小學(xué)因數(shù)和倍數(shù)的教案(通用23篇)

字號:

    編寫教案的過程中,教師需要綜合考慮學(xué)生的實際情況和教學(xué)資源的利用。教案的編寫要注重提供不同層次和不同類型的練習(xí)題目。這些教案范文能夠幫助教師合理安排學(xué)習(xí)任務(wù),提高學(xué)生的學(xué)業(yè)成績。
    小學(xué)因數(shù)和倍數(shù)的教案篇一
    教學(xué)目標(biāo):
    1、通過操作活動得出相應(yīng)的乘除法算式,幫助學(xué)生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
    2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學(xué)生觀察、分析、概括能力,培養(yǎng)有序思考能力。
    3、通過倍數(shù)和因數(shù)之間的互相依存關(guān)系使學(xué)生感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,體會到數(shù)學(xué)內(nèi)容的奇妙、有趣。
    教學(xué)重點:理解倍數(shù)和因數(shù)的意義。
    教學(xué)難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
    教學(xué)準(zhǔn)備:每桌準(zhǔn)各12個一樣大小的正方形,每人準(zhǔn)備一張自己學(xué)號的卡片。
    設(shè)計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學(xué)生持續(xù)的學(xué)習(xí)興趣;學(xué)生通過獨立思考、合作文流進行自主探索;教師引導(dǎo)學(xué)生掌握數(shù)學(xué)思考的方法。
    教學(xué)過程:
    1、讓學(xué)生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學(xué)生能猜出三個人分別是孫子、爸爸、和爺爺)
    2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學(xué)生以韓有才為中心介紹下三個人的關(guān)系。學(xué)生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導(dǎo)學(xué)生說出誰是誰的爸爸誰是準(zhǔn)的兒子。
    3、上述父子關(guān)系是一種互相依存的關(guān)系,在表述時一定要完整。并向?qū)W生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關(guān)系倍數(shù)和因數(shù)。
    設(shè)計說明:智力競猜走學(xué)生喜歡的形式,因為每個學(xué)生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學(xué)生的學(xué)習(xí)興趣,二是以此引出相互依存的關(guān)系,為理解倍數(shù)和因數(shù)的相互依存關(guān)系作鋪墊。
    1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學(xué)拿出課前準(zhǔn)備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
    2、請學(xué)生匯報不同的擺法,以及相應(yīng)的乘除法算式。(乘法算式和除法算式分開寫)再向?qū)W生說明:如果一個圖形經(jīng)過旋轉(zhuǎn)后和另一個圖形一樣,我們就認(rèn)為這兩個圖形是一樣的,讓學(xué)生特重復(fù)的圖形和算式去掉。(板書三十乘法算式,和幾十相應(yīng)的除法算式)
    設(shè)計說明;讓學(xué)生寫出蘊涵的乘除法算式符合學(xué)生的知識基礎(chǔ),學(xué)生有的可能用乘法表示,也有的可能用除法表示;讓學(xué)生將旋轉(zhuǎn)后相同的去掉,這是一次簡化,很多學(xué)生并不知道,需要指導(dǎo),這樣可以使學(xué)生認(rèn)識到事物的本質(zhì)。
    3、讓學(xué)生一起看乘法算式43=12,向?qū)W生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。
    4、先請一個學(xué)生站起來說一說.然后同桌的同學(xué)再互相說一說。
    5、讓學(xué)生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。
    6、學(xué)生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學(xué)生可能會出現(xiàn)0( )=0的情況,借此向?qū)W生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。
    設(shè)計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學(xué)生的適當(dāng)記憶重復(fù)、仿照。當(dāng)然,要使學(xué)生真正理解還必須舉一反三,通過互相舉例可以逐步完善學(xué)生對倍數(shù)和因數(shù)的認(rèn)識,同時使學(xué)生明確倍數(shù)和因數(shù)的研究范圍。
    7、以43=12與123=4為例,向?qū)W生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學(xué)生試一試其他幾個除法算式中的關(guān)系。
    8、練習(xí):根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)
    54=20 357=5 3+4=7
    (1)學(xué)生回答后引發(fā)學(xué)生思考:能不能說20是倍數(shù),4是因數(shù)。使學(xué)生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關(guān)系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。
    (2)通過3+4=7使學(xué)生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎(chǔ)之上的。
    設(shè)計說明:乘法和除法是一種互逆的關(guān)系,在學(xué)習(xí)中應(yīng)該溝通它們之間的聯(lián)系;通過三道練習(xí)可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認(rèn)識,將融會貫通落到實處。
    1、找一個數(shù)的因數(shù)。
    (1)聯(lián)系板書的乘除法算式觀察思考12的因數(shù)有哪些,井想辦法找出15的所有因數(shù)。
    (2)學(xué)生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學(xué)生充分交流的基礎(chǔ)上引導(dǎo)學(xué)生有條理的一對一對說出15的因數(shù)。
    (3)用一對一對的方法找出36的所有因數(shù)??赡苡械膶W(xué)生根據(jù)乘法算式找的,也有的學(xué)生是根據(jù)除法算式找的,都應(yīng)該給予肯定。
    (4)引導(dǎo)學(xué)生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。
    設(shè)計說明:先安排學(xué)生找一個數(shù)的因數(shù)可以使學(xué)生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學(xué)生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導(dǎo)學(xué)生一對一對的找是必要的,它可以培養(yǎng)學(xué)生的有序思考。最后引導(dǎo)學(xué)生觀察。使學(xué)生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。
    2、找一個數(shù)的倍數(shù)。
    (1)讓學(xué)生找3的倍數(shù),比一比誰找得多。
    (2)學(xué)生匯報后,引導(dǎo)學(xué)生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的`倍數(shù)時要借助省略號表示結(jié)果。
    (3)找出2的倍數(shù)和5的倍數(shù),并引導(dǎo)學(xué)生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
    設(shè)計說明:讓學(xué)生比一比誰找的倍數(shù)多,可以使學(xué)生產(chǎn)生認(rèn)知沖突,認(rèn)識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學(xué)生匯報后同樣需要引導(dǎo)學(xué)生的有序思考,需要引導(dǎo)學(xué)生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。
    1、想想做做的第l題。學(xué)生表述后強調(diào)哪個是哪個的倍數(shù)(或因數(shù))。
    設(shè)計說明:第l題是基礎(chǔ)練習(xí).可以鞏固對倍數(shù)和因數(shù)的認(rèn)識,2、3兩題聯(lián)系實際,使學(xué)生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學(xué)生持續(xù)的學(xué)習(xí)熱情,而且可以綜合應(yīng)用求倍數(shù)和因數(shù)的方法,再次認(rèn)識到倍數(shù)和因數(shù)的某些特征。
    1、通過這節(jié)課的學(xué)習(xí)你有什么收獲?向你的同伴介紹一下。
    2、生活中許多現(xiàn)象與我們學(xué)習(xí)的倍數(shù)和因數(shù)的知識有關(guān),課后同學(xué)們可以利用今天所學(xué)的知識探索一下1小時等于60分的好處。通過探索使學(xué)生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。
    設(shè)計說明:向同伴介紹自己的收獲可以將課堂中學(xué)到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關(guān)知識,溝通知識間的聯(lián)系,拓展學(xué)生的知識面,使學(xué)生認(rèn)識到數(shù)學(xué)知識的應(yīng)用價值。
    小學(xué)因數(shù)和倍數(shù)的教案篇二
    這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
    教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
    倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會12也是4的倍數(shù),指名說后,再強化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強。這時再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點特別的兩句。
    整個過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。
    找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。
    探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進,先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
    教學(xué)4的倍數(shù)時,學(xué)生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。
    這樣搭建了有效的平臺、形成了師生互動生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構(gòu)了數(shù)學(xué)模型。
    小學(xué)因數(shù)和倍數(shù)的教案篇三
    《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。
    數(shù)學(xué)課程標(biāo)準(zhǔn)“以人為本”的理念決定著數(shù)學(xué)教學(xué)目標(biāo)的指向:適應(yīng)并促進學(xué)生的發(fā)展。根據(jù)本節(jié)課知識的特點和學(xué)生的認(rèn)知規(guī)律,我采用了角色轉(zhuǎn)換、數(shù)形結(jié)合、合作學(xué)習(xí)等發(fā)展性教學(xué)手段進行教學(xué),在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學(xué):
    (1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。
    因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。?通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達到了預(yù)期的效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。
    (2)角色轉(zhuǎn)換,讓學(xué)生親身體驗數(shù)和數(shù)之間的聯(lián)系。
    因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認(rèn)識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點。
    (3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進數(shù)學(xué)課堂。
    “數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思想。對教師來說則是一種教學(xué)策略,是一種發(fā)展性課堂教學(xué)手段;對學(xué)生來說又是一種學(xué)習(xí)方法。如果長期滲透,運用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。開課教師引導(dǎo)學(xué)生進行空間想象。
    (4)重組教材,根據(jù)學(xué)生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。
    教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實際情況,我進行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學(xué)生說出20和24的因數(shù),達到了鞏固練習(xí)的目的。這樣設(shè)計由易到難,由淺入深,符合了學(xué)生的認(rèn)知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。
    (5)趣味活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。
    只有讓學(xué)生親身感受到數(shù)學(xué)知識內(nèi)在的智取因素,數(shù)學(xué)學(xué)習(xí)的無窮魅力才能深深地打動學(xué)生。這節(jié)課的練習(xí)設(shè)計緊緊把握概念的內(nèi)涵與外延,設(shè)計有效練習(xí),拓展知識空間。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達到充分地練習(xí)效果。
    因數(shù)和倍數(shù)教學(xué)反思。
    《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識整除的情況下直接認(rèn)識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
    這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
    (一)?操作實踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)。
    (二)自主探究,意義建構(gòu),找倍數(shù)和因數(shù)。
    整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
    新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。
    (三)變式拓展,實踐應(yīng)用---—促進智能內(nèi)化。
    練習(xí)的設(shè)計不僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
    由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時間安排的可以少一些,所以我在第一部分認(rèn)識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應(yīng)該及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
    小學(xué)因數(shù)和倍數(shù)的教案篇四
    第6課時。
    1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
    2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
    1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
    2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
    活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
    讓學(xué)生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當(dāng)進行“列表”“畫示意圖”等解決問題策略的指導(dǎo)。
    本題是讓學(xué)生應(yīng)用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學(xué)生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
    活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。
    [板書設(shè)計]。
    數(shù)的奇偶性。
    12+34=48偶數(shù)+偶數(shù)=偶數(shù)。
    11+37=48奇數(shù)+奇數(shù)=偶數(shù)。
    12+11=23奇數(shù)+偶數(shù)=奇數(shù)。
    小學(xué)因數(shù)和倍數(shù)的教案篇五
    讓學(xué)生能利用最大公因數(shù)知識解決生活中的實際問題。
    教學(xué)重點。
    利用最大公因數(shù)知識解決生活中的實際問題。
    教學(xué)難點。
    利用最大公因數(shù)知識解決生活中的實際問題。
    課件。
    一、導(dǎo)入新課。
    1.什么是公因數(shù)?什么是最大公因數(shù)?
