小學(xué)因數(shù)和倍數(shù)的教案(熱門22篇)

字號:

    教案是教師為了有效組織教學(xué)活動而根據(jù)課程要求編寫的一種指導(dǎo)性文稿。教案應(yīng)該注重培養(yǎng)學(xué)生的綜合能力和創(chuàng)新思維,引導(dǎo)他們主動參與學(xué)習(xí)。以下是一些經(jīng)驗豐富的教師分享的教案示范,供大家學(xué)習(xí)和借鑒。
    小學(xué)因數(shù)和倍數(shù)的教案篇一
    尊敬的各位領(lǐng)導(dǎo)、老師大家上午好:我們團(tuán)隊所執(zhí)教的是《因數(shù)和倍數(shù)》。
    一、說教材:
    《因數(shù)和倍數(shù)》是小學(xué)人教版課程標(biāo)準(zhǔn)實驗教材五年級下冊第二單元的內(nèi)容,也是小學(xué)階段“數(shù)與代數(shù)”部分最重要的知識之一?!兑驍?shù)和倍數(shù)》的學(xué)習(xí),是在初步認(rèn)識自然數(shù)的基礎(chǔ)上,探究其性質(zhì)。其中涉及到的內(nèi)容屬于初等數(shù)論的基本內(nèi)容,相當(dāng)抽象。在這一內(nèi)容的編排上與以往教材不同,沒有數(shù)學(xué)化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內(nèi)容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。
    根據(jù)教材所處的地位和前后關(guān)系,確定了以下目標(biāo):
    知識技能目標(biāo):
    掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。
    情感,價值目標(biāo):培養(yǎng)學(xué)生合作、觀察、分析和抽象概括能力,體會教學(xué)內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學(xué)的好奇心和求知欲。
    教學(xué)重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。
    二、學(xué)情分析:
    學(xué)生在平時學(xué)習(xí)中缺少主動性,一部分學(xué)生怕困難,缺乏獨立思考的習(xí)慣,同時考慮問題也不夠全面。在本堂課的教學(xué)中,主要調(diào)動學(xué)生學(xué)習(xí)的積極性,提高學(xué)生課堂學(xué)習(xí)的參與性,體驗成功的樂趣,通過學(xué)生的親自探索和合作交流,來達(dá)到學(xué)習(xí)知識,掌握所學(xué)知識的目的。同時感受數(shù)學(xué)中的奧妙。
    三、教法與學(xué)法指導(dǎo)。
    當(dāng)今社會,人類的語言離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學(xué)生為本”課堂教學(xué)要圍繞培養(yǎng)學(xué)生的探索精神、創(chuàng)新精神出發(fā),為全面提高學(xué)生的綜合素質(zhì)打下一定的基礎(chǔ)。本節(jié)課根據(jù)學(xué)生的認(rèn)知能力與心理特征來進(jìn)行教學(xué)策略和方法的設(shè)計。
    1、遵循學(xué)生主體,老師主導(dǎo),自主探究,合作交流為主線的理念,利用學(xué)生對乘法的運(yùn)算理解概念。
    2、小組合作討論法。以學(xué)生討論,交流,互相評價,促成學(xué)生對找一個數(shù)的因數(shù)和倍數(shù)的方法進(jìn)行優(yōu)化處理,提升。鞏固學(xué)生方法表達(dá)的完整性,有效性,避免學(xué)生只掌握方法的理解,而不能全面的正確的表達(dá)。
    四,教學(xué)過程。
    1、揭示主題。
    老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導(dǎo)入而導(dǎo)入的教學(xué)模式。為學(xué)生的自主合作學(xué)習(xí)提供了開放的空間。
    2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。
    教師出示前置性作業(yè),小組內(nèi)交流,匯報學(xué)習(xí)成果,教師適時點撥,真正把課堂還給學(xué)生,也充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體地位。使學(xué)生在交流中培養(yǎng)了合作學(xué)習(xí)的意識,對因數(shù)和倍數(shù)的概念有了初步的認(rèn)識,對它們之間的聯(lián)系也有了更好的理解。
    一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標(biāo)中很重要的一部分。使學(xué)生在已有的經(jīng)驗基礎(chǔ)上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權(quán)交給學(xué)生,教師通過引導(dǎo),使學(xué)生加深理解,化解難點。
    4、引導(dǎo)學(xué)生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學(xué)生學(xué)會有序思考,從而形成基本技能與方法,做到即關(guān)注了過程,又關(guān)注了結(jié)果。教師的教學(xué)水到渠成,學(xué)生的學(xué)習(xí)則是山重水復(fù)疑無路,柳暗花明又一村。
    5、引導(dǎo)學(xué)生置疑,集體交流,化解疑問。
    便于學(xué)生對本課所學(xué)知識更好的消化理解。
    三、練習(xí)。
    練習(xí)題設(shè)計形式多樣,有梯度。既注重基礎(chǔ),又有所提高,從而真正實現(xiàn)了課堂教學(xué)的有效性。
    小學(xué)因數(shù)和倍數(shù)的教案篇二
    1、從操作活動中理解因數(shù)與倍數(shù)的意義,會判斷一個數(shù)不是另一個數(shù)的因數(shù)或倍數(shù)。
    2、培養(yǎng)學(xué)生抽象、概括與觀察思考的能力,滲透事物之間相互聯(lián)系,相互依存的辨證唯物主義觀點。
    3、培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    小學(xué)因數(shù)和倍數(shù)的教案篇三
    義務(wù)教育課程標(biāo)準(zhǔn)小學(xué)數(shù)學(xué)五年級下冊第二章《因數(shù)和倍數(shù)》第1節(jié)例1(教材第13頁)及練習(xí)二的第2題,第四題的前部分。
    本節(jié)教學(xué)是在學(xué)生學(xué)習(xí)掌握了因數(shù)和倍數(shù)兩個概念的基礎(chǔ)上,在教師的引導(dǎo)下,讓學(xué)生運(yùn)用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓(xùn)練,使學(xué)生能熟練找全一個數(shù)的因數(shù)。另外,通過引導(dǎo)學(xué)生用集合的形式表示一個數(shù)的因數(shù),一方面給學(xué)生滲透集合思想,更重要的是為后面教學(xué)求兩個數(shù)的公因數(shù)做準(zhǔn)備。
    2、逐步培養(yǎng)學(xué)生從個別到全體、從具體到一般的抽象歸納的思想方法。
    探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
    用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
    投影儀、小黑板、卡片。
    教學(xué)課時:一課時。
    運(yùn)用嘗試教學(xué)法,從學(xué)生已有的知識經(jīng)驗出發(fā),通過教師引導(dǎo)、學(xué)生自學(xué)例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運(yùn)用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
    一、復(fù)習(xí)舊知。
    師:同學(xué)們,前面學(xué)習(xí)了因數(shù)和倍數(shù)的概念,老師很想考考你們學(xué)得怎么樣,可以嗎?
