。
    此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
    最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如x的圖象一起比較,再找共性)。
    由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
    以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
    填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
    3、性質(zhì)。
    (1)無論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過點(diǎn)x。
    (2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
    (3)x時,x,xx時,x。
    總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
    三、簡單應(yīng)用x(板書)。
    1、利用單調(diào)性比大小。x(板書)。
    一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
    例1、x比較下列各組數(shù)的大小。
    (1)x與x;x(2)x與x;。
    (3)x與1x。(板書)。
    首先讓學(xué)生觀察兩個數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
    解:x在x上是增函數(shù),且x。(板書)。
    教師最后再強(qiáng)調(diào)過程必須寫清三句話:
    (1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
    (2)x自變量的大小比較。
    (3)x函數(shù)值的大小比較。
    后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。
    例2。比較下列各組數(shù)的大小。
    (1)x與x;x(2)x與x;。
    (3)x與x。(板書)。
    先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
    最后由學(xué)生說出x1,1。
    解決后由教師小結(jié)比較大小的方法。
    (1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
    (2)x搭橋比較法:x用特殊的數(shù)1或0。
    四、鞏固練習(xí)。
    練習(xí):比較下列各組數(shù)的大小(板書)。
    (1)x與xx(2)x與x;。
    (3)x與x;x(4)x與x。解答過程略。
    五、小結(jié)。
    1、的概念。
    2、的圖象和性質(zhì)。
    3、簡單應(yīng)用。
    六、板書設(shè)計。
    函數(shù)的教案篇二
    尊敬的評委老師,大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。
    教材分析。
    教材是課程標(biāo)準(zhǔn)的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進(jìn)行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對接下來對數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ)。可以說,指數(shù)函數(shù)的學(xué)習(xí)對于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
    學(xué)情分析。
    新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強(qiáng)的'理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學(xué)生好勝心比較強(qiáng),容易產(chǎn)生負(fù)面情緒,這對于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗(yàn)上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認(rèn)識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
    教學(xué)目標(biāo)。
    教學(xué)目標(biāo)是教育教學(xué)活動的出發(fā)點(diǎn)和依據(jù),結(jié)合新課改的思想和新課標(biāo)的要求,本節(jié)課我所制定的三維教學(xué)目標(biāo)如下:
    知識與技能目標(biāo):掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實(shí)際問題。
    過程與方法目標(biāo):通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測,歸納的能力。
    情感態(tài)度與價值觀目標(biāo):通過教學(xué)互動,促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點(diǎn)看問題,領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
    而本節(jié)課,我將重難點(diǎn)確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
    正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進(jìn)行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進(jìn)行教學(xué)。同時我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動性,充分地體現(xiàn)學(xué)生的主體地位。
    教學(xué)過程。
    以上所有的準(zhǔn)備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學(xué)過程的設(shè)計。
    首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個實(shí)例:計算機(jī)價格下降問題和生物中細(xì)胞分裂的例子。我會請同學(xué)們仔細(xì)觀察并分組討論,分別寫出計算機(jī)價格y與經(jīng)過月份x的關(guān)系以及細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實(shí)例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動性,為接下來的學(xué)習(xí)做好準(zhǔn)備。
    其次啟發(fā)誘導(dǎo),探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動手,促進(jìn)學(xué)生對本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識的性質(zhì),也能對于接下來的知識點(diǎn)導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
    接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實(shí)踐為主的原則,完成學(xué)生學(xué)習(xí):實(shí)踐到認(rèn)識再到實(shí)踐的過程。通過練習(xí)實(shí)現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進(jìn)式提高。這個環(huán)節(jié)介紹的化學(xué)知識在考古中的應(yīng)用,這樣的設(shè)計既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學(xué)的應(yīng)用價值。緊接著我會帶領(lǐng)學(xué)生進(jìn)行歸納,總結(jié)升華我會將同學(xué)們進(jìn)行分組討論、探究,引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進(jìn)行梳理和深化認(rèn)知。知識與技能目標(biāo)設(shè)置分組pk機(jī)制,引導(dǎo)學(xué)生對課堂知識進(jìn)行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
    板書設(shè)計。