    2.找出每組數(shù)的最大公因數(shù)。
    5和1521和2830和188和911和3312和42。
    過渡:在現(xiàn)實生活中,有的問題需要用最大公因數(shù)的知道來解決,這就是我們今天要學(xué)習(xí)的內(nèi)容。
    二、新課教學(xué)。
    出示教材第62頁例3。
    (1)引導(dǎo)學(xué)生審題,理解題意。在貯藏室的長方形地面上鋪正方形地磚。要求既要鋪滿,又要都用整塊的方磚。
    (2)學(xué)生以小組為單位,探究如何拼擺。
    每組4人,在課前印好畫有長方形的方格紙,每人選擇一種邊長的方磚,試一試,只要畫滿一條長邊,一條寬邊就可以。
    教師巡視指導(dǎo),輔導(dǎo)學(xué)生。
    (3)多媒體演示拼擺過程,進一步驗證學(xué)生動手操作的情況。
    (4)教師:應(yīng)該怎樣選擇方磚來鋪地呢?
    通過交流,得出結(jié)論:要使所用的正方形地磚都是整塊的,地磚的邊長必須既是16的因數(shù),又是12的因數(shù)。
    (5)12和16的公因數(shù)有1、2、4,其中最大公因數(shù)是4。所以可選邊長是1dm、2dm、4dm的地磚,邊長最大的是4dm。
    三、鞏固練習(xí)。
    1.教材第63頁練習(xí)十五第5題。
    此題是有關(guān)兩數(shù)最大公因數(shù)的實際問題。教師要引導(dǎo)學(xué)生理解題意,要剪成“同樣大小的正方形而沒有剩余”。正方形的邊長必須既是70的因數(shù)又是50的因數(shù),要使正方形的邊長最大,所以要找70和50的最大公因數(shù)。學(xué)生弄清題意后,由學(xué)生獨立完成,然后全班反饋。
    2.教材第63頁練習(xí)十五第6題。
    此題也是有關(guān)兩數(shù)最大公因數(shù)的實際問題,“要使每排的人數(shù)相等”則每排的人數(shù)必須既是48,又是36的因數(shù),要使每排的人數(shù)最多,所以要找48和36的最大公因數(shù),學(xué)生理解題意即可完成。
    3.教材第64頁練習(xí)十五第9題。
    此題檢查學(xué)生當(dāng)兩數(shù)是倍數(shù)關(guān)系、互質(zhì)關(guān)系、一般關(guān)系情況下求最大公因數(shù)的能力。
    5.長方形的邊長是70和50的最大公因數(shù)是10cm,所以小正方形的邊長最長是10cm。
    6.每排人數(shù)是36和48的最大公因數(shù),是12人。
    男生:48÷12=4(排)女生:36÷12=3(排)。
    9.(1)a(2)c(3)c。
    四、課堂小結(jié)。
    今天你學(xué)習(xí)了什么?有什么收獲?
    五、布置作業(yè)。
    教材第64頁練習(xí)十五第7、8、10題。
    小學(xué)因數(shù)和倍數(shù)的教案篇六
    1.學(xué)生通過回憶和整理,進一步明確因數(shù)和倍數(shù)的相關(guān)知識,加深認(rèn)識相關(guān)概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運用這些知識解決相關(guān)實際問題。
    2.學(xué)生在應(yīng)用相關(guān)知識進行判斷和推理的過程中,能說明思考過程,進一步培養(yǎng)歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。
    3.學(xué)生進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,感受數(shù)學(xué)思考的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的自信心。
    掌握倍數(shù)和因數(shù)等相關(guān)概念,以及應(yīng)用概念判斷、推理。
    理解相關(guān)概念的聯(lián)系和區(qū)別。
    一、揭示課題。
    1.回顧知識。
    提問:上節(jié)課,我們已經(jīng)復(fù)習(xí)了整數(shù)和小數(shù)的有關(guān)知識。
    結(jié)合學(xué)生交流,板書。
    2.揭示課題。
    引入:這節(jié)課,我們復(fù)習(xí)因數(shù)和倍數(shù)的相關(guān)知識。
    通過復(fù)習(xí),能進一步了解關(guān)于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應(yīng)用這些知識。
    二、基本練習(xí)。
    1.知識梳理。
    提高:回想一下,在學(xué)習(xí)因數(shù)和倍數(shù)時,我們還學(xué)習(xí)了哪些相關(guān)的知識?
    學(xué)生回顧,交流,教師適當(dāng)引導(dǎo)回顧。
    根據(jù)學(xué)生回答,板書整理。
    2.做練習(xí)與實踐第10題。
    學(xué)生獨立完成,指名板演。
    集體交流,讓學(xué)生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。
    3.做練習(xí)與實踐第11題。
    出示題目,學(xué)生直接口答。
    提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?
    追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。
    4.做練習(xí)與實踐第12題。
    學(xué)生先獨立寫出質(zhì)數(shù)和合數(shù),再指名口答。
    追問:最小質(zhì)數(shù)是幾?最小的合數(shù)呢?
    小學(xué)因數(shù)和倍數(shù)的教案篇七
    4、培養(yǎng)學(xué)生的觀察能力。
    掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
    一、引入新課。
    1、出示主題圖,讓學(xué)生各列一道乘法算式。
    2、師:看你能不能讀懂下面的算式?
    出示:因為26=12。
    所以2是12的因數(shù),6也是12的因數(shù);
    12是2的倍數(shù),12也是6的倍數(shù)。
    3、師:你能不能用同樣的方法說說另一道算式?
    (指名生說一說)。
    師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
    那你還能找出12的其他因數(shù)嗎?
    4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
    師:誰來出一個算式考考全班同學(xué)?
    5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
    齊讀p12的注意。
    二、新授。
    (一)找因數(shù)。
    1、出示例1:18的因數(shù)有哪幾個?
    學(xué)生嘗試完成:匯報。
    (18的因數(shù)有:1,2,3,6,9,18)。
    師:說說看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)。
    師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
    2、用這樣的方法,請你再找一找36的因數(shù)有那些?
    匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
    師:你是怎么找的?
    舉錯例(1,2,3,4,6,6,9,12,18,36)。
    師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
    仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
    看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
    小學(xué)因數(shù)和倍數(shù)的教案篇八
    1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。
    2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。
    3.我能在自主探究中獨立思考,合作探究時暢所欲言。
    能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。
    用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。
    一、導(dǎo)入新課。
    二、檢查獨學(xué)。
    1.互動分享收獲。
    2.質(zhì)疑探討。
    3.試試身手:第23頁做一做。
    三、合作探究。
    1.小組合作,利用課本24頁的表格,用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。
    2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?
    3.小組討論:
    (1)有沒有最大的質(zhì)數(shù)或合數(shù)?