    生:(預(yù)設(shè))可以!
    師:出示小黑板。
    1、利用因數(shù)和倍數(shù)的相互依存關(guān)系說一說下面各組數(shù)的相互關(guān)系。
    21和72×7=1430÷6=5。
    2、判斷。
    (1)12是倍數(shù),2是因數(shù)。()。
    (2)1是14的因數(shù),14是1的倍數(shù)。()。
    (3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
    教師根據(jù)學(xué)生完成練習(xí)的情況對學(xué)生進(jìn)行恰當(dāng)?shù)谋頁P(yáng)激勵,同時進(jìn)入新課教學(xué):……。
    二、新課教學(xué)。
    過程一:嘗試訓(xùn)練。
    (一)出示問題。
    師:同學(xué)們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
    生:行!(預(yù)設(shè))。
    嘗試題:14的因數(shù)有哪幾個?
    (二)學(xué)生解決問題,教師巡視并根據(jù)實際適時輔導(dǎo)學(xué)困生。
    (三)信息反饋。
    板書:
    1×14。
    142×7。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    過程二:自學(xué)課本(p13例1)。
    (一)學(xué)生自學(xué)例1。
    教師提出自學(xué)要求(投影):
    1、18有哪些因數(shù)?
    2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
    3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
    (二)信息反饋。
    1、反饋自學(xué)要求情況;
    板書:
    1×18。
    182×9。
    3×6。
    18的因數(shù)有1,2,3,6,9,18。
    還可以這樣表示:18的因數(shù)。
    2、知識對比,探索發(fā)現(xiàn)規(guī)律。
    (1)師:同學(xué)們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
    投影出示問題:
    思考一:你用什么方法找出?
    (2)學(xué)生思考,教師適時引導(dǎo)。
    (3)同桌交流思考結(jié)果。
    (4)師生互動。總結(jié)方法、點出課題。
    求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
    過程三:嘗試練習(xí)。
    (一)用小黑板出示練習(xí)題。
    1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
    (二)信息反饋:師生互動總結(jié)特點。
    板書:
    一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
    三、課堂作業(yè)。
    練習(xí)二第2題和第4題前半部分。
    四、課堂延伸。
    猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
    五、課堂小結(jié)。
    師:今天你學(xué)會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
    生:……。
    求一個數(shù)的因數(shù)的方法。
    1×14。
    142×7方法:用乘法計算或除法計算(整除)。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    1×18。
    182×9。
    3×6。
    18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
    還可以表示為:
    它的最小因數(shù)是1的因數(shù)是它本身。
    小學(xué)因數(shù)和倍數(shù)的教案篇四
    1.學(xué)生通過回憶和整理,進(jìn)一步明確因數(shù)和倍數(shù)的相關(guān)知識,加深認(rèn)識相關(guān)概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運(yùn)用這些知識解決相關(guān)實際問題。
    2.學(xué)生在應(yīng)用相關(guān)知識進(jìn)行判斷和推理的過程中,能說明思考過程,進(jìn)一步培養(yǎng)歸納概括和演繹推理等思維能力,進(jìn)一步增強(qiáng)分析問題和解決問題的能力。
    3.學(xué)生進(jìn)一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,感受數(shù)學(xué)思考的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的自信心。
    掌握倍數(shù)和因數(shù)等相關(guān)概念,以及應(yīng)用概念判斷、推理。
    理解相關(guān)概念的聯(lián)系和區(qū)別。
    一、揭示課題。
    1.回顧知識。
    提問:上節(jié)課,我們已經(jīng)復(fù)習(xí)了整數(shù)和小數(shù)的有關(guān)知識。
    結(jié)合學(xué)生交流,板書。
    2.揭示課題。
    引入:這節(jié)課,我們復(fù)習(xí)因數(shù)和倍數(shù)的相關(guān)知識。
    通過復(fù)習(xí),能進(jìn)一步了解關(guān)于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應(yīng)用這些知識。
    二、基本練習(xí)。
    1.知識梳理。
    提高:回想一下,在學(xué)習(xí)因數(shù)和倍數(shù)時,我們還學(xué)習(xí)了哪些相關(guān)的知識?
    學(xué)生回顧,交流,教師適當(dāng)引導(dǎo)回顧。
    根據(jù)學(xué)生回答,板書整理。
    2.做練習(xí)與實踐第10題。
    學(xué)生獨立完成,指名板演。
    集體交流,讓學(xué)生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。
    3.做練習(xí)與實踐第11題。
    出示題目,學(xué)生直接口答。
    提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?
    追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。
    4.做練習(xí)與實踐第12題。
    學(xué)生先獨立寫出質(zhì)數(shù)和合數(shù),再指名口答。
    追問:最小質(zhì)數(shù)是幾?最小的合數(shù)呢?
