在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫才能發(fā)揮它最大的作用呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
高二數(shù)學(xué)知識點(diǎn)篇一
對于函數(shù)y=f(x)(x∈d),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈d)的零點(diǎn)。
(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。
(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。
二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系
三二分法
對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
1、函數(shù)的零點(diǎn)不是點(diǎn):
函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn)。在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo)。
2、對函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):
(1)、f(x)在[a,b]上連續(xù);
(2)、f(a)·f(b)<0;
(3)、在(a,b)內(nèi)存在零點(diǎn)。
這是零點(diǎn)存在的一個(gè)充分條件,但不必要。
3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號。
利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0。若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。
四判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
2、零點(diǎn)存在性定理法:
利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)。
3、數(shù)形結(jié)合法:
轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題。先畫出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。
已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法
1、直接法:
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
3、數(shù)形結(jié)合法:
先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
高二數(shù)學(xué)知識點(diǎn)篇二
在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.
把每個(gè)研究對象叫做個(gè)體.
把總體中個(gè)體的總數(shù)叫做總體容量.
為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:
研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
(1)給調(diào)查對象群體中的每一個(gè)對象編號;
(2)準(zhǔn)備抽簽的工具,實(shí)施抽簽
(3)對樣本中的每一個(gè)個(gè)體進(jìn)行測量或調(diào)查
例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。
例:利用隨機(jī)數(shù)表在所在的班級中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。
高二數(shù)學(xué)知識點(diǎn)篇三
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈r)
②a2+b2≥2ab(a、b∈r,當(dāng)且僅當(dāng)a=b時(shí)取“=”號)
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
高二數(shù)學(xué)知識點(diǎn)篇四
平面向量數(shù)量積的定義
已知兩個(gè)非零向量a和b,它們的夾角為,把數(shù)量|a||b|cos 叫做a和b的數(shù)量積(或內(nèi)積),記作ab.即ab=|a||b|cos ,規(guī)定0a=0.
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究] 根據(jù)數(shù)量積的運(yùn)算律,判斷下列結(jié)論是否成立.
(1)ab=ac,則b=c嗎?
(2)(ab)c=a(bc)嗎?
提示:(1)不一定,a=0時(shí)不成立,
另外a0時(shí),ab=ac.由數(shù)量積概念可知b與c不能確定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,當(dāng)a與c不共線時(shí)它們必不相等.
高二數(shù)學(xué)知識點(diǎn)篇五
等腰直角三角形面積公式:s=a2/2,s=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
s=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
s=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
高二數(shù)學(xué)知識點(diǎn)篇六
主要掌握好(三四五)
(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差a—b可以表示成a與b的逆的積。
(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。
(1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件a所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件a看成這個(gè)圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
(1)加法公式:p(a+b)=p(a)+p(b)—p(ab),特別地,如果a與b互不相容,則p(a+b)=p(a)+p(b);
(2)差:p(a—b)=p(a)—p(ab),特別地,如果b包含于a,則p(a—b)=p(a)—p(b);
(3)乘法公式:p(ab)=p(a)p(b|a)或p(ab)=p(a|b)p(b),特別地,如果a與b相互獨(dú)立,則p(ab)=p(a)p(b);
(4)全概率公式:p(b)=∑p(ai)p(b|ai)。它是由因求果,
貝葉斯公式:p(aj|b)=p(aj)p(b|aj)/∑p(ai)p(b|ai)。它是由果索因;
如果一個(gè)事件b可以在多種情形(原因)a1,a2,...,an下發(fā)生,則用全概率公式求b發(fā)生的概率;如果事件b已經(jīng)發(fā)生,要求它是由aj引起的概率,則用貝葉斯公式。
(5)二項(xiàng)概率公式:pn(k)=c(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有a與a的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式。
高二數(shù)學(xué)知識點(diǎn)篇七
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
前n項(xiàng)和公式為:sn=na1+n(n—1)d/2或sn=n(a1+an)/2(2)
以上n均屬于正整數(shù)。
從(1)式可以看出,an是n的`一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為ar,am+an=2ar,所以ar為am,an的等差中項(xiàng),且為數(shù)列的平均數(shù)。
且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n—m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈{1,2,…,n}
若m,n,p,q∈n_,且m+n=p+q,則有am+an=ap+aq,sm—1=(2n—1)an,s2n+1=(2n+1)an+1,sk,s2k—sk,s3k—s2k,…,snk—s(n—1)k…或等差數(shù)列,等等。
和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)—首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)—末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)—首項(xiàng)
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)—1)×公差
高二數(shù)學(xué)知識點(diǎn)篇八
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):
(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與p1、p2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
①點(diǎn)斜式:直線斜率k,且過點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:()直線兩點(diǎn),
④截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
⑤一般式:(a,b不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))
(三)過定點(diǎn)的直線系
(ⅰ)斜率為k的直線系:,直線過定點(diǎn);
(ⅱ)過兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中。
當(dāng),時(shí);
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
相交
交點(diǎn)坐標(biāo)即方程組的一組解。
方程組無解;方程組有無數(shù)解與重合
設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則
一點(diǎn)到直線的距離
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
高二數(shù)學(xué)知識點(diǎn)篇一
對于函數(shù)y=f(x)(x∈d),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈d)的零點(diǎn)。
(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。
(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。
二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系
三二分法
對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
1、函數(shù)的零點(diǎn)不是點(diǎn):
函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn)。在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo)。
2、對函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):
(1)、f(x)在[a,b]上連續(xù);
(2)、f(a)·f(b)<0;
(3)、在(a,b)內(nèi)存在零點(diǎn)。
這是零點(diǎn)存在的一個(gè)充分條件,但不必要。
3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號。
利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0。若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。
四判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
2、零點(diǎn)存在性定理法:
利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)。
3、數(shù)形結(jié)合法:
轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題。先畫出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。
已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法
1、直接法:
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
3、數(shù)形結(jié)合法:
先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
高二數(shù)學(xué)知識點(diǎn)篇二
在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.