    (2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?
    4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。
    5.獨立思考:
    (1)是不是所有的`質(zhì)數(shù)都是奇數(shù)?
    (2)是不是所有的奇數(shù)都是質(zhì)數(shù)?
    (3)是不是所有的合數(shù)都是偶數(shù)?
    (4)是不是所有的偶數(shù)都是合數(shù)?
    6.組內(nèi)交流。
    小學(xué)因數(shù)和倍數(shù)的教案篇九
    1、使學(xué)生結(jié)合乘、除法運算初步認(rèn)識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
    2、使學(xué)生在探索的過程中,進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
    3、增強學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受到成功的快樂。
    理解倍數(shù)和因數(shù)的含義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
    理解倍數(shù)和因數(shù)的含義及倍數(shù)和因數(shù)的相互依存關(guān)系。
    學(xué)生:每人準(zhǔn)備12個同樣大小的正方形。教師:課件。
    一、認(rèn)識倍數(shù)和因數(shù)。
    1、提出活動要求:每一桌的同學(xué)合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來??纯茨淖赖耐瑢W(xué)最快完成。
    2分組操作活動,師巡視指導(dǎo)。
    3、指名匯報,出示課件,全班交流。匯報時是引導(dǎo)學(xué)生根據(jù)“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。
    4、教學(xué)“倍數(shù)”和“因數(shù)”的概念。
    (1)結(jié)合4×3=12,說明12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。并板書。
    (2)齊讀這三句話,板書課題:倍數(shù)和因數(shù)。
    (3)指名看式子說。
    (4)請學(xué)生根據(jù)6×2=12和12×1=12兩道算式,照樣子說。
    一說哪個數(shù)是哪個數(shù)的倍數(shù)?哪個數(shù)是哪個數(shù)的因數(shù)?
    追問:如果說12是倍數(shù),3是因數(shù),可以嗎?為什么?
    明確:倍數(shù)和因數(shù)都是指兩個數(shù)之間的關(guān)系,是相互依存的。
    教師指出閱讀底注明確:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。不是0的自然數(shù),0要考慮嗎?那從什么數(shù)開始。如1、2、3、4、5、6、7、8、9……在小數(shù)和分?jǐn)?shù)等其他數(shù)中就也沒有倍數(shù)和因數(shù)的說法了。(可根據(jù)具體的算式說明,如0×3=0,1.5×2=3。)。
    (5)練習(xí):“想想做做”第1題。每位同學(xué)都各選一個乘法算式同桌之間互相說一說,
    三、探索找倍數(shù)和因數(shù)的方法。
    1、探索找一個數(shù)的倍數(shù)的方法。
    (1)提出問題:什么樣的數(shù)會是3的倍數(shù)呢?明確:3的倍數(shù)是3與一個數(shù)相乘的積。你能找到多少個3的倍數(shù)?先讓學(xué)生獨立思考,再組織交流。
    (2)啟發(fā):誰能按從小到大的順序有條理的說出3的倍數(shù)?根據(jù)什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數(shù)。同時板書:
    3×1=(3)3×2=(6)……。
    追問:能把3的倍數(shù)全部說完嗎?應(yīng)該怎樣表示3的倍數(shù)有哪些呢?
    根據(jù)學(xué)生的回答課件演示:3的倍數(shù)有3、6、9、12、15……。
    (3)完成后面的試一試。提醒學(xué)生注意有序的思考,并規(guī)范的表示出結(jié)果。
    (4)一個數(shù)的倍數(shù)的特點。
    提問:觀察上面的幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?根據(jù)學(xué)生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它的本身,沒有最大的倍數(shù),一個數(shù)的倍數(shù)的個數(shù)是無限的。
    提問:現(xiàn)在你能很快說出6的最小倍數(shù)是多少嗎?10呢?
    2、探索找一個數(shù)的因數(shù)的方法。
    (1)提出問題:什么樣的數(shù)是36的因數(shù)?
    學(xué)生舉例說明。明確:如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。
    板書()×()=36。
    學(xué)生試著在練習(xí)本上列式找出。
    (3)學(xué)生匯報交流,根據(jù)學(xué)生的回答課件演示。
    請同學(xué)們看書71頁,完成書上的填空。
    (5)完成“試一試”。提醒學(xué)生有序的思考,做到不重復(fù),不遺漏。
    學(xué)生匯報,說說你是怎樣找的。
    (6)觀察發(fā)現(xiàn)。
    提問:觀察上面的例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?
    小結(jié):一個數(shù)因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中,最小的是1,最大的是它本身。
    提問:現(xiàn)在你能很快說出18的最小因數(shù)和最大因數(shù)是多少嗎?25呢?
    四、鞏固練習(xí)。
    1、“想想做做”第2題。
    2、“想想做做”第3題。
    五、全課總結(jié)。
    這節(jié)課你學(xué)會了什么?
    小學(xué)因數(shù)和倍數(shù)的教案篇十
    義務(wù)教育課程標(biāo)準(zhǔn)小學(xué)數(shù)學(xué)五年級下冊第二章《因數(shù)和倍數(shù)》第1節(jié)例1(教材第13頁)及練習(xí)二的第2題,第四題的前部分。
    本節(jié)教學(xué)是在學(xué)生學(xué)習(xí)掌握了因數(shù)和倍數(shù)兩個概念的基礎(chǔ)上,在教師的引導(dǎo)下,讓學(xué)生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓(xùn)練,使學(xué)生能熟練找全一個數(shù)的因數(shù)。另外,通過引導(dǎo)學(xué)生用集合的形式表示一個數(shù)的因數(shù),一方面給學(xué)生滲透集合思想,更重要的是為后面教學(xué)求兩個數(shù)的公因數(shù)做準(zhǔn)備。
    2、逐步培養(yǎng)學(xué)生從個別到全體、從具體到一般的抽象歸納的思想方法。
    探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
    用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
    投影儀、小黑板、卡片。
    教學(xué)課時:一課時。
    運用嘗試教學(xué)法,從學(xué)生已有的知識經(jīng)驗出發(fā),通過教師引導(dǎo)、學(xué)生自學(xué)例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
    一、復(fù)習(xí)舊知。
    師:同學(xué)們,前面學(xué)習(xí)了因數(shù)和倍數(shù)的概念,老師很想考考你們學(xué)得怎么樣,可以嗎?
    生:(預(yù)設(shè))可以!
    師:出示小黑板。
    1、利用因數(shù)和倍數(shù)的相互依存關(guān)系說一說下面各組數(shù)的相互關(guān)系。
    21和72×7=1430÷6=5。
    2、判斷。
    (1)12是倍數(shù),2是因數(shù)。()。
    (2)1是14的因數(shù),14是1的倍數(shù)。()。
    (3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
    教師根據(jù)學(xué)生完成練習(xí)的情況對學(xué)生進行恰當(dāng)?shù)谋頁P激勵,同時進入新課教學(xué):……。
    二、新課教學(xué)。
    過程一:嘗試訓(xùn)練。
    (一)出示問題。
    師:同學(xué)們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
    生:行!(預(yù)設(shè))。
    嘗試題:14的因數(shù)有哪幾個?
    (二)學(xué)生解決問題,教師巡視并根據(jù)實際適時輔導(dǎo)學(xué)困生。
    (三)信息反饋。
    板書:
    1×14。
    142×7。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    過程二:自學(xué)課本(p13例1)。
    (一)學(xué)生自學(xué)例1。
    教師提出自學(xué)要求(投影):
    1、18有哪些因數(shù)?
    2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
    3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
    (二)信息反饋。
    1、反饋自學(xué)要求情況;
    板書:
    1×18。
    182×9。
    3×6。
    18的因數(shù)有1,2,3,6,9,18。
    還可以這樣表示:18的因數(shù)。
    2、知識對比,探索發(fā)現(xiàn)規(guī)律。
    (1)師:同學(xué)們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
    投影出示問題:
    思考一:你用什么方法找出?