    小學(xué)因數(shù)和倍數(shù)的教案篇五
    1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。
    2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。
    3.我能在自主探究中獨立思考,合作探究時暢所欲言。
    能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。
    用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。
    一、導(dǎo)入新課。
    二、檢查獨學(xué)。
    1.互動分享收獲。
    2.質(zhì)疑探討。
    3.試試身手:第23頁做一做。
    三、合作探究。
    1.小組合作,利用課本24頁的表格,用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。
    2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?
    3.小組討論:
    (1)有沒有最大的質(zhì)數(shù)或合數(shù)?
    (2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?
    4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。
    5.獨立思考:
    (1)是不是所有的`質(zhì)數(shù)都是奇數(shù)?
    (2)是不是所有的奇數(shù)都是質(zhì)數(shù)?
    (3)是不是所有的合數(shù)都是偶數(shù)?
    (4)是不是所有的偶數(shù)都是合數(shù)?
    6.組內(nèi)交流。
    小學(xué)因數(shù)和倍數(shù)的教案篇六
    教學(xué)目標(biāo):
    1、通過操作活動得出相應(yīng)的乘除法算式,幫助學(xué)生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
    2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學(xué)生觀察、分析、概括能力,培養(yǎng)有序思考能力。
    3、通過倍數(shù)和因數(shù)之間的互相依存關(guān)系使學(xué)生感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,體會到數(shù)學(xué)內(nèi)容的奇妙、有趣。
    教學(xué)重點:理解倍數(shù)和因數(shù)的意義。
    教學(xué)難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
    教學(xué)準(zhǔn)備:每桌準(zhǔn)各12個一樣大小的正方形,每人準(zhǔn)備一張自己學(xué)號的卡片。
    設(shè)計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學(xué)生持續(xù)的學(xué)習(xí)興趣;學(xué)生通過獨立思考、合作文流進(jìn)行自主探索;教師引導(dǎo)學(xué)生掌握數(shù)學(xué)思考的方法。
    教學(xué)過程:
    1、讓學(xué)生進(jìn)行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學(xué)生能猜出三個人分別是孫子、爸爸、和爺爺)
    2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學(xué)生以韓有才為中心介紹下三個人的關(guān)系。學(xué)生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導(dǎo)學(xué)生說出誰是誰的爸爸誰是準(zhǔn)的兒子。
    3、上述父子關(guān)系是一種互相依存的關(guān)系,在表述時一定要完整。并向?qū)W生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關(guān)系倍數(shù)和因數(shù)。
    設(shè)計說明:智力競猜走學(xué)生喜歡的形式,因為每個學(xué)生都有爭強(qiáng)好勝之心,競猜有兩個作用,一是激發(fā)學(xué)生的學(xué)習(xí)興趣,二是以此引出相互依存的關(guān)系,為理解倍數(shù)和因數(shù)的相互依存關(guān)系作鋪墊。
    1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學(xué)拿出課前準(zhǔn)備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊(yùn)涵著哪些不同的乘除法算式。
    2、請學(xué)生匯報不同的擺法,以及相應(yīng)的乘除法算式。(乘法算式和除法算式分開寫)再向?qū)W生說明:如果一個圖形經(jīng)過旋轉(zhuǎn)后和另一個圖形一樣,我們就認(rèn)為這兩個圖形是一樣的,讓學(xué)生特重復(fù)的圖形和算式去掉。(板書三十乘法算式,和幾十相應(yīng)的除法算式)
    設(shè)計說明;讓學(xué)生寫出蘊(yùn)涵的乘除法算式符合學(xué)生的知識基礎(chǔ),學(xué)生有的可能用乘法表示,也有的可能用除法表示;讓學(xué)生將旋轉(zhuǎn)后相同的去掉,這是一次簡化,很多學(xué)生并不知道,需要指導(dǎo),這樣可以使學(xué)生認(rèn)識到事物的本質(zhì)。
    3、讓學(xué)生一起看乘法算式43=12,向?qū)W生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。
    4、先請一個學(xué)生站起來說一說.然后同桌的同學(xué)再互相說一說。
    5、讓學(xué)生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。
    6、學(xué)生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學(xué)生可能會出現(xiàn)0( )=0的情況,借此向?qū)W生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。
    設(shè)計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學(xué)生的適當(dāng)記憶重復(fù)、仿照。當(dāng)然,要使學(xué)生真正理解還必須舉一反三,通過互相舉例可以逐步完善學(xué)生對倍數(shù)和因數(shù)的認(rèn)識,同時使學(xué)生明確倍數(shù)和因數(shù)的研究范圍。
    7、以43=12與123=4為例,向?qū)W生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學(xué)生試一試其他幾個除法算式中的關(guān)系。
    8、練習(xí):根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)
    54=20 357=5 3+4=7
    (1)學(xué)生回答后引發(fā)學(xué)生思考:能不能說20是倍數(shù),4是因數(shù)。使學(xué)生進(jìn)一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關(guān)系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。
    (2)通過3+4=7使學(xué)生進(jìn)一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎(chǔ)之上的。
    設(shè)計說明:乘法和除法是一種互逆的關(guān)系,在學(xué)習(xí)中應(yīng)該溝通它們之間的聯(lián)系;通過三道練習(xí)可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認(rèn)識,將融會貫通落到實處。
    1、找一個數(shù)的因數(shù)。
    (1)聯(lián)系板書的乘除法算式觀察思考12的因數(shù)有哪些,井想辦法找出15的所有因數(shù)。
    (2)學(xué)生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學(xué)生充分交流的基礎(chǔ)上引導(dǎo)學(xué)生有條理的一對一對說出15的因數(shù)。
    (3)用一對一對的方法找出36的所有因數(shù)??赡苡械膶W(xué)生根據(jù)乘法算式找的,也有的學(xué)生是根據(jù)除法算式找的,都應(yīng)該給予肯定。