把每個(gè)研究對象叫做個(gè)體.
把總體中個(gè)體的總數(shù)叫做總體容量.
為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:
研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
(1)給調(diào)查對象群體中的每一個(gè)對象編號;
(2)準(zhǔn)備抽簽的工具,實(shí)施抽簽
(3)對樣本中的每一個(gè)個(gè)體進(jìn)行測量或調(diào)查
例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。
例:利用隨機(jī)數(shù)表在所在的班級中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。
高二數(shù)學(xué)知識點(diǎn)篇三
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈r)
②a2+b2≥2ab(a、b∈r,當(dāng)且僅當(dāng)a=b時(shí)取“=”號)
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
高二數(shù)學(xué)知識點(diǎn)篇四
平面向量數(shù)量積的定義
已知兩個(gè)非零向量a和b,它們的夾角為,把數(shù)量|a||b|cos 叫做a和b的數(shù)量積(或內(nèi)積),記作ab.即ab=|a||b|cos ,規(guī)定0a=0.
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究] 根據(jù)數(shù)量積的運(yùn)算律,判斷下列結(jié)論是否成立.
(1)ab=ac,則b=c嗎?
(2)(ab)c=a(bc)嗎?
提示:(1)不一定,a=0時(shí)不成立,
另外a0時(shí),ab=ac.由數(shù)量積概念可知b與c不能確定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,當(dāng)a與c不共線時(shí)它們必不相等.
高二數(shù)學(xué)知識點(diǎn)篇五
等腰直角三角形面積公式:s=a2/2,s=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
s=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
s=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
高二數(shù)學(xué)知識點(diǎn)篇六
主要掌握好(三四五)
(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差a—b可以表示成a與b的逆的積。
(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。
(1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件a所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件a看成這個(gè)圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
(1)加法公式:p(a+b)=p(a)+p(b)—p(ab),特別地,如果a與b互不相容,則p(a+b)=p(a)+p(b);
(2)差:p(a—b)=p(a)—p(ab),特別地,如果b包含于a,則p(a—b)=p(a)—p(b);
(3)乘法公式:p(ab)=p(a)p(b|a)或p(ab)=p(a|b)p(b),特別地,如果a與b相互獨(dú)立,則p(ab)=p(a)p(b);
(4)全概率公式:p(b)=∑p(ai)p(b|ai)。它是由因求果,
貝葉斯公式:p(aj|b)=p(aj)p(b|aj)/∑p(ai)p(b|ai)。它是由果索因;
如果一個(gè)事件b可以在多種情形(原因)a1,a2,...,an下發(fā)生,則用全概率公式求b發(fā)生的概率;如果事件b已經(jīng)發(fā)生,要求它是由aj引起的概率,則用貝葉斯公式。
(5)二項(xiàng)概率公式:pn(k)=c(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有a與a的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式。
高二數(shù)學(xué)知識點(diǎn)篇七
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
前n項(xiàng)和公式為:sn=na1+n(n—1)d/2或sn=n(a1+an)/2(2)
以上n均屬于正整數(shù)。
從(1)式可以看出,an是n的`一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為ar,am+an=2ar,所以ar為am,an的等差中項(xiàng),且為數(shù)列的平均數(shù)。
且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n—m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈{1,2,…,n}
若m,n,p,q∈n_,且m+n=p+q,則有am+an=ap+aq,sm—1=(2n—1)an,s2n+1=(2n+1)an+1,sk,s2k—sk,s3k—s2k,…,snk—s(n—1)k…或等差數(shù)列,等等。
和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)—首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)—末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)—首項(xiàng)
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)—1)×公差
高二數(shù)學(xué)知識點(diǎn)篇八
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):
(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與p1、p2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
①點(diǎn)斜式:直線斜率k,且過點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:()直線兩點(diǎn),
④截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
⑤一般式:(a,b不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))
(三)過定點(diǎn)的直線系
(ⅰ)斜率為k的直線系:,直線過定點(diǎn);
(ⅱ)過兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中。
當(dāng),時(shí);
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
相交
交點(diǎn)坐標(biāo)即方程組的一組解。
方程組無解;方程組有無數(shù)解與重合
設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則
一點(diǎn)到直線的距離
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