    當(dāng)然一堂完整的課程離不開簡潔明了的板書設(shè)計,我的板書設(shè)計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習(xí)過程中寫下今天練習(xí)的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設(shè)計,可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
    函數(shù)的教案篇三
    本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點(diǎn)看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
    二、學(xué)情分析。
    本節(jié)課主要是研究一次函數(shù)的圖象與性質(zhì),是在學(xué)習(xí)了正比例函數(shù)的.圖象與性質(zhì),并初步了解了如何研究一個具體函數(shù)的圖象與性質(zhì)的基礎(chǔ)上進(jìn)的。原有知識與經(jīng)驗(yàn)對本節(jié)課的學(xué)習(xí)有著積極的促進(jìn)作用,在前后知識的比較中,學(xué)生進(jìn)一步理解知識,促進(jìn)認(rèn)知結(jié)構(gòu)的完善,發(fā)展、比較、抽象與概括能力,進(jìn)一步體驗(yàn)研究函數(shù)的基本思路,而這些目標(biāo)的達(dá)成要求教學(xué)必須發(fā)揮學(xué)生的主體作用,在函數(shù)圖象及其性質(zhì)的探索活動中,應(yīng)給予學(xué)生足夠的活動、探究、交流、反思的時間與空間,不以老師的講演代替學(xué)生的探索。
    (二)教學(xué)目標(biāo)。
    基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
    知識技能:
    1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
    2、會利用兩個合適的點(diǎn)畫出一次函數(shù)的圖象;
    過程與方法:
    2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
    情感態(tài)度:
    2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    (三)教學(xué)重點(diǎn)難點(diǎn)。
    教學(xué)重點(diǎn):一次函數(shù)的圖象和性質(zhì)。
    教學(xué)難點(diǎn):由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
    二、教法學(xué)法。
    1、教學(xué)方法。
    依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
    1、自學(xué)體驗(yàn)法――利用學(xué)生描點(diǎn)作圖經(jīng)歷體驗(yàn)并發(fā)現(xiàn)問題,分析問題進(jìn)一步歸納總結(jié)。
    目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨(dú)立思考能力和創(chuàng)新意識。
    2、直觀教學(xué)法――利用多媒體現(xiàn)代教學(xué)手段。
    目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識引領(lǐng)到理性的思考。
    2、學(xué)法指導(dǎo)。
    做為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
    1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨(dú)立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
    2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
    將本文的word文檔下載到電腦,方便收藏和打印。
    函數(shù)的教案篇四
    讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
    :各種隱含條件的挖掘。
    :引導(dǎo)發(fā)現(xiàn)法。
    (一)診斷補(bǔ)償,情景引入:
    (先讓學(xué)生復(fù)習(xí),然后提問,并做進(jìn)一步診斷)。
    (二)問題導(dǎo)航,探究釋疑:
    (三)精講提煉,揭示本質(zhì):
    分析如圖,以ab的垂直平分線為y軸,以過點(diǎn)o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時,涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。
    解由題意,得點(diǎn)b的坐標(biāo)為(0。8,-2。4),
    又因?yàn)辄c(diǎn)b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
    例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(0,-1)、b(1,0)、c(-1,2);
    (2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);
    (3)已知拋物線與x軸交于點(diǎn)m(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);
    (4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。
    分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個交點(diǎn)為(1,0)和(5,0),任選一個代入,即可求出a的值。
    解這個方程組,得a=2,b=-1。
    (2)因?yàn)閽佄锞€的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。
    (3)因?yàn)閽佄锞€與x軸交于點(diǎn)m(-3,0)、(5,0),
    所以設(shè)二此函數(shù)的關(guān)系式為。
    又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。
    (4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。
    (四)題組訓(xùn)練,拓展遷移:
    1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,2)、(1,1)、(3,5);
    (2)已知拋物線的頂點(diǎn)為(-1,2),且過點(diǎn)(2,1);
    (3)已知拋物線與x軸交于點(diǎn)m(-1,0)、(2,0),且經(jīng)過點(diǎn)(1,2)。
    2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。
    (五)交流評價,深化知識:
    確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來求。
    (2)頂點(diǎn)式:,給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時可利用此式來求。
    (3)交點(diǎn)式:,給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個交點(diǎn)、時可利用此式來求。
    本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(-1,12)、b(2,-3),
    (2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對稱軸。
    函數(shù)的教案篇五
    2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。
    指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
    指數(shù)函數(shù)圖象的平移變換.
    1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。
    練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點(diǎn)坐標(biāo)為.若a1,則當(dāng)x0時,y1;而當(dāng)x0時,y1.若00時,y1;而當(dāng)x0時,y1.