    (4)引導(dǎo)學(xué)生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。
    設(shè)計說明:先安排學(xué)生找一個數(shù)的因數(shù)可以使學(xué)生利用操作得到的算式進(jìn)行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學(xué)生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導(dǎo)學(xué)生一對一對的找是必要的,它可以培養(yǎng)學(xué)生的有序思考。最后引導(dǎo)學(xué)生觀察。使學(xué)生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。
    2、找一個數(shù)的倍數(shù)。
    (1)讓學(xué)生找3的倍數(shù),比一比誰找得多。
    (2)學(xué)生匯報后,引導(dǎo)學(xué)生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的`倍數(shù)時要借助省略號表示結(jié)果。
    (3)找出2的倍數(shù)和5的倍數(shù),并引導(dǎo)學(xué)生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
    設(shè)計說明:讓學(xué)生比一比誰找的倍數(shù)多,可以使學(xué)生產(chǎn)生認(rèn)知沖突,認(rèn)識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學(xué)生匯報后同樣需要引導(dǎo)學(xué)生的有序思考,需要引導(dǎo)學(xué)生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。
    1、想想做做的第l題。學(xué)生表述后強(qiáng)調(diào)哪個是哪個的倍數(shù)(或因數(shù))。
    設(shè)計說明:第l題是基礎(chǔ)練習(xí).可以鞏固對倍數(shù)和因數(shù)的認(rèn)識,2、3兩題聯(lián)系實際,使學(xué)生感悟到其中蘊(yùn)藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進(jìn)一步激發(fā)學(xué)生持續(xù)的學(xué)習(xí)熱情,而且可以綜合應(yīng)用求倍數(shù)和因數(shù)的方法,再次認(rèn)識到倍數(shù)和因數(shù)的某些特征。
    1、通過這節(jié)課的學(xué)習(xí)你有什么收獲?向你的同伴介紹一下。
    2、生活中許多現(xiàn)象與我們學(xué)習(xí)的倍數(shù)和因數(shù)的知識有關(guān),課后同學(xué)們可以利用今天所學(xué)的知識探索一下1小時等于60分的好處。通過探索使學(xué)生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。
    設(shè)計說明:向同伴介紹自己的收獲可以將課堂中學(xué)到的知識進(jìn)行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關(guān)知識,溝通知識間的聯(lián)系,拓展學(xué)生的知識面,使學(xué)生認(rèn)識到數(shù)學(xué)知識的應(yīng)用價值。
    小學(xué)因數(shù)和倍數(shù)的教案篇七
    4、培養(yǎng)學(xué)生的觀察能力。
    掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
    一、引入新課。
    1、出示主題圖,讓學(xué)生各列一道乘法算式。
    2、師:看你能不能讀懂下面的算式?
    出示:因為26=12。
    所以2是12的因數(shù),6也是12的因數(shù);
    12是2的倍數(shù),12也是6的倍數(shù)。
    3、師:你能不能用同樣的方法說說另一道算式?
    (指名生說一說)。
    師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
    那你還能找出12的其他因數(shù)嗎?
    4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
    師:誰來出一個算式考考全班同學(xué)?
    5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
    齊讀p12的注意。
    二、新授。
    (一)找因數(shù)。
    1、出示例1:18的因數(shù)有哪幾個?
    學(xué)生嘗試完成:匯報。
    (18的因數(shù)有:1,2,3,6,9,18)。
    師:說說看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)。
    師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
    2、用這樣的方法,請你再找一找36的因數(shù)有那些?
    匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
    師:你是怎么找的?
    舉錯例(1,2,3,4,6,6,9,12,18,36)。
    師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
    仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
    看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
    小學(xué)因數(shù)和倍數(shù)的教案篇八
    教學(xué)內(nèi)容:
    教材分析:
    本節(jié)教學(xué)是在學(xué)生學(xué)習(xí)掌握了因數(shù)和倍數(shù)兩個概念的基礎(chǔ)上,在教師的引導(dǎo)下,讓學(xué)生運(yùn)用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓(xùn)練,使學(xué)生能熟練找全一個數(shù)的因數(shù)。另外,通過引導(dǎo)學(xué)生用集合的形式表示一個數(shù)的因數(shù),一方面給學(xué)生滲透集合思想,更重要的是為后面教學(xué)求兩個數(shù)的公因數(shù)做準(zhǔn)備。
    教學(xué)目標(biāo):
    2、逐步培養(yǎng)學(xué)生從個別到全體、從具體到一般的抽象歸納的思想方法。
    教學(xué)重點:
    探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
    教學(xué)難點:
    用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
    教具準(zhǔn)備:
    投影儀、小黑板、卡片。
    教學(xué)課時:一課時。
    教學(xué)設(shè)想:
    運(yùn)用嘗試教學(xué)法,從學(xué)生已有的知識經(jīng)驗出發(fā),通過教師引導(dǎo)、學(xué)生自學(xué)例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運(yùn)用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
    教學(xué)過程:
    一、復(fù)習(xí)舊知。
    師:同學(xué)們,前面學(xué)習(xí)了因數(shù)和倍數(shù)的概念,老師很想考考你們學(xué)得怎么樣,可以嗎?
    生:(預(yù)設(shè))可以!
    師:出示小黑板。
    1、利用因數(shù)和倍數(shù)的相互依存關(guān)系說一說下面各組數(shù)的相互關(guān)系。
    21和72×7=1430÷6=5。
    2、判斷。
    (1)12是倍數(shù),2是因數(shù)。()。
    (2)1是14的因數(shù),14是1的倍數(shù)。()。
    (3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
    教師根據(jù)學(xué)生完成練習(xí)的情況對學(xué)生進(jìn)行恰當(dāng)?shù)谋頁P(yáng)激勵,同時進(jìn)入新課教學(xué):……。
    二、新課教學(xué)。
    過程一:嘗試訓(xùn)練。
    (一)出示問題。
    師:同學(xué)們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
    生:行?。A(yù)設(shè))。
    嘗試題:14的因數(shù)有哪幾個?