    (2)學(xué)生思考,教師適時引導(dǎo)。
    (3)同桌交流思考結(jié)果。
    (4)師生互動??偨Y(jié)方法、點出課題。
    求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
    過程三:嘗試練習(xí)。
    (一)用小黑板出示練習(xí)題。
    1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
    (二)信息反饋:師生互動總結(jié)特點。
    板書:
    一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
    三、課堂作業(yè)。
    練習(xí)二第2題和第4題前半部分。
    四、課堂延伸。
    猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
    五、課堂小結(jié)。
    師:今天你學(xué)會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
    生:……。
    求一個數(shù)的因數(shù)的方法。
    1×14。
    142×7方法:用乘法計算或除法計算(整除)。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    1×18。
    182×9。
    3×6。
    18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
    還可以表示為:
    它的最小因數(shù)是1的因數(shù)是它本身。
    小學(xué)因數(shù)和倍數(shù)的教案篇十一
    教學(xué)內(nèi)容:
    教材分析:
    本節(jié)教學(xué)是在學(xué)生學(xué)習(xí)掌握了因數(shù)和倍數(shù)兩個概念的基礎(chǔ)上,在教師的引導(dǎo)下,讓學(xué)生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓(xùn)練,使學(xué)生能熟練找全一個數(shù)的因數(shù)。另外,通過引導(dǎo)學(xué)生用集合的形式表示一個數(shù)的因數(shù),一方面給學(xué)生滲透集合思想,更重要的是為后面教學(xué)求兩個數(shù)的公因數(shù)做準(zhǔn)備。
    教學(xué)目標(biāo):
    2、逐步培養(yǎng)學(xué)生從個別到全體、從具體到一般的抽象歸納的思想方法。
    教學(xué)重點:
    探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
    教學(xué)難點:
    用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
    教具準(zhǔn)備:
    投影儀、小黑板、卡片。
    教學(xué)課時:一課時。
    教學(xué)設(shè)想:
    運用嘗試教學(xué)法,從學(xué)生已有的知識經(jīng)驗出發(fā),通過教師引導(dǎo)、學(xué)生自學(xué)例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
    教學(xué)過程:
    一、復(fù)習(xí)舊知。
    師:同學(xué)們,前面學(xué)習(xí)了因數(shù)和倍數(shù)的概念,老師很想考考你們學(xué)得怎么樣,可以嗎?
    生:(預(yù)設(shè))可以!
    師:出示小黑板。
    1、利用因數(shù)和倍數(shù)的相互依存關(guān)系說一說下面各組數(shù)的相互關(guān)系。
    21和72×7=1430÷6=5。
    2、判斷。
    (1)12是倍數(shù),2是因數(shù)。()。
    (2)1是14的因數(shù),14是1的倍數(shù)。()。
    (3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
    教師根據(jù)學(xué)生完成練習(xí)的情況對學(xué)生進行恰當(dāng)?shù)谋頁P激勵,同時進入新課教學(xué):……。
    二、新課教學(xué)。
    過程一:嘗試訓(xùn)練。
    (一)出示問題。
    師:同學(xué)們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
    生:行!(預(yù)設(shè))。
    嘗試題:14的因數(shù)有哪幾個?
    (二)學(xué)生解決問題,教師巡視并根據(jù)實際適時輔導(dǎo)學(xué)困生。
    (三)信息反饋。
    板書:
    1×14。
    14 2×7。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    過程二:自學(xué)課本(p13例1)。
    (一)學(xué)生自學(xué)例1。
    教師提出自學(xué)要求(投影):
    1、18有哪些因數(shù)?
    2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
    3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
    (二)信息反饋。
    1、反饋自學(xué)要求情況;
    板書:
    1×18。
    182×9。
    3×6。
    18的因數(shù)有1,2,3,6,9,18。
    還可以這樣表示:18的因數(shù)。
    2、知識對比,探索發(fā)現(xiàn)規(guī)律。
    (1)師:同學(xué)們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
    投影出示問題:
    思考一:你用什么方法找出?
    (2)學(xué)生思考,教師適時引導(dǎo)。
    (3)同桌交流思考結(jié)果。
    (4)師生互動??偨Y(jié)方法、點出課題。
    求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
    過程三:嘗試練習(xí)。
    (一)用小黑板出示練習(xí)題。
    1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
    (二)信息反饋:師生互動總結(jié)特點。
    板書:
    一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
    三、課堂作業(yè)。
    練習(xí)二第2題和第4題前半部分。
    四、課堂延伸。
    猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
    五、課堂小結(jié)。
    師:今天你學(xué)會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
    生:……。
    板書設(shè)計:
    求一個數(shù)的因數(shù)的方法。
    1×14。
    142×7 方法:用乘法計算或除法計算(整除)。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    1×18。
    182×9。
    3×6。
    18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
    還可以表示為:
    它的最小因數(shù)是1,的因數(shù)是它本身。
    小學(xué)因數(shù)和倍數(shù)的教案篇十二
    :p70~72的例題及相應(yīng)的試一試、想想做做中的1—3題。
    1、使學(xué)生初步理解倍數(shù)和因數(shù)的含義,知道倍數(shù)和因數(shù)相互依存的關(guān)系。
    2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。
    3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
    :理解因數(shù)和倍數(shù)的含義,知道它們的關(guān)系是相互依存的。
    探索并掌握找一個數(shù)的因數(shù)的方法。
    :12個小正方形片、每個學(xué)生的學(xué)號紙。
    1、操作活動。
    (1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
    (2)整理、交流,分別板書4×3=1212×1=126×2=12。
    2、通過剛才的學(xué)習(xí),我們發(fā)現(xiàn)用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數(shù),12也是3的倍數(shù);反過來,4和3都是12的因數(shù)。
    (1)那其它兩道算式,你能說出誰是誰的倍數(shù)嗎?你能說出誰是誰的因數(shù)嗎?
    指名回答后,教師追問:如果說12是倍數(shù),2是因數(shù),是否可以?為什么?
    小結(jié):倍數(shù)和因數(shù)是指兩個數(shù)之間的關(guān)系,他們是相互依存的。
    指出:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)都是指不是0的自然數(shù)。
    二、探索找一個數(shù)倍數(shù)的方法。
    1、從4×3=12中,知道12是3的倍數(shù)。3的倍數(shù)還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
    3、議一議:你發(fā)現(xiàn)找3的倍數(shù)有什么小竅門?
    明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數(shù)。
    4、試一試:你能用學(xué)會的竅門很快地寫出2和5的倍數(shù)嗎?
    生獨立完成,集體交流。注意用……表示結(jié)果。
    5、觀察上面的3個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
    根據(jù)學(xué)生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它本身,沒有最大的倍數(shù),一個數(shù)倍數(shù)的個數(shù)是無限的。
    6、做“想想做做”第2題。
    1、學(xué)會了找一個數(shù)倍數(shù)的方法,再來研究求一個數(shù)的因數(shù)。
    你能找出36的所有因數(shù)嗎?
    2、小組合作,把36的所有因數(shù)一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現(xiàn)不同的找法。
    3、出示一份作業(yè):對照自己找出的36的因數(shù),你想對他說點什么?
    4、交流整理找36因數(shù)的方法,明確:哪兩個數(shù)相乘的積等于36,那么這兩個數(shù)就是36的因數(shù)。(一對一對地找,又要按次序排列)。
    板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
    5、試一試:請你用有序的思考找一找15和16的因數(shù)。
    指名寫在黑板上。
    一個數(shù)的因數(shù)最小是1,最大是它本身,一個數(shù)因數(shù)的個數(shù)是有限的。
    7、“想想做做”第3題。
    生獨立填寫,交流。觀察表格,表中的排數(shù)和每排人數(shù)與24有怎樣的關(guān)系。
    四、課堂總結(jié):學(xué)到這兒,你有哪些收獲?
    五、游戲:“看誰反應(yīng)快”。
    規(guī)則:學(xué)號符合下面要求的請站起來,并舉起學(xué)號紙。
    (1、)學(xué)號是5的倍數(shù)的。
    (2、)誰的學(xué)號是24的因數(shù)。
    (4、)誰的學(xué)號是1的倍數(shù)。
    2、在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會倍數(shù)和因數(shù)的含義。在學(xué)生初步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設(shè)計了一個練習(xí)。即“根據(jù)下面的算式,同桌互相說說誰是誰的倍數(shù),誰是誰的因數(shù)”第一個是20×3=60,根據(jù)學(xué)生回答后質(zhì)疑“能不能說3是因數(shù),60是倍數(shù)”,從而強調(diào)倍數(shù)和因數(shù)是相互依存的。第二個是36÷4=9,讓學(xué)生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),并追問:你是怎么想的?使學(xué)生知道把它轉(zhuǎn)化為乘法算式去說。
    在學(xué)生有了倍數(shù)、因數(shù)的初步感受后,再向?qū)W生說明:我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù),明確了因數(shù)和倍數(shù)的研究范圍。
    3、p71例一:找3的倍數(shù),先讓學(xué)生獨立思考,“你還能再寫出幾個3的倍數(shù)?你是怎樣想的?”在學(xué)生交流的基礎(chǔ)上,適時提出:什么樣的數(shù)就是3的倍數(shù)?你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?使學(xué)生明確:找3的倍數(shù)時,可以按從到大的`順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數(shù)。在此基礎(chǔ)上,引導(dǎo)學(xué)生進一步思考:你能把3的倍數(shù)全都說完嗎?從而使學(xué)生學(xué)會規(guī)范地表示一個數(shù)的所有倍數(shù),并初步體會到一個數(shù)的個數(shù)是無限的。隨后,讓學(xué)生試著找出2和5的倍數(shù),并正確表達2和5的所有倍數(shù)。最后引導(dǎo)學(xué)生觀察寫出的3、2和5的所有倍數(shù),發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,即:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。
    4、例二:找36的所有因數(shù),準(zhǔn)備讓學(xué)生獨立嘗試,但這部分內(nèi)容對學(xué)生來說是個難點,所以我采用了四人小組合作的方式讓學(xué)生試著找出36的所有因數(shù)。在找36的因數(shù)時,無論想乘法算式還是想除法算式,學(xué)生一般都從無序到有序,從有重復(fù)或遺漏到不重復(fù)不遺漏。所以,我在教學(xué)時允許他們經(jīng)歷這樣的過程。先按自己的思路、用自己的方法寫36的因數(shù),能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數(shù)從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結(jié)合例題和試一試,通過比較和歸納,使學(xué)生明確:一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中最小的是1,最大的是它本身。
    5、教材p72第2題讓學(xué)生解決實際問題在表里填數(shù),把4依次乘1、2、3、……得出“應(yīng)付元數(shù)”,然后思考下面的問題,可以使學(xué)生進一步認(rèn)識把4依次乘1,2,3,……所得的積,就是4的倍數(shù),進一步理解找倍數(shù)的方法。第3題也是解決實際問題填寫表里的數(shù),并提出問題讓學(xué)生思考,使學(xué)生明確兩個相乘的數(shù)都是它們積的因數(shù),求一個數(shù)的所有因數(shù),可以想乘法一對一對地找出來,理解找一個數(shù)的因數(shù)的方法。
    為了提高學(xué)生學(xué)習(xí)興趣,鞏固所學(xué)的知識。最后安排了一個游戲,讓學(xué)生在游戲中進一步練習(xí)找一個數(shù)倍數(shù)或因數(shù)的方法。
    小學(xué)因數(shù)和倍數(shù)的教案篇十三
    4、培養(yǎng)學(xué)生的觀察能力。
    1、出示主題圖,讓學(xué)生各列一道乘法算式。
    2、師:看你能不能讀懂下面的算式?