    例1解不等式:
    (1);(2);。
    (3);(4).
    小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
    例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
    (1);(2);(3);(4).
    小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時,向上平移,反之向下平移).
    練習(xí):
    (1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.
    (2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.
    (3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.
    (4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點(diǎn)的坐標(biāo)是.函數(shù)y=a2x-1的圖象恒過的定點(diǎn)的坐標(biāo)是.
    小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.
    (5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
    (6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
    小結(jié):函數(shù)圖象的對稱變換規(guī)律.
    例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.
    例4求函數(shù)的最小值以及取得最小值時的x值.
    小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
    練習(xí):
    (1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
    (2)函數(shù)y=2x的值域?yàn)?。
    (4)當(dāng)x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
    1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
    2.指數(shù)型函數(shù)的定點(diǎn)問題;。
    3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
    課本p55-6,7.
    (1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù)的定義域?yàn)?
    (2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
    函數(shù)的教案篇六
    1.能從二倍角的正弦、余弦、正切公式導(dǎo)出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識.并培養(yǎng)學(xué)生綜合分析能力.
    2.掌握公式及其推導(dǎo)過程,會用公式進(jìn)行化簡、求值和證明。
    3.通過公式推導(dǎo),掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。
    二、過程與方法。
    2.通過例題講解,總結(jié)方法.通過做練習(xí),鞏固所學(xué)知識.
    三、情感、態(tài)度與價值觀。
    1.通過公式的推導(dǎo),了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點(diǎn)。
    2.培養(yǎng)用聯(lián)系的觀點(diǎn)看問題的觀點(diǎn)。
    【教學(xué)重點(diǎn)與難點(diǎn)】:
    重點(diǎn):半角公式的推導(dǎo)與應(yīng)用(求值、化簡、證明)。
    難點(diǎn):半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運(yùn)用公式時正負(fù)號的選取。
    【學(xué)法與教學(xué)用具】:
    1.學(xué)法:
    (1)自主+探究性學(xué)習(xí):讓學(xué)生自己由和角公式導(dǎo)出倍角公式,領(lǐng)會從一般化歸為特殊的數(shù)學(xué)思想,體會公式所蘊(yùn)涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。
    (2)反饋練習(xí)法:以練習(xí)來檢驗(yàn)知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.
    2.教學(xué)方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學(xué)方法。
    引導(dǎo)學(xué)生復(fù)習(xí)二倍角公式,按課本知識結(jié)構(gòu)設(shè)置提問引導(dǎo)學(xué)生動手推導(dǎo)出半角公式,課堂上在老師引導(dǎo)下,以學(xué)生為主體,分析公式的結(jié)構(gòu)特征,會根據(jù)公式特點(diǎn)得出公式的應(yīng)用,用公式來進(jìn)行化簡證明和求值,老師為學(xué)生創(chuàng)設(shè)問題情景,鼓勵學(xué)生積極探究。
    3.教學(xué)用具:多媒體、實(shí)物投影儀.
    【授課類型】:新授課。
    【課時安排】:1課時。
    【教學(xué)思路】:
    一、創(chuàng)設(shè)情景,揭示課題。
    二、研探新知。
    四、鞏固深化,反饋矯正。
    五、歸納整理,整體認(rèn)識。
    1.鞏固倍角公式,會推導(dǎo)半角公式、和差化積及積化和差公式。
    2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).
    3.特別注意公式的三角表達(dá)形式,且要善于變形:
    4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.
    5.注意公式的結(jié)構(gòu),尤其是符號.