    (二)學(xué)生解決問題,教師巡視并根據(jù)實際適時輔導(dǎo)學(xué)困生。
    (三)信息反饋。
    板書:
    1×14。
    14 2×7。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    過程二:自學(xué)課本(p13例1)。
    (一)學(xué)生自學(xué)例1。
    教師提出自學(xué)要求(投影):
    1、18有哪些因數(shù)?
    2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
    3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
    (二)信息反饋。
    1、反饋自學(xué)要求情況;
    板書:
    1×18。
    182×9。
    3×6。
    18的因數(shù)有1,2,3,6,9,18。
    還可以這樣表示:18的因數(shù)。
    2、知識對比,探索發(fā)現(xiàn)規(guī)律。
    (1)師:同學(xué)們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
    投影出示問題:
    思考一:你用什么方法找出?
    (2)學(xué)生思考,教師適時引導(dǎo)。
    (3)同桌交流思考結(jié)果。
    (4)師生互動??偨Y(jié)方法、點出課題。
    求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
    過程三:嘗試練習(xí)。
    (一)用小黑板出示練習(xí)題。
    1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
    (二)信息反饋:師生互動總結(jié)特點。
    板書:
    一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
    三、課堂作業(yè)。
    練習(xí)二第2題和第4題前半部分。
    四、課堂延伸。
    猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
    五、課堂小結(jié)。
    師:今天你學(xué)會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
    生:……。
    板書設(shè)計:
    求一個數(shù)的因數(shù)的方法。
    1×14。
    142×7 方法:用乘法計算或除法計算(整除)。
    14÷2。
    14的因數(shù)有:1,2,7,14。
    1×18。
    182×9。
    3×6。
    18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
    還可以表示為:
    它的最小因數(shù)是1,的因數(shù)是它本身。
    小學(xué)因數(shù)和倍數(shù)的教案篇九
    1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運(yùn)用數(shù)的奇偶性解決生活中的一些簡單問題。
    2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
    1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運(yùn)用數(shù)的奇偶性解決生活中的一些簡單問題。
    2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
    活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
    讓學(xué)生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當(dāng)進(jìn)行“列表”“畫示意圖”等解決問題策略的指導(dǎo)。
    試一試:
    本題是讓學(xué)生應(yīng)用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學(xué)生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
    活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。
    [板書設(shè)計]。
    例子:結(jié)論:
    12+34=48偶數(shù)+偶數(shù)=偶數(shù)。
    11+37=48奇數(shù)+奇數(shù)=偶數(shù)。
    12+11=23奇數(shù)+偶數(shù)=奇數(shù)。
    小學(xué)因數(shù)和倍數(shù)的教案篇十
    這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
    教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
    倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點特別的兩句。
    整個過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。
    找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。
    探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
    教學(xué)4的倍數(shù)時,學(xué)生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。
    這樣搭建了有效的平臺、形成了師生互動生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。
    小學(xué)因數(shù)和倍數(shù)的教案篇十一
    《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。
    數(shù)學(xué)課程標(biāo)準(zhǔn)“以人為本”的理念決定著數(shù)學(xué)教學(xué)目標(biāo)的指向:適應(yīng)并促進(jìn)學(xué)生的發(fā)展。根據(jù)本節(jié)課知識的特點和學(xué)生的認(rèn)知規(guī)律,我采用了角色轉(zhuǎn)換、數(shù)形結(jié)合、合作學(xué)習(xí)等發(fā)展性教學(xué)手段進(jìn)行教學(xué),在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進(jìn)行教學(xué):
    (1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。
    因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。?通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達(dá)到了預(yù)期的效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。
    (2)角色轉(zhuǎn)換,讓學(xué)生親身體驗數(shù)和數(shù)之間的聯(lián)系。
    因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認(rèn)識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點。
    (3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進(jìn)數(shù)學(xué)課堂。
    “數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思想。對教師來說則是一種教學(xué)策略,是一種發(fā)展性課堂教學(xué)手段;對學(xué)生來說又是一種學(xué)習(xí)方法。如果長期滲透,運(yùn)用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。開課教師引導(dǎo)學(xué)生進(jìn)行空間想象。
    (4)重組教材,根據(jù)學(xué)生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。
    教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實際情況,我進(jìn)行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進(jìn)而又借助體態(tài)語言——打手勢,讓學(xué)生說出20和24的因數(shù),達(dá)到了鞏固練習(xí)的目的。這樣設(shè)計由易到難,由淺入深,符合了學(xué)生的認(rèn)知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。
    (5)趣味活動,擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。
    只有讓學(xué)生親身感受到數(shù)學(xué)知識內(nèi)在的智取因素,數(shù)學(xué)學(xué)習(xí)的無窮魅力才能深深地打動學(xué)生。這節(jié)課的練習(xí)設(shè)計緊緊把握概念的內(nèi)涵與外延,設(shè)計有效練習(xí),拓展知識空間。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達(dá)到充分地練習(xí)效果。
    因數(shù)和倍數(shù)教學(xué)反思。
    《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識整除的情況下直接認(rèn)識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
    這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
    (一)?操作實踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)。
    (二)自主探究,意義建構(gòu),找倍數(shù)和因數(shù)。
    整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
    新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。
    (三)變式拓展,實踐應(yīng)用---—促進(jìn)智能內(nèi)化。
    練習(xí)的設(shè)計不僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
    由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時間安排的可以少一些,所以我在第一部分認(rèn)識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應(yīng)該及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
    小學(xué)因數(shù)和倍數(shù)的教案篇十二
    蘇教版義務(wù)教育教科書《數(shù)學(xué)五年級下冊第47~48頁整理與練習(xí)“回顧與整理”和“練習(xí)與應(yīng)用”第1~7題。
    1.使學(xué)生加深認(rèn)識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進(jìn)一步認(rèn)識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進(jìn)一步認(rèn)識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。
    2.使學(xué)生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應(yīng)用相關(guān)概念進(jìn)行分析、判斷、推理,進(jìn)一步掌握思考、解決數(shù)學(xué)問題的方法,積累數(shù)學(xué)思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認(rèn)識,進(jìn)一步發(fā)展數(shù)感。
    3.使學(xué)生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學(xué)方面的知識積累和進(jìn)步,提高學(xué)好數(shù)學(xué)的自信心。
    整理、應(yīng)用因數(shù)和倍數(shù)的知識。
    應(yīng)用概念正確判斷、推理。
    一、揭示課題
    談話:最近的數(shù)學(xué)課,我們學(xué)習(xí)了哪方面的內(nèi)容?回憶一下,都學(xué)到了哪些知識?