    出示:因為2×6=12。
    所以2是12的因數(shù),6也是12的因數(shù);
    12是2的倍數(shù),12也是6的倍數(shù)。
    3、師:你能不能用同樣的方法說說另一道算式?
    (指名生說一說)。
    師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
    那你還能找出12的其他因數(shù)嗎?
    4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
    師:誰來出一個算式考考全班同學(xué)?
    5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
    齊讀p12的注意。
    (一)找因數(shù):
    1、出示例1:18的因數(shù)有哪幾個?
    學(xué)生嘗試完成:匯報。
    (18的因數(shù)有:1,2,3,6,9,18)。
    師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
    師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
    2、用這樣的方法,請你再找一找36的因數(shù)有那些?
    匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
    師:你是怎么找的?
    舉錯例(1,2,3,4,6,6,9,12,18,36)。
    師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
    仔細(xì)看看,36的因數(shù)中,最小的'是幾,最大的是幾?
    看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
    3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
    4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
    18的因數(shù)。
    小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
    從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
    (二)找倍數(shù):
    1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
    匯報:2、4、6、8、10、16、……。
    師:為什么找不完?
    你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
    那么2的倍數(shù)最小是幾?最大的你能找到嗎?
    2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
    匯報3的倍數(shù)有:3,6,9,12。
    師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
    改寫成:3的倍數(shù)有:3,6,9,12,……。
    你是怎么找的?(用3分別乘以1,2,3,……倍)。
    5的倍數(shù)有:5,10,15,20,……。
    師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ猓€可以用集合來表示。
    2的倍數(shù)3的倍數(shù)5的倍數(shù)。
    師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
    (一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
    我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
    完成練習(xí)二1~4題。
    小學(xué)因數(shù)和倍數(shù)的教案篇十四
    一個數(shù)因數(shù)的求法和一個數(shù)倍數(shù)的求法(教材第6頁例2、例3,教材第7~8頁練習(xí)二第2~8題)。
    1.通過學(xué)習(xí)使學(xué)生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
    2.學(xué)生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
    3.能熟練地找一個數(shù)的因數(shù)和倍數(shù);
    4.在解決問題的過程中,培養(yǎng)學(xué)生思維的有序性、條理性,增強學(xué)生的探究意識和求索精神。
    掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
    說出下列各式中誰是誰的因數(shù)?誰是誰的倍數(shù)?20÷4=56×3=18。
    在上面的算式中,6和3都是18的因數(shù),你知道還有哪些數(shù)是18的因數(shù)嗎?18是3的倍數(shù),你知道還有哪些數(shù)是3的倍數(shù)嗎?這節(jié)課我們就來學(xué)習(xí)如何找一個數(shù)的因數(shù)和倍數(shù)。
    (一)找因數(shù):
    1.出示例1:18的因數(shù)有哪幾個?
    一個數(shù)的因數(shù)還不止一個,我們一起找找18的因數(shù)有哪些?
    學(xué)生嘗試完成后匯報。
    (18的因數(shù)有:1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
    教師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
    2.用這樣的方法,請你再找一找36的因數(shù)有哪些?
    舉錯例(1,2,3,4,6,6,9,12,18,36)。
    教師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
    仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
    教師板書:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
    3.你還想找哪個數(shù)的因數(shù)?(18、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
    從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
    (二)找倍數(shù):
    教師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
    教師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ?,還可以用集合來表示2的倍數(shù),3的`倍數(shù),5的倍數(shù)。
    教師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
    (一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
    1.完成課本第7頁練習(xí)二第2~5題。
    2.完成教材第8頁練習(xí)二第6~8題。
    我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
    一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
    本節(jié)課是在學(xué)生認(rèn)識因數(shù)和倍數(shù)的基礎(chǔ)上進行教學(xué)的,在找一個數(shù)的因數(shù)時,如何做到既不重復(fù)又不遺漏,對于剛剛對因數(shù)和倍數(shù)有感性認(rèn)識的學(xué)生來說有一定的困難,教學(xué)時充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢,在小組交流的過程中,學(xué)生對自己的方法進行反思,吸取同伴的好方法,很好的體現(xiàn)了自主探索和合作交流的教學(xué)理念。
    小學(xué)因數(shù)和倍數(shù)的教案篇十五
    教學(xué)內(nèi)容:
    蘇教版義務(wù)教育教科書《數(shù)學(xué)五年級下冊第47~48頁整理與練習(xí)“回顧與整理”和“練習(xí)與應(yīng)用”第1~7題。
    教學(xué)目標(biāo):
    1.使學(xué)生加深認(rèn)識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認(rèn)識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認(rèn)識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。
    2.使學(xué)生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應(yīng)用相關(guān)概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學(xué)問題的方法,積累數(shù)學(xué)思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認(rèn)識,進一步發(fā)展數(shù)感。
    3.使學(xué)生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學(xué)方面的知識積累和進步,提高學(xué)好數(shù)學(xué)的自信心。
    教學(xué)重點:
    教學(xué)難點:
    應(yīng)用概念正確判斷、推理。
    教學(xué)過程:
    一、揭示課題。
    談話:最近的數(shù)學(xué)課,我們學(xué)習(xí)了哪方面的內(nèi)容?回憶一下,都學(xué)到了哪些知識?
    揭題:我們已經(jīng)學(xué)完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習(xí)這一單元內(nèi)容。(板書課題)通過整理與練習(xí),我們要進一多認(rèn)識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認(rèn)識,加深對數(shù)的認(rèn)識。
    二、回顧與整理。
    1.回顧討論。
    出示討論題:
    (1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認(rèn)識。
    (2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?
    (3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。
    (4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?
    讓學(xué)生在小組里討論,結(jié)合討論適當(dāng)記錄自己的認(rèn)識或例子。
    2.交流整理。
    圍繞討論題,引導(dǎo)學(xué)生展開交流,結(jié)合交流板書主要內(nèi)容。
    (1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)。
    (指名學(xué)生說一說,再集體說一說)。
    你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))。
    能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?
    說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。
    (2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?
    自然數(shù)可以怎樣分類,各可以分成哪幾類?
    你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學(xué)生舉出各類數(shù)的例子)。
    說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。
    什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))。
    (3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?
    說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。
    結(jié)合交流內(nèi)容,逐步板書成:
    l
    質(zhì)數(shù)質(zhì)因數(shù)。
    合數(shù)分解質(zhì)因數(shù)。
    (互相依存)。
    2、5、3的倍數(shù)的特征。
    偶數(shù)。
    奇數(shù)。
    (4)引導(dǎo):請同學(xué)們現(xiàn)在觀察我們整理的這一單元學(xué)過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
    學(xué)生互相交流,教師巡視、傾聽。
    交流:哪位同學(xué)能看黑板上整理的內(nèi)容,說說我們怎樣逐步認(rèn)識這些知識的,知識是怎樣發(fā)展起來的。
    三、練習(xí)與應(yīng)用。
    1.做“練習(xí)與應(yīng)用”第1題。
    指名學(xué)生交流,說說每組里因數(shù)和倍數(shù)關(guān)系。
    提問:3和7有沒有因數(shù)和倍數(shù)關(guān)系?為什么沒有?