    六、承上啟下,留下懸念。
    七、板書設(shè)計(略)。
    八、課后記:略。
    函數(shù)的教案篇七
    1、使學(xué)生掌握的概念,圖象和性質(zhì)。
    (1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
    (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì)。
    (3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
    2、x通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
    3、通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
    (1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
    (2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
    (3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
    (1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。
    (2)對底數(shù)x的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。
    關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點(diǎn)得圖象。
    1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
    2。x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
    3。x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
    重點(diǎn)是理解的定義,把握圖象和性質(zhì)。
    難點(diǎn)是認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。
    投影儀
    啟發(fā)討論研究式
    一、x引入新課
    我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
    1、6、(板書)
    這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:
    由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
    問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
    由學(xué)生回答:x。
    在以上兩個實(shí)例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
    x的概念(板書)
    1、定義:形如x的函數(shù)稱為。(板書)
    教師在給出定義之后再對定義作幾點(diǎn)說明。
    2、幾點(diǎn)說明x(板書)
    (1)x關(guān)于對x的規(guī)定:
    教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
    若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
    (2)關(guān)于的定義域x(板書)
    教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實(shí)數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個原因是因?yàn)槭顾叽砀袘?yīng)用價值。
    (3)關(guān)于是否是的判斷(板書)
    剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
    (4)x,x
    (5)x。
    學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
    最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
    3、歸納性質(zhì)
    作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
    函數(shù)
    1、定義域x:
    2、值域:
    3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
    4、截距:在x軸上沒有,在x軸上為1。
    對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
    在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個數(shù)不能太少。
    此處教師可利用計算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
    二、圖象與性質(zhì)(板書)
    1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。
    2、草圖:
    當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。
    此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
    最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如x的圖象一起比較,再找共性)
    由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
    以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
    填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
    3、性質(zhì)。
    (1)無論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過點(diǎn)x。
    (2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
    (3)x時,x,x x時,x。
    總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
    三、簡單應(yīng)用x (板書)
    1、利用單調(diào)性比大小。x(板書)
    一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
    例1、x比較下列各組數(shù)的大小
    (1)x與x;x(2)x與x;
    (3)x與1x。(板書)
    首先讓學(xué)生觀察兩個數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
    解:x在x上是增函數(shù),且
    教師最后再強(qiáng)調(diào)過程必須寫清三句話:
    (1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
    (2)x自變量的大小比較。
    (3)x函數(shù)值的大小比較。
    后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。
    例2。比較下列各組數(shù)的大小
    (1)x與x;x(2)x與x ;
    (3)x與x。(板書)
    先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)
    最后由學(xué)生說出x1,1。
    解決后由教師小結(jié)比較大小的方法
    (1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
    (2)x搭橋比較法:x用特殊的數(shù)1或0。
    四、鞏固練習(xí)
    練習(xí):比較下列各組數(shù)的大?。ò鍟?BR>    (1)x與x x(2)x與x;
    (3)x與x;x(4)x與x。解答過程略
    五、小結(jié)
    1、的概念
    2、的圖象和性質(zhì)
    3、簡單應(yīng)用
    六、板書設(shè)計
    函數(shù)的教案篇八
    教學(xué)重點(diǎn),難點(diǎn)。
    重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).。
    教學(xué)方法。
    啟發(fā)研討式。
    教學(xué)用具。
    投影儀。
    教學(xué)過程。
    一。引入新課。
    提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
    由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個學(xué)生口答求反函數(shù)的過程:
    由得.又的值域?yàn)椋?BR>    所求反函數(shù)為.。
    那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).。
    1。定義:函數(shù)的反函數(shù)叫做對數(shù)函數(shù).。
    在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).。
    1。作圖方法。
    具體操作時,要求學(xué)生做到:
    (1)指數(shù)函數(shù)和的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等).。
    (2)畫出直線.。
    學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出。
    和的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
    2。草圖.。
    教師畫完圖后再利用投影儀將和的圖像畫在同一坐標(biāo)系內(nèi),如圖:
    然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)。
    3。性質(zhì)。
    (1)定義域:
    (2)值域:
    由以上兩條可說明圖像位于軸的右側(cè).。
    (3)截距:令得,即在軸上的截距為1,與軸無交點(diǎn)即以軸為漸近線.。
    (4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對稱,也不關(guān)于軸對稱.。
    (5)單調(diào)性:與有關(guān).當(dāng)時,在上是增函數(shù).即圖像是上升的。
    當(dāng)時,在上是減函數(shù),即圖像是下降的.。
    之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
    當(dāng)時,有;當(dāng)時,有.。
    最后教師在總結(jié)時,強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)。
    對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.。
    三.簡單應(yīng)用(板書)。
    1。研究相關(guān)函數(shù)的性質(zhì)。
    例1。求下列函數(shù)的定義域:
    (1)(2)(3)。
    先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.。
    2。利用單調(diào)性比較大小(板書)。
    例2。比較下列各組數(shù)的大小。
    (1)與;(2)與;
    (3)與;(4)與.。
    三.鞏固練習(xí)。
    練習(xí):若,求的取值范圍.。
    四.小結(jié)。
    五.作業(yè)略。
    板書設(shè)計。
    一。概念。
    1.定義2.認(rèn)識。
    二.圖像與性質(zhì)。
    1.作圖方法。
    2.草圖。
    圖1圖2。
    3.性質(zhì)。
    (1)定義域(2)值域(3)截距(4)奇偶性(5)單調(diào)性。
    三.應(yīng)用。
    1.相關(guān)函數(shù)的研究。
    例1例2。
    練習(xí)。
    函數(shù)的教案篇九
    1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
    2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
    3、會對一個具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。
    過程與方法。
    1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識現(xiàn)實(shí)世界的意識和能力。
    2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
    情感與價值觀。
    1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
    1、掌握函數(shù)概念。
    2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
    3、能把實(shí)際問題抽象概括為函數(shù)問題。
    1、理解函數(shù)的概念。
    2、能把實(shí)際問題抽象概括為函數(shù)問題。
    一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
    『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
    函數(shù)的教案篇十
    2.通過對抽象符號的認(rèn)識與使用,使學(xué)生在符號表示方面的能力得以提高.。
    難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解的概念;
    難點(diǎn)是對抽象符號的認(rèn)識與使用.。
    投影儀。
    自學(xué)研究與啟發(fā)討論式.。
    (要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過的例子)。
    提問1.是嗎?