    揭題:我們已經(jīng)學(xué)完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習(xí)這一單元內(nèi)容。(板書課題)通過整理與練習(xí),我們要進(jìn)一多認(rèn)識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認(rèn)識,加深對數(shù)的認(rèn)識。
    二、回顧與整理
    1.回顧討論。
    出示討論題:
    (1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認(rèn)識。
    (2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?
    (3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。
    (4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?
    讓學(xué)生在小組里討論,結(jié)合討論適當(dāng)記錄自己的認(rèn)識或例子。
    2.交流整理。
    圍繞討論題,引導(dǎo)學(xué)生展開交流,結(jié)合交流板書主要內(nèi)容。
    (1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)
    (指名學(xué)生說一說,再集體說一說)
    你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))
    能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?
    說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。
    (2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?
    自然數(shù)可以怎樣分類,各可以分成哪幾類?
    你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學(xué)生舉出各類數(shù)的例子)
    說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。
    什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))
    (3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?
    說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。
    結(jié)合交流內(nèi)容,逐步板書成:
    l
    質(zhì)數(shù)質(zhì)因數(shù)
    合數(shù)分解質(zhì)因數(shù)
    因數(shù)公因數(shù)最大公因數(shù)
    (互相依存)
    倍數(shù)公倍數(shù)最小公倍數(shù)
    2、5、3的倍數(shù)的特征
    偶數(shù)
    奇數(shù)
    (4)引導(dǎo):請同學(xué)們現(xiàn)在觀察我們整理的這一單元學(xué)過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
    學(xué)生互相交流,教師巡視、傾聽。
    交流:哪位同學(xué)能看黑板上整理的內(nèi)容,說說我們怎樣逐步認(rèn)識這些知識的,知識是怎樣發(fā)展起來的。
    三、練習(xí)與應(yīng)用
    1.做“練習(xí)與應(yīng)用”第1題。
    指名學(xué)生交流,說說每組里因數(shù)和倍數(shù)關(guān)系。
    提問:3和7有沒有因數(shù)和倍數(shù)關(guān)系?為什么沒有?
    2.做“練習(xí)與應(yīng)用”第2題。
    (1)讓學(xué)生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。
    交流:你是怎樣找它們的因數(shù)的?(檢查板演題)
    (2)口答后三個數(shù)的因數(shù)。
    引導(dǎo):能說出后面每個數(shù)的全部因數(shù)嗎?(學(xué)生口答,教師板書)
    提問:一個數(shù)的因數(shù)有什么特點?
    說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。
    3.分別說出下面各數(shù)的倍數(shù)。
    581217
    分別指名學(xué)生說出各數(shù)的倍數(shù),教師板書。
    提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?
    說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。
    4.做“練習(xí)與應(yīng)用”第3題。
    (1)讓學(xué)生獨立完成填數(shù)。
    交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?
    提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?
    同時是2和5的倍數(shù)的數(shù)有什么特征?
    哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。
    (2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?
    你是怎樣判斷偶數(shù)和奇數(shù)的?
    5.做“練習(xí)與應(yīng)用”第4題。
    要求學(xué)生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。
    交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?
    (板書:180810)
    組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)
    6.做“練習(xí)與應(yīng)用”第5題。
    讓學(xué)生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。
    交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?
    說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。
    7.做“練習(xí)與應(yīng)用’’第6題。
    讓學(xué)生選出質(zhì)數(shù)和偶數(shù)。
    交流、呈現(xiàn)結(jié)果。
    提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。
    所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?
    指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。
    8.下面的說法正確嗎?
    (1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。
    (2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。
    (3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。
    (4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。
    (5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。
    9.做“練習(xí)與應(yīng)用”第7題。
    (1)讓學(xué)生填空,指名板演。交流并確認(rèn)結(jié)果。
    提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?
    說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?
    (2)把30、42分別分解質(zhì)因數(shù)。
    學(xué)生完成,交流板書,檢查訂正。
    四、全課總結(jié)
    提問:這節(jié)課主要復(fù)習(xí)的哪些內(nèi)容?你有哪些收獲?
    小學(xué)因數(shù)和倍數(shù)的教案篇十三
    知識與技能、過程與方法:
    1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
    2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的觀點。
    3、培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    1、因數(shù)與倍數(shù)意義以及它們的相互依存關(guān)系。
    2、尋找一個數(shù)的因數(shù)或倍數(shù)的方法。
    教學(xué)準(zhǔn)備:課件。
    教學(xué)流程:
    流程1:導(dǎo)入新課。
    流程2:認(rèn)識倍數(shù)和因數(shù)。
    流程3:探索求一個數(shù)的因數(shù)的方法。
    流程4:完成試一試,總結(jié)一個數(shù)因數(shù)的特點。
    流程5:探索求一個數(shù)的倍數(shù)的方法。
    流程6:完成試一試,總結(jié)一個數(shù)倍數(shù)的特點。
    流程7:完成智慧樂園。
    流程8:完成質(zhì)疑樂園。
    流程9:數(shù)學(xué)游戲。
    流程11:課堂小結(jié)。
    流程10:組織學(xué)生退場。
    第一段:導(dǎo)入新課。
    流程1:導(dǎo)入新課。
    師:課前我們先來做個腦筋急轉(zhuǎn)彎,看看誰最聰明?