    2.做“練習(xí)與應(yīng)用”第2題。
    (1)讓學(xué)生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。
    交流:你是怎樣找它們的因數(shù)的?(檢查板演題)。
    (2)口答后三個數(shù)的因數(shù)。
    引導(dǎo):能說出后面每個數(shù)的全部因數(shù)嗎?(學(xué)生口答,教師板書)。
    提問:一個數(shù)的因數(shù)有什么特點?
    說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。
    3.分別說出下面各數(shù)的倍數(shù)。
    581217。
    分別指名學(xué)生說出各數(shù)的倍數(shù),教師板書。
    提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?
    說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。
    4.做“練習(xí)與應(yīng)用”第3題。
    (1)讓學(xué)生獨立完成填數(shù)。
    交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?
    提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?
    哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。
    (2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?
    你是怎樣判斷偶數(shù)和奇數(shù)的?
    5.做“練習(xí)與應(yīng)用”第4題。
    要求學(xué)生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。
    交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?
    (板書:180810)。
    組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)。
    6.做“練習(xí)與應(yīng)用”第5題。
    讓學(xué)生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。
    交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?
    說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。
    7.做“練習(xí)與應(yīng)用’’第6題。
    交流、呈現(xiàn)結(jié)果。
    提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。
    所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?
    指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。
    8.下面的說法正確嗎?
    (1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。
    (2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。
    (3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。
    (4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。
    (5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。
    9.做“練習(xí)與應(yīng)用”第7題。
    (1)讓學(xué)生填空,指名板演。交流并確認(rèn)結(jié)果。
    提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?
    說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?
    (2)把30、42分別分解質(zhì)因數(shù)。
    學(xué)生完成,交流板書,檢查訂正。
    四、全課總結(jié)。
    提問:這節(jié)課主要復(fù)習(xí)的哪些內(nèi)容?你有哪些收獲?
    將本文的word文檔下載到電腦,方便收藏和打印。
    小學(xué)因數(shù)和倍數(shù)的教案篇十六
    知識與技能、過程與方法:
    1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
    2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的觀點。
    3、培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    1、因數(shù)與倍數(shù)意義以及它們的相互依存關(guān)系。
    2、尋找一個數(shù)的因數(shù)或倍數(shù)的方法。
    教學(xué)準(zhǔn)備:課件。
    教學(xué)流程:
    流程1:導(dǎo)入新課。
    流程2:認(rèn)識倍數(shù)和因數(shù)。
    流程3:探索求一個數(shù)的因數(shù)的方法。
    流程4:完成試一試,總結(jié)一個數(shù)因數(shù)的特點。
    流程5:探索求一個數(shù)的倍數(shù)的方法。
    流程6:完成試一試,總結(jié)一個數(shù)倍數(shù)的特點。
    流程7:完成智慧樂園。
    流程8:完成質(zhì)疑樂園。
    流程9:數(shù)學(xué)游戲。
    流程11:課堂小結(jié)。
    流程10:組織學(xué)生退場。
    第一段:導(dǎo)入新課。
    流程1:導(dǎo)入新課。
    師:課前我們先來做個腦筋急轉(zhuǎn)彎,看看誰最聰明?
    (學(xué)生發(fā)表自己的看法)。
    今天,我們就把這三個人請到我教室里來好嗎?(課件出示圖片)你能不能以大李為中心,來介紹一下小老和老李。(學(xué)生說一說)。
    師:我們能不能單獨地來說,大李是爸爸?(不能)為什么?
    引出相互依存(板書)。
    第二段:認(rèn)識倍數(shù)和因數(shù)。
    流程2:認(rèn)識倍數(shù)和因數(shù)。
    1、用課前準(zhǔn)備的12張同樣大的正方形紙片拼成一個長方形。前后四人一組。
    要求:
    (1)、看一共能擺出幾種完全不同的長方形。
    (2)、想一想怎樣用乘法算式表示你的擺法。
    (3)、為了便于展示,請在你的課本反面來擺。
    (學(xué)生動手操作、匯報)。
    師:請你用乘法算式表示你的擺法?
    生:1×12=122×6=123×4=12。
    師:為了避免重復(fù),我們可經(jīng)只選擇其中一個算式。我們以前學(xué)過,在乘法算式里,乘號前面和后面的數(shù)都叫什么?(因數(shù))等號后面的數(shù)叫什么?(積)這里的因數(shù)和積是乘法算式各部分的名稱。其實,因數(shù)和積之間就存在我們課前提到的相互依存關(guān)系。以3×4=12為例,數(shù)學(xué)上說12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。這里因數(shù)和倍數(shù)就具有相互依存的關(guān)系。不能孤立地說3是因數(shù),也不能孤立地說12的倍數(shù),這就是今天這節(jié)課我們研究:倍數(shù)和因數(shù)。
    師:那根據(jù)另外兩個乘法算式,同學(xué)們會說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?請同桌相互說一說(學(xué)生活動)。
    老師這是里有兩道算式,你會說嗎?
    8×9=7218÷3=6。
    (請學(xué)生來說一說)。
    師:同學(xué)們,倍數(shù)、因數(shù)指的是兩個自然數(shù)之間的一種關(guān)系,所以我們一定要說清楚誰是誰的倍數(shù),誰是誰的因數(shù),,老師還要補充說一點,為了方便,我們在研究時,所說的數(shù)一般指不是0的自然數(shù)。
    第三段:探索求倍數(shù)和因數(shù)的方法。
    流程3:探索求一個數(shù)的因數(shù)的方法。
    師:同學(xué)們怎樣找一個數(shù)的因數(shù)呢?同學(xué)們愿意獨立思考,嘗試解決嗎?面對新問題,看看誰能挑戰(zhàn)成功。
    師:你能找出36所有的因數(shù)嗎?請同學(xué)們試著在練習(xí)本上寫一寫。
    (學(xué)生活動)學(xué)生匯報。
    師:從1開始,想哪兩個數(shù)相乘得36,我們就可以成對地寫出36的因數(shù),一直找到兩個乘數(shù)最接近為止。解決這個問題首先要考慮什么樣的數(shù)是36的.因數(shù)。如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。例如,1×36=36,那么1和36都是36的因數(shù)。
    師:看看老師的填法和你一樣嗎?
    師:求一個數(shù)的因數(shù),可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重復(fù)、不遺漏。
    流程4:完成試一試,總結(jié)一個數(shù)的因數(shù)的特點。
    師:下面請同學(xué)們用你喜歡或熟悉的方法寫出你自己所喜歡的數(shù)字的因數(shù)。(學(xué)生活動)相機尋找學(xué)生板書。
    師:通過觀察上面同學(xué)所寫的數(shù)的因數(shù),你發(fā)現(xiàn)了什么?學(xué)生說一說(完成表格)。
    師小結(jié):一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)因數(shù)的個數(shù)是有限的。
    寫出你的學(xué)號的所有因數(shù)。
    流程5:探索求一個數(shù)的倍數(shù)的方法。
    師:同學(xué)們先想一想,什么樣的數(shù)是3的倍數(shù)?怎樣才能準(zhǔn)確地寫出3的倍數(shù)?把你的想法和小組里的同學(xué)交流一下。(學(xué)生活動)。
    師:同學(xué)們一定能想到,3的倍數(shù)就是3和除0以外的一個自然數(shù)相乘的積。例如3×1=(3),3×2=(6),3×3=(9),括號里的數(shù)都是3的倍數(shù)。這樣我們按從小到大的順序,用乘法就可以有條理地說出3的倍數(shù)了,它們是:3、6、9、12、15、18。能把3的倍數(shù)全部說完嗎?說不完,那應(yīng)該怎樣表示問題的答案呢?因為3的倍數(shù)的個數(shù)是無限的,所以寫的時候要借助省略號來完整地表示出結(jié)果。