    (由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是,理由是沒有兩個變量,也有的認(rèn)為是,理由是可以可做.)。
    現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。
    提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。
    (板書)2.2。
    一、的概念。
    問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。
    引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。
    2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。
    然后讓學(xué)生試回答剛才關(guān)于是不是的問題,要求從映射的角度解釋.。
    此時學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的定義,故是一個,這樣解釋就很自然.。
    教師繼續(xù)把問題引向深入,提出在映射的觀點(diǎn)下如何解釋是個?
    從映射角度看可以是其中定義域是,值域是.。
    3.的三要素及其作用(板書)。
    例1以下關(guān)系式表示嗎?為什么?
    (1);(2).。
    解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。
    (2)由有意義得,解得.定義域?yàn)椋涤驗(yàn)椋?BR>    由以上兩題可以看出三要素的作用。
    (1)判斷一個關(guān)系是否存在.(板書)。
    例2下列各中,哪一個與是同一個.。
    (1);(2)(3);(4).。
    解:先認(rèn)清,它是(定義域)到(值域)的映射,其中。
    .
    再看(1)定義域?yàn)榍遥遣煌模?2)定義域?yàn)?,是不同的?BR>    (4),法則是不同的;
    而(3)定義域是,值域是,法則是乘2減1,與完全相同.。
    (2)判斷兩個是否相同.(板書)。
    4.對符號的理解(板書)。
    例3已知試求(板書)。
    分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計算.。
    含義1:當(dāng)自變量取3時,對應(yīng)的值即;
    含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。
    計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。
    1.的定義。
    2.對三要素的認(rèn)識。
    3.對符號的認(rèn)識。
    五、
    2.2例1.例3.。
    一.的概念。
    1.定義。
    2.本質(zhì)例2.小結(jié):
    3.三要素的認(rèn)識及作用。
    4.對符號的理解。
    探究活動。
    答案:
    函數(shù)的教案篇十一
    通過對這節(jié)課的教學(xué)研究,我深刻地認(rèn)識到新課程背景下的數(shù)學(xué)課堂教學(xué)應(yīng)注意:
    1、教師要“放得開”,做一個邊緣人。我們應(yīng)該充分相信學(xué)生,給學(xué)生成長的機(jī)會和空間。不再搞“包辦代替”,不能急性子。凡是學(xué)生能做的,就應(yīng)該讓他們自主去做;凡是學(xué)生之間能合作完成的,就應(yīng)該讓他們自主探究。給學(xué)生一滴水的機(jī)會,也許他會收獲一片海洋。
    2、要做到“問題引領(lǐng)”,用問題牽引學(xué)習(xí)。本節(jié)課的設(shè)計給予學(xué)生的基礎(chǔ),設(shè)計了多個學(xué)生容易解決的問題串,這樣,能夠在循序漸進(jìn)中學(xué)到知識。
    3、要創(chuàng)造性地使用教材。教學(xué)過程中,不應(yīng)局限于教材,而應(yīng)充分利用教材這個平臺,伸向與教材有關(guān)的領(lǐng)域。數(shù)學(xué)是思維的體操,因此,若能對數(shù)學(xué)教材科學(xué)安排,對問題妙引導(dǎo),有意識地引導(dǎo)學(xué)生有意識地主動學(xué)習(xí)更多更全面的數(shù)學(xué)知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。
    4、注重探究,體驗(yàn)知識的形成過程。數(shù)學(xué)教學(xué)從本質(zhì)上講,是教師和學(xué)生以課堂為主渠道的交流活動,是教師和學(xué)生在某種教學(xué)情境中的探究活動。這節(jié)課教師本著“讓學(xué)生充分經(jīng)歷知識的形成、發(fā)展和應(yīng)用過程,充分體驗(yàn)數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造歷程”的教學(xué)理念,對教學(xué)過程和教學(xué)手段作了充分的準(zhǔn)備。整節(jié)課學(xué)生在教師的引導(dǎo)下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學(xué)學(xué)習(xí)的樂趣,教師的主導(dǎo)作用和學(xué)生的主體地位都得到了很好地體現(xiàn)。
    總之,我們的教學(xué)工作是一項(xiàng)內(nèi)涵豐富的系統(tǒng)工程。教學(xué)中用問題引領(lǐng)學(xué)生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復(fù)雜的課題?!氨鶅鋈?,非一日之寒”,在教學(xué)中必須循序漸進(jìn),長期實(shí)踐,與時俱進(jìn),爭取做教學(xué)改革的有心人,只有這樣才能在教學(xué)研究工作中有所作為。因此,在實(shí)際教學(xué)中,我們應(yīng)時刻以學(xué)生為中心,充分給予學(xué)生成長的時間,鼓勵學(xué)生自主探究,采用適時激勵與點(diǎn)撥的方法使學(xué)生的思維活躍起來,讓課堂真正成為學(xué)生學(xué)習(xí)、發(fā)現(xiàn)的樂園。