    (學(xué)生發(fā)表自己的看法)。
    今天,我們就把這三個人請到我教室里來好嗎?(課件出示圖片)你能不能以大李為中心,來介紹一下小老和老李。(學(xué)生說一說)。
    師:我們能不能單獨地來說,大李是爸爸?(不能)為什么?
    引出相互依存(板書)。
    第二段:認(rèn)識倍數(shù)和因數(shù)。
    流程2:認(rèn)識倍數(shù)和因數(shù)。
    1、用課前準(zhǔn)備的12張同樣大的正方形紙片拼成一個長方形。前后四人一組。
    要求:
    (1)、看一共能擺出幾種完全不同的長方形。
    (2)、想一想怎樣用乘法算式表示你的擺法。
    (3)、為了便于展示,請在你的課本反面來擺。
    (學(xué)生動手操作、匯報)。
    師:請你用乘法算式表示你的擺法?
    生:1×12=122×6=123×4=12。
    師:為了避免重復(fù),我們可經(jīng)只選擇其中一個算式。我們以前學(xué)過,在乘法算式里,乘號前面和后面的數(shù)都叫什么?(因數(shù))等號后面的數(shù)叫什么?(積)這里的因數(shù)和積是乘法算式各部分的名稱。其實,因數(shù)和積之間就存在我們課前提到的相互依存關(guān)系。以3×4=12為例,數(shù)學(xué)上說12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。這里因數(shù)和倍數(shù)就具有相互依存的關(guān)系。不能孤立地說3是因數(shù),也不能孤立地說12的倍數(shù),這就是今天這節(jié)課我們研究:倍數(shù)和因數(shù)。
    師:那根據(jù)另外兩個乘法算式,同學(xué)們會說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?請同桌相互說一說(學(xué)生活動)。
    老師這是里有兩道算式,你會說嗎?
    8×9=7218÷3=6。
    (請學(xué)生來說一說)。
    師:同學(xué)們,倍數(shù)、因數(shù)指的是兩個自然數(shù)之間的一種關(guān)系,所以我們一定要說清楚誰是誰的倍數(shù),誰是誰的因數(shù),,老師還要補(bǔ)充說一點,為了方便,我們在研究時,所說的數(shù)一般指不是0的自然數(shù)。
    第三段:探索求倍數(shù)和因數(shù)的方法。
    流程3:探索求一個數(shù)的因數(shù)的方法。
    師:同學(xué)們怎樣找一個數(shù)的因數(shù)呢?同學(xué)們愿意獨立思考,嘗試解決嗎?面對新問題,看看誰能挑戰(zhàn)成功。
    師:你能找出36所有的因數(shù)嗎?請同學(xué)們試著在練習(xí)本上寫一寫。
    (學(xué)生活動)學(xué)生匯報。
    師:從1開始,想哪兩個數(shù)相乘得36,我們就可以成對地寫出36的因數(shù),一直找到兩個乘數(shù)最接近為止。解決這個問題首先要考慮什么樣的數(shù)是36的.因數(shù)。如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。例如,1×36=36,那么1和36都是36的因數(shù)。
    師:看看老師的填法和你一樣嗎?
    師:求一個數(shù)的因數(shù),可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重復(fù)、不遺漏。
    流程4:完成試一試,總結(jié)一個數(shù)的因數(shù)的特點。
    師:下面請同學(xué)們用你喜歡或熟悉的方法寫出你自己所喜歡的數(shù)字的因數(shù)。(學(xué)生活動)相機(jī)尋找學(xué)生板書。
    師:通過觀察上面同學(xué)所寫的數(shù)的因數(shù),你發(fā)現(xiàn)了什么?學(xué)生說一說(完成表格)。
    師小結(jié):一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)因數(shù)的個數(shù)是有限的。
    寫出你的學(xué)號的所有因數(shù)。
    流程5:探索求一個數(shù)的倍數(shù)的方法。
    師:同學(xué)們先想一想,什么樣的數(shù)是3的倍數(shù)?怎樣才能準(zhǔn)確地寫出3的倍數(shù)?把你的想法和小組里的同學(xué)交流一下。(學(xué)生活動)。
    師:同學(xué)們一定能想到,3的倍數(shù)就是3和除0以外的一個自然數(shù)相乘的積。例如3×1=(3),3×2=(6),3×3=(9),括號里的數(shù)都是3的倍數(shù)。這樣我們按從小到大的順序,用乘法就可以有條理地說出3的倍數(shù)了,它們是:3、6、9、12、15、18。能把3的倍數(shù)全部說完嗎?說不完,那應(yīng)該怎樣表示問題的答案呢?因為3的倍數(shù)的個數(shù)是無限的,所以寫的時候要借助省略號來完整地表示出結(jié)果。
    流程6:完成試一試,總結(jié)一個數(shù)的倍數(shù)的特點。
    師:下面就請同學(xué)們用這種方法分別寫出2的倍數(shù)和5的倍數(shù)。注意要有順序地思考,并且規(guī)范地表示出結(jié)果。(學(xué)生活動)。
    師:老師和同學(xué)們核對一下答案,如果出錯了,一定要分析原因,再訂正。(核對答案)。
    師:現(xiàn)在我們已經(jīng)找到了求一個數(shù)的倍數(shù)的方法,并用這樣的方法分別求出3、2、5的倍數(shù),請同學(xué)們觀察上面的例子,你們能發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點嗎?大膽地說出你們的想法。(學(xué)生活動)。
    師小結(jié):仔細(xì)觀察,同學(xué)們會發(fā)現(xiàn):一個數(shù)最小的倍數(shù)是它本身,沒有最大的倍數(shù);一個數(shù)倍數(shù)的個數(shù)是無限的。
    第四段:深化認(rèn)識,鞏固方法。
    流程7:完成智慧樂園。
    師:請看想想做做第3題。先填表,再討論回答下面的問題:表中每欄的每排人數(shù)各是怎樣算出來的?排數(shù)和每排人數(shù)都是24的什么數(shù)?在填表的過程中你還受到了什么啟發(fā)?(學(xué)生活動)。
    師:24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中排數(shù)和每排人數(shù)都是24的因數(shù)。在填表的過程中我們會發(fā)現(xiàn)一對一對地找一個數(shù)的因數(shù)比較方便。
    流程8:完成質(zhì)疑樂園。
    先判斷對錯,再說一說自己的判斷理由。
    第五段:數(shù)學(xué)游戲。
    流程9:數(shù)學(xué)游戲。
    師:請同學(xué)們拿出寫有自己學(xué)號的卡片,我們一起來做個游戲??匆豢矗胍幌?,你卡片上的數(shù)是否符合下面的條件,符合的請舉起卡片,揮一揮。(課件出示)我是5,我找我的倍數(shù);(學(xué)生活動)我是24,我找我的因數(shù);(學(xué)生活動)我是1,我找我的倍數(shù);(學(xué)生活動)我是30,我找我的因數(shù)。(學(xué)生活動)。
    第六段:全課總結(jié)。
    流程10:課堂總結(jié)。