    流程6:完成試一試,總結(jié)一個數(shù)的倍數(shù)的特點。
    師:下面就請同學(xué)們用這種方法分別寫出2的倍數(shù)和5的倍數(shù)。注意要有順序地思考,并且規(guī)范地表示出結(jié)果。(學(xué)生活動)。
    師:老師和同學(xué)們核對一下答案,如果出錯了,一定要分析原因,再訂正。(核對答案)。
    師:現(xiàn)在我們已經(jīng)找到了求一個數(shù)的倍數(shù)的方法,并用這樣的方法分別求出3、2、5的倍數(shù),請同學(xué)們觀察上面的例子,你們能發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點嗎?大膽地說出你們的想法。(學(xué)生活動)。
    師小結(jié):仔細(xì)觀察,同學(xué)們會發(fā)現(xiàn):一個數(shù)最小的倍數(shù)是它本身,沒有最大的倍數(shù);一個數(shù)倍數(shù)的個數(shù)是無限的。
    第四段:深化認(rèn)識,鞏固方法。
    流程7:完成智慧樂園。
    師:請看想想做做第3題。先填表,再討論回答下面的問題:表中每欄的每排人數(shù)各是怎樣算出來的?排數(shù)和每排人數(shù)都是24的什么數(shù)?在填表的過程中你還受到了什么啟發(fā)?(學(xué)生活動)。
    師:24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中排數(shù)和每排人數(shù)都是24的因數(shù)。在填表的過程中我們會發(fā)現(xiàn)一對一對地找一個數(shù)的因數(shù)比較方便。
    流程8:完成質(zhì)疑樂園。
    先判斷對錯,再說一說自己的判斷理由。
    第五段:數(shù)學(xué)游戲。
    流程9:數(shù)學(xué)游戲。
    師:請同學(xué)們拿出寫有自己學(xué)號的卡片,我們一起來做個游戲。看一看,想一想,你卡片上的數(shù)是否符合下面的條件,符合的請舉起卡片,揮一揮。(課件出示)我是5,我找我的倍數(shù);(學(xué)生活動)我是24,我找我的因數(shù);(學(xué)生活動)我是1,我找我的倍數(shù);(學(xué)生活動)我是30,我找我的因數(shù)。(學(xué)生活動)。
    第六段:全課總結(jié)。
    流程10:課堂總結(jié)。
    師:同學(xué)們,這節(jié)課我們認(rèn)識了倍數(shù)和因數(shù),探索了找一個數(shù)的倍數(shù)和因數(shù)的方法,根據(jù)乘法算式,用這一個數(shù)分別乘1、乘2、乘3……可以有順序地找到它的倍數(shù)。一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。找一個數(shù)的因數(shù)可以想乘法算式,把一個數(shù)寫成兩個數(shù)相乘的積,乘數(shù)就是這個數(shù)的因數(shù);也可以想除法算式,用一個數(shù)依次去除以1、2、3……,能得到整數(shù)商的,除數(shù)和商就是它的因數(shù)。寫因數(shù)時根據(jù)算式有順序的一對一對地寫比較方便,不容易遺漏或重復(fù)。一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
    流程11:組織下課。
    組織學(xué)生分批退場。
    小學(xué)因數(shù)和倍數(shù)的教案篇十七
    課本第15頁,練習(xí)二第一題前半題15的因數(shù)有哪些?,第二題,第4題前半題填在書上。
    設(shè)計意圖:本節(jié)課主要的學(xué)習(xí)目標(biāo)一是使生明白因數(shù)和倍數(shù)的意義,二是讓生掌握求一個數(shù)因數(shù)的方法,作業(yè)中鞏固了學(xué)生今天的數(shù)學(xué)技能。
    小學(xué)因數(shù)和倍數(shù)的教案篇十八
    1、理解倍數(shù)和因數(shù)之間的關(guān)系是相互依存的。
    2、根據(jù)具體的問題情景,能正確確定某個非零自然數(shù)的所有因數(shù)。
    3、使學(xué)生體味數(shù)學(xué)的趣味性,激發(fā)學(xué)生對數(shù)學(xué)的探究熱情。
    理解倍數(shù)和因數(shù)之間的關(guān)系是相互依存的,能正確求一個數(shù)的倍數(shù)和因數(shù)。
    能正確有序求一個數(shù)的倍數(shù)和因數(shù)。
    師:同學(xué)們,在我們的日常生活中,人與人之間存在著許多相互依存的關(guān)系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟。其實在我們的數(shù)學(xué)王國里,數(shù)與數(shù)之間也存在著這種相互依存的關(guān)系,請看大屏幕,認(rèn)識這些數(shù)嗎?(課件出示:0,1,2,3,4,5)。
    生:自然數(shù)。
    (課件去“0”)。
    (研究范圍:非零自然數(shù)中)。
    (一)找一個數(shù)的因數(shù)。
    1、(課件出示例1情境圖)。
    師:請看大屏幕,這是36人列隊操練,每排人數(shù)要一樣多,可以怎樣排列?同學(xué)們可以先同桌討論,作好記錄,再匯報。(引導(dǎo)生說:可以站幾排,每排站幾個。)。
    根據(jù)這些信息我們能列出哪些乘法算是呢?
    板書:1×36=362×18=363×12=364×9=366×6=361。
    師:在4×9=36這個算式中,4和9叫什么?(因數(shù))36是?(積),這是我們以前學(xué)的乘法各部分名稱。其實,在整數(shù)乘法中,因數(shù)和積之間還存在一種相互依存的關(guān)系,也就是說4是36的因數(shù),36是4的倍數(shù)。,同樣,在這個算式中,我們還可以說9是36的?(因數(shù)),36是9的?(倍數(shù))。
    2、誰能像老師這樣,說一說3×12=36他們之間的關(guān)系。(先請一個學(xué)生站起來說一說)。
    4、你能根據(jù)左邊的乘法算式寫出相應(yīng)的除法算式嗎?(師根據(jù)生的回答板書)。
    我們現(xiàn)在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數(shù),誰是誰的因數(shù)?(說好后再讓學(xué)生逐個說出除法算式中的關(guān)系)。
    5、剛才同學(xué)們都說4是36的因數(shù),那能單獨說4是因數(shù)嗎?(生發(fā)表意見)。
    到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數(shù)還是因數(shù)?(課件著重強調(diào)數(shù)字“4”)。
    引導(dǎo)學(xué)生說:第一個式子中,4是36的因數(shù),第二個式子中4是2的'倍數(shù)。(課件出示結(jié)果)。
    師:從剛才的回答中你明白了什么?(引導(dǎo)生知道:因數(shù)和倍數(shù)是相互依存的,不能單獨存在)。
    6、師:下面,請同學(xué)們看這個式子,說一說誰是誰的倍數(shù),誰是誰的因數(shù)。(課件出示:4×5=2014÷3=53+6=96-4=20.3×2=0.6)。
    生回答后,引導(dǎo)生知道:通過后三個算式使生進一步理解,倍數(shù)和因數(shù)都是建立在乘法或除法的基礎(chǔ)之上的,他們的研究范圍在非零自然數(shù)中。
    7、你能根據(jù)上面所寫的乘法算式或除法算式說出36的所有因數(shù)嗎?
    師;那么你知道怎樣找一個數(shù)的所有因數(shù)呢?(同桌商討后,指名回答,課件出示。)。
    找一個數(shù)的所有因數(shù)時,可以先寫出用這個數(shù)作積的所有乘法算式,或者寫出用這個數(shù)作被除數(shù)的所有除法算式,再寫出它的所有因數(shù)。注意,最好按照順序從小到大來寫,這樣不容易遺漏。
    8、師:現(xiàn)在,我們來練習(xí)一下。同學(xué)們分組有序的找出15、16、24、25的所有因數(shù)嗎?打開練習(xí)本,快速的寫出來,開始。(師巡視指導(dǎo)困難學(xué)生)。
    寫完后生匯報,并說出你是怎樣找出它們的因數(shù)的,課件出示。
    9、引導(dǎo)歸納概括一個數(shù)的因數(shù)的特點。
    師:看來同學(xué)們已經(jīng)充分掌握了找一個數(shù)因數(shù)的方法,觀察剛才我們找的這些數(shù)的因數(shù),你有什么發(fā)現(xiàn)嗎?(出示合作學(xué)習(xí)要求和目的)下面請小組合作,仔細(xì)觀察、比較我們找出的這些數(shù)的因數(shù),你從這幾個例子中發(fā)現(xiàn)了什么?請把你的發(fā)現(xiàn)和小組的成員說一說,注意:當(dāng)一個同學(xué)在說的時候,其他成員一定要認(rèn)真聽,不要打斷別人的發(fā)言,開始。
    (二)找一個數(shù)的倍數(shù)。
    1、師:找了這么多數(shù)的因數(shù),現(xiàn)在我們來找一個數(shù)的倍數(shù),好不好?
    (課件出示例2)。
    生寫,師巡視。
    2、指明匯報后,并說出你是如何找一個數(shù)的倍數(shù)的?
    歸納(出示找一個數(shù)的倍數(shù)的方法):找一個數(shù)的倍數(shù)從它本身開始,用非零自然數(shù)1,2,3···去乘,就可以得到。
    那請大家觀察這些數(shù)的倍數(shù),你又能發(fā)現(xiàn)什么呢?同桌兩個先互相說一說,開始吧。
    生發(fā)言。
    4、引導(dǎo)學(xué)生發(fā)現(xiàn):一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。(課件出示)。
    師;同學(xué)們認(rèn)識了倍數(shù)和因數(shù),探索了因數(shù)和倍數(shù)的特點,并且能正確求一個數(shù)因數(shù)和倍數(shù)的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。
    這節(jié)課同學(xué)們通過自己的努力又發(fā)現(xiàn)了數(shù)學(xué)海洋里的新知識,真讓老師感到開心,在我們今后的學(xué)習(xí)中希望大家繼續(xù)帶著這些熱情和精神去探索、去發(fā)現(xiàn)。
    書本127頁練習(xí)二十1、2、3題(課件出示)。
    (非零自然數(shù)中)。
    1×36=3636÷1=3636÷36=1。
    2×18=3636÷2=1836÷18=2。
    3×12=3636÷3=1236÷12=3。
    4×9=3636÷4=936÷9=4。
    6×6=3636÷6=6。
    36的因數(shù)有:1、2、3、4、6、9、12、18、36.