    函數(shù)的教案篇十二
    (1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.
    (2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
    (3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
    教法建議。
    (1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.
    (2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.
    關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點(diǎn)得圖象.
    函數(shù)的教案篇十三
    (二)能畫出簡單函數(shù)的圖象,會列表、描點(diǎn)、連線;。
    (三)能從圖象上由自變量的值求出對應(yīng)的函數(shù)的近似值。
    重點(diǎn):認(rèn)識函數(shù)圖象的意義,會對簡單的函數(shù)列表、描點(diǎn)、連線畫出函數(shù)圖象。
    難點(diǎn):對已恬圖象能讀圖、識圖,從圖象解釋函數(shù)變化關(guān)系。
    1.什么叫函數(shù)?
    2.什么叫平面直角坐標(biāo)系?
    3.在坐標(biāo)平面內(nèi),什么叫點(diǎn)的橫坐標(biāo)?什么叫點(diǎn)的.縱坐標(biāo)?
    4.如果點(diǎn)a的橫坐標(biāo)為3,縱坐標(biāo)為5,請用記號表示a(3,5).
    5.請?jiān)谧鴺?biāo)平面內(nèi)畫出a點(diǎn)。
    6.如果已知一個點(diǎn)的坐標(biāo),可在坐標(biāo)平面內(nèi)畫出幾個點(diǎn)?反過來,如果坐標(biāo)平面內(nèi)的一個點(diǎn)確定,這個點(diǎn)的坐標(biāo)有幾個?這樣的點(diǎn)和坐標(biāo)的對應(yīng)關(guān)系,叫做什么對應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對一一對應(yīng))。
    我們在前幾節(jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時,y是x的函數(shù)。
    這個函數(shù)關(guān)系中,y與x的函數(shù)。
    這個函數(shù)關(guān)系中,y與x的對應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫出圖象的方法來表示。
    函數(shù)的教案篇十四
    (二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過程進(jìn)行證明。
    二、教學(xué)目標(biāo)及解析。
    (一)教學(xué)目標(biāo):
    掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。
    (二)解析:
    會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。
    三、問題診斷分析。
    在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準(zhǔn)確確定的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。
    在本節(jié)課的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ?,有利于()?BR>    函數(shù)的教案篇十五
    學(xué)生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學(xué)生能夠根據(jù)所學(xué)函數(shù)知識判別計算得到的數(shù)據(jù)的正確性。
    學(xué)生能夠使用函數(shù)(sum,average,max,min等)計算所給數(shù)據(jù)的和、平均值、最大最小值。學(xué)生通過自主探究學(xué)會新函數(shù)的使用。并且能夠根據(jù)實(shí)際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ嬎愕臄?shù)據(jù)結(jié)果合理利用。
    學(xué)生自主學(xué)習(xí)意識得到提高,在任務(wù)的完成過程中體會到成功的喜悅,并在具體的任務(wù)中感受環(huán)境保護(hù)的重要性及艱巨性。
    sum函數(shù)的插入和使用。
    函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。
    任務(wù)驅(qū)動,觀察分析,通過實(shí)踐掌握,發(fā)現(xiàn)問題,協(xié)作學(xué)習(xí)。
    excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。
    1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。
    2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進(jìn)行教學(xué)。
    3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學(xué)知識計算各省各類廢棄物的總量。
    函數(shù)名表示函數(shù)的計算關(guān)系。
    =sum(起始單元格:結(jié)束單元格)。
    4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?
    注意參數(shù)的正確性。
    1、簡單描述函數(shù):函數(shù)是一些預(yù)定義了的計算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進(jìn)行計算。
    在公式中計算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。
    2、使用函數(shù)sum計算各廢棄物的全國總計。(強(qiáng)調(diào)計算范圍的正確性)。
    3、通過介紹average函數(shù)學(xué)習(xí)函數(shù)的輸入。
    函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數(shù),統(tǒng)計出該表格中比去年同期增長%的平均數(shù)。
    (參數(shù)的格式要嚴(yán)格;符號要用英文符號,以避免出錯。)。
    有的同學(xué)開始瞪眼睛了,不大好用吧?
    因?yàn)檫@種方法要求我們對函數(shù)的使用比較熟悉,如果我們對需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對話框來輸入函數(shù)。
    用相同任務(wù)演示操作過程。
    4、引出max和min函數(shù)。
    探索任務(wù):利用提示應(yīng)用max和min函數(shù)計算各廢棄物的最大和最小值。
    5、引出countif函數(shù)。
    探索任務(wù):利用countif函數(shù)按要求計算并體會函數(shù)的不同格式。
    1、教師小結(jié)比較。
    2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。
    四、???????。
    1、廢棄物數(shù)量大危害大,各個省都在想各種辦法進(jìn)行處理,把對環(huán)境的污染降到最低。
    2、研究任務(wù):運(yùn)用表格數(shù)據(jù),計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數(shù),并對應(yīng)計算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。
    1、分析存在問題,表揚(yáng)練習(xí)完成比較好的同學(xué),強(qiáng)調(diào)鼓勵大家探究學(xué)習(xí)的精神。
    2、把結(jié)果進(jìn)行記錄,上繳或在課后進(jìn)行分析比較,寫出一小論文。
    1、讓學(xué)生體會到固體廢棄物數(shù)量的巨大。
    2、處理真實(shí)數(shù)據(jù)引發(fā)學(xué)生興趣。
    通過比較得到兩種方法的優(yōu)劣。
    學(xué)生的計算結(jié)果在現(xiàn)實(shí)中的運(yùn)用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。
    通過類比學(xué)習(xí),提高學(xué)生的自學(xué)能力和分析問題能力。
    實(shí)際數(shù)據(jù),引發(fā)思考。
    學(xué)生應(yīng)用課堂所學(xué)知識。
    學(xué)生帶著任務(wù)離開教室,課程之間整合,學(xué)生環(huán)境保護(hù)知識得到加強(qiáng)。
    觀看投影。
    學(xué)生用公式法和自動求和兩種方法計算各省廢棄物總量。
    回答可用自動求和。
    動手操作。
    計算各類廢氣物的全國各省平均。
    練習(xí)。
    練習(xí)。
    用自己計算所得數(shù)據(jù)對現(xiàn)實(shí)進(jìn)行分析。
    應(yīng)用所學(xué)知識。
    練習(xí)并記錄數(shù)據(jù)。
    函數(shù)的教案篇十六
    (要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
    提問1.是函數(shù)嗎?
    (由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個變量,也有的認(rèn)為是函數(shù),理由是可以可做.)
    二、新課
    現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
    提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
    (板書)2.2函數(shù)
    一、函數(shù)的概念
    問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
    引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
    2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
    然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
    此時學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
    教師繼續(xù)把問題引向深入,提出在映射的觀點(diǎn)下如何解釋是個函數(shù)?
    從映射角度看可以是其中定義域是,值域是.