    小學(xué)因數(shù)和倍數(shù)的教案篇十九
    一、引入新課。
    1、出示主題圖,讓學(xué)生各列一道乘法算式。
    2、師:看你能不能讀懂下面的算式?
    出示:因為2×6=12。
    所以2是12的因數(shù),6也是12的因數(shù);
    12是2的倍數(shù),12也是6的倍數(shù)。
    3、師:你能不能用同樣的方法說說另一道算式?
    (指名生說一說)。
    師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
    那你還能找出12的其他因數(shù)嗎?
    4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
    師:誰來出一個算式考考全班同學(xué)?
    5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
    齊讀p12的注意。
    二、新授:
    (一)找因數(shù):
    1、出示例1:18的因數(shù)有哪幾個?
    學(xué)生嘗試完成:匯報。
    (18的因數(shù)有:1,2,3,6,9,18)。
    師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
    師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
    2、用這樣的方法,請你再找一找36的因數(shù)有那些?
    匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
    師:你是怎么找的?
    舉錯例(1,2,3,4,6,6,9,12,18,36)。
    師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
    仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
    看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
    3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
    4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
    18的因數(shù)。
    小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
    從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
    (二)找倍數(shù):
    1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
    匯報:2、4、6、8、10、16、……。
    師:為什么找不完?
    你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
    那么2的倍數(shù)最小是幾?最大的你能找到嗎?
    2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
    匯報3的倍數(shù)有:3,6,9,12。
    師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
    改寫成:3的倍數(shù)有:3,6,9,12,……。
    你是怎么找的?(用3分別乘以1,2,3,……倍)。
    5的倍數(shù)有:5,10,15,20,……。
    師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ?,還可以用集合來表示。
    2的倍數(shù)3的倍數(shù)5的倍數(shù)。
    師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
    (一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
    三、課堂小結(jié):
    我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
    四、獨立作業(yè):
    完成練習(xí)二1~4題。
    小學(xué)因數(shù)和倍數(shù)的教案篇二十
    1、通過“活動建構(gòu)”,使學(xué)生領(lǐng)會因數(shù)和倍數(shù)的意義;通過獨立思考、交流談?wù)摚醪秸莆涨笠粋€數(shù)所有因數(shù)的方法。
    2、在解決問題的過程中,培養(yǎng)學(xué)生思維的有序性、條理性,增強學(xué)生的探究意識和求索精神。
    3、通過教學(xué),讓學(xué)生從中感受到數(shù)學(xué)思考的魅力,體驗到數(shù)學(xué)學(xué)習(xí)的樂趣。
    小學(xué)因數(shù)和倍數(shù)的教案篇二十一
    1.使學(xué)生初步掌握2、5的倍數(shù)的特征。
    2.使學(xué)生知道奇數(shù)、偶數(shù)的概念。
    能力目標(biāo)。
    1.會判斷一個數(shù)是否能被2、5整除。
    2.會判斷奇數(shù)、偶數(shù)。
    3.培養(yǎng)類推能力及主動獲取知識的能力。
    情感目標(biāo)。
    激發(fā)學(xué)生的學(xué)習(xí)興趣。
    小學(xué)因數(shù)和倍數(shù)的教案篇二十二
    1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    2.在探究的過程中體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學(xué)生思維的有序性和條理性。
    3.培養(yǎng)學(xué)生的探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系。
    2.掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    教學(xué)課件。
    (一)創(chuàng)設(shè)情境,引入新課。
    人與人之間存在著許多種關(guān)系,你們和爸爸(媽媽)的關(guān)系是?
    (父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。
    在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。
    (二)探究新知-理解因數(shù)和倍數(shù)的意義。
    教學(xué)例1:
    1.觀察算式的特點,進行分類。
    (1)仔細(xì)觀察算式的特點,你能把這些算式分類嗎?
    (2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)。
    第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
    2.明確因數(shù)和倍數(shù)的意義。
    (1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
    (2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
    (3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
    3.理解因數(shù)和倍數(shù)的依存關(guān)系。
    (1)獨立完成教材第5頁“做一做”。
    (2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?
    4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
    (1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
    課件出示:
    乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
    (2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?
    “倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。
    (3)交流匯報。
    (三)探究新知-找一個數(shù)的因數(shù)。
    教學(xué)例2:
    1.探究找18的因數(shù)的方法。
    (1)18的因數(shù)有哪些?你是怎么找的?
    (2)交流方法。
    預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
    因為18÷1=18,所以1和18是18的因數(shù)。
    因為18÷2=9,所以2和9是18的因數(shù)。
    因為18÷3=6,所以3和6是18的因數(shù)。
    方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
    因為1×18=18,所以1和18是18的因數(shù)。
    因為2×9=18,所以2和9是18的因數(shù)。
    因為3×6=18,所以3和6是18的因數(shù)。
    2.明確18的因數(shù)的表示方法。
    (1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
    (2)交流方法。
    預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。
    集合圖的方法(如下圖所示)。
    3.練習(xí)找一個數(shù)的因數(shù)。
    (1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
    (2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?
    (四)探究新知-找一個數(shù)的倍數(shù)。
    教學(xué)例3:
    1.探究找2的倍數(shù)的方法。
    (1)2的倍數(shù)有哪些?你是怎么找的?
    (2)想方法:利用乘法算式找2的倍數(shù)。
    因為2×1=2,所以2是2的倍數(shù)。
    因為2×2=4,所以4是2的倍數(shù)。
    因為2×3=6,所以6是2的倍數(shù)?!?。
    (3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
    (4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。
    2.練習(xí)找一個數(shù)的倍數(shù)。
    你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
    (五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。
    舉例子,找規(guī)律,勾畫知識點,讀一讀。
    預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的`,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
    (六)智慧樂園。
    1.在練習(xí)本上完成下列填空題。(獨立完成后,師訂正答案)。
    一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。
    一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().
    一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
    2.在練習(xí)本上完成下列判斷題。(獨立完成后,師訂正答案)。
    (1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。
    (2)15的倍數(shù)一定大于15。()。
    (3)1是除0以外所有自然數(shù)的因數(shù)。()。
    (4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。
    (5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。
    (6)1.2是3的倍數(shù)。()。
    (七)全課總結(jié),交流收獲。
    這節(jié)課我們學(xué)了哪些知識?你有什么收獲?
    (八)布置作業(yè)。
    完成課時練第3、4頁,提交家校本。
    小學(xué)因數(shù)和倍數(shù)的教案篇二十三
    教科書第25頁,練習(xí)四第5~8題。
    1、通過練習(xí)與對比,使學(xué)生發(fā)現(xiàn)和掌握求兩個數(shù)最小公倍數(shù)的一些簡捷方法,進行有條理的思考。
    2、通過練習(xí),使學(xué)生建立合理的認(rèn)識結(jié)構(gòu),形成解決問題的多樣策略。
    3、在學(xué)生探索與交流的合作過程中,進一步發(fā)展學(xué)生與同伴合作交流的意識和能力,感受數(shù)學(xué)與生活的聯(lián)系。
    1、我們已經(jīng)掌握了找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
    (板書課題:公倍數(shù)和最小公倍數(shù)練習(xí))。
    2、填空。
    5的倍數(shù)有:()。
    7的'倍數(shù)有:()。
    5和7的公倍數(shù)有:()。
    5和7的最小公倍數(shù)是:()。
    3、完成練習(xí)四第5題。
    (1)理解題意,獨立找出每組數(shù)的最小公倍數(shù)。
    (2)匯報結(jié)果,集體評講。
    (3)觀察第一組中兩個數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?
    每題中的兩個數(shù)有什么特征呢?(倍數(shù)關(guān)系)可以得出什么結(jié)論?
    (4)第二組中兩個數(shù)的最小公倍數(shù)有什么特征?(是這兩個數(shù)的乘積)。
    在有些情況下,兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。
    4、完成練習(xí)四第6題。
    你能運用上一題的規(guī)律直接寫出每題中兩個數(shù)的最小公倍數(shù)嗎?
    交流,匯報。
    說說你是怎么想的?
    1、完成練習(xí)四第7題。
    (1)理解題意,獨立完成填表。
    (2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?
    你還有其他方法解決這個問題嗎?(7和8的最小公倍數(shù)是56)。
    2、完成練習(xí)四第8題。
    (1)理解題意。
    你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
    你是怎樣知道的?
    要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數(shù))
    通過練習(xí),同學(xué)們又掌握了一些比較快的求兩個數(shù)最小公倍數(shù)的方法,并能運用這些方法解決一些實際問題。
    在小組中互相說說自己本節(jié)課的收獲。