    3.函數(shù)的三要素及其作用(板書)
    以下關(guān)系式表示函數(shù)嗎?為什么?
    (1);(2).
    解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
    (2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?BR>    由以上兩題可以看出三要素的作用
    (1)判斷一個函數(shù)關(guān)系是否存在.(板書)
    (1);(2) (3);(4).
    解:先認(rèn)清,它是(定義域)到(值域)的映射,其中
    .
    再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)椋遣煌模?BR>    (4),法則是不同的;
    而(3)定義域是,值域是,法則是乘2減1,與完全相同.
    (2)判斷兩個函數(shù)是否相同.(板書)
    4.對函數(shù)符號的理解(板書)
    已知函數(shù)試求(板書)
    分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計算.
    含義1:當(dāng)自變量取3時,對應(yīng)的函數(shù)值即;
    含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
    計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
    三、小結(jié)
    1.函數(shù)的定義
    2.對函數(shù)三要素的認(rèn)識
    3.對函數(shù)符號的認(rèn)識
    四、作業(yè):略
    五、
    2.2函數(shù)例1.例3.
    一.函數(shù)的概念
    1.定義
    2.本質(zhì)例2.小結(jié):
    3.函數(shù)三要素的認(rèn)識及作用
    4.對函數(shù)符號的理解
    答案:
    函數(shù)的教案篇十七
    1.使學(xué)生掌握的概念,圖象和性質(zhì).
    (1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
    (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì).
    (3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
    2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.
    3.通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
    函數(shù)的教案篇十八
    即:一角的正弦大于另一個角的余弦。
    2、若,則,。
    3、的圖象的對稱中心為(),對稱軸方程為。
    4、的圖象的對稱中心為(),對稱軸方程為。
    5、及的圖象的對稱中心為()。
    6、常用三角公式:。
    有理公式:;。
    降次公式:,;。
    萬能公式:,,(其中)。
    7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過點(diǎn)。
    8、時,。
    9、。
    其中為內(nèi)切圓半徑,為外接圓半徑。
    特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
    10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
    11、解題時,條件中若有出現(xiàn),則可設(shè),。
    則。
    12、等腰三角形中,若且,則。
    13、若等邊三角形的邊長為,則其中線長為,面積為。
    14、;。
    函數(shù)的教案篇十九
    我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運(yùn)用新課標(biāo)的理念指導(dǎo)本節(jié)課的教學(xué)。新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標(biāo)分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。
    一、教材分析。
    1、教材的地位和作用:函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
    2、教學(xué)的重點(diǎn)和難點(diǎn):根據(jù)這一節(jié)課的內(nèi)容特點(diǎn)以及學(xué)生的實(shí)際情況,我將本節(jié)課教學(xué)重點(diǎn)定為指數(shù)函數(shù)的圖像、性質(zhì)及其運(yùn)用,本節(jié)課的難點(diǎn)是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
    二、教學(xué)目標(biāo)分析。
    基于對教材的理解和分析,我制定了以下的教學(xué)目標(biāo)。
    3、情感目標(biāo)(可持續(xù)性目標(biāo)):通過學(xué)習(xí),使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
    三、教法學(xué)法分析。
    1、教學(xué)策略:首先從實(shí)際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
    2、教學(xué):貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
    3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況,本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
    函數(shù)的教案篇二十
    3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
    利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
    (1). ;(2). ;(3). .
    喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
    由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
    1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
    2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
    遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強(qiáng)了自信,加大了挑戰(zhàn).而新知識點(diǎn)的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
    誘導(dǎo)公式(三)、(四)
    給出本節(jié)課的課題
    三角函數(shù)誘導(dǎo)公式
    標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點(diǎn)已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
    的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)
    設(shè)計意圖
    簡便記憶公式.
    求下列三角函數(shù)的值:(1).sin( ); (2). co.
    設(shè)計意圖
    本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對具體負(fù)角而言的.
    學(xué)生練習(xí)
    化簡: .
    設(shè)計意圖
    重點(diǎn)加強(qiáng)對三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
    1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
    2.體會數(shù)形結(jié)合、對稱、化歸的思想.
    3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
    1.課本p-27,第1,2,3小題;
    2.附加課外題 略.
    設(shè)計意圖
    加強(qiáng)學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
    八.課后反思
    對本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學(xué)生的互動交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達(dá)到了設(shè)計中所預(yù)想的目標(biāo)。
    然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
    在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。