    師:同學(xué)們,這節(jié)課我們認(rèn)識了倍數(shù)和因數(shù),探索了找一個數(shù)的倍數(shù)和因數(shù)的方法,根據(jù)乘法算式,用這一個數(shù)分別乘1、乘2、乘3……可以有順序地找到它的倍數(shù)。一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。找一個數(shù)的因數(shù)可以想乘法算式,把一個數(shù)寫成兩個數(shù)相乘的積,乘數(shù)就是這個數(shù)的因數(shù);也可以想除法算式,用一個數(shù)依次去除以1、2、3……,能得到整數(shù)商的,除數(shù)和商就是它的因數(shù)。寫因數(shù)時根據(jù)算式有順序的一對一對地寫比較方便,不容易遺漏或重復(fù)。一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
    流程11:組織下課。
    組織學(xué)生分批退場。
    小學(xué)因數(shù)和倍數(shù)的教案篇十四
    1、通過“活動建構(gòu)”,使學(xué)生領(lǐng)會因數(shù)和倍數(shù)的意義;通過獨立思考、交流談?wù)?,初步掌握求一個數(shù)所有因數(shù)的方法。
    2、在解決問題的過程中,培養(yǎng)學(xué)生思維的有序性、條理性,增強(qiáng)學(xué)生的探究意識和求索精神。
    3、通過教學(xué),讓學(xué)生從中感受到數(shù)學(xué)思考的魅力,體驗到數(shù)學(xué)學(xué)習(xí)的樂趣。
    小學(xué)因數(shù)和倍數(shù)的教案篇十五
    1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    2.在探究的過程中體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學(xué)生思維的有序性和條理性。
    3.培養(yǎng)學(xué)生的探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系。
    2.掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    教學(xué)課件。
    (一)創(chuàng)設(shè)情境,引入新課。
    人與人之間存在著許多種關(guān)系,你們和爸爸(媽媽)的關(guān)系是?
    (父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。
    在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。
    (二)探究新知-理解因數(shù)和倍數(shù)的意義。
    教學(xué)例1:
    1.觀察算式的特點,進(jìn)行分類。
    (1)仔細(xì)觀察算式的特點,你能把這些算式分類嗎?
    (2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)。
    第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
    2.明確因數(shù)和倍數(shù)的意義。
    (1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
    (2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
    (3)強(qiáng)調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
    3.理解因數(shù)和倍數(shù)的依存關(guān)系。
    (1)獨立完成教材第5頁“做一做”。
    (2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?
    4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
    (1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
    課件出示:
    乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
    (2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?
    “倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。
    (3)交流匯報。
    (三)探究新知-找一個數(shù)的因數(shù)。
    教學(xué)例2:
    1.探究找18的因數(shù)的方法。
    (1)18的因數(shù)有哪些?你是怎么找的?
    (2)交流方法。
    預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
    因為18÷1=18,所以1和18是18的因數(shù)。
    因為18÷2=9,所以2和9是18的因數(shù)。
    因為18÷3=6,所以3和6是18的因數(shù)。
    方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
    因為1×18=18,所以1和18是18的因數(shù)。
    因為2×9=18,所以2和9是18的因數(shù)。
    因為3×6=18,所以3和6是18的因數(shù)。
    2.明確18的因數(shù)的表示方法。
    (1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
    (2)交流方法。
    預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。
    集合圖的方法(如下圖所示)。
    3.練習(xí)找一個數(shù)的因數(shù)。
    (1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
    (2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?
    (四)探究新知-找一個數(shù)的倍數(shù)。
    教學(xué)例3:
    1.探究找2的倍數(shù)的方法。
    (1)2的倍數(shù)有哪些?你是怎么找的?
    (2)想方法:利用乘法算式找2的倍數(shù)。
    因為2×1=2,所以2是2的倍數(shù)。
    因為2×2=4,所以4是2的倍數(shù)。
    因為2×3=6,所以6是2的倍數(shù)?!?BR>    (3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
    (4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。
    2.練習(xí)找一個數(shù)的倍數(shù)。
    你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
    (五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。
    舉例子,找規(guī)律,勾畫知識點,讀一讀。
    預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的`,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
    (六)智慧樂園。
    1.在練習(xí)本上完成下列填空題。(獨立完成后,師訂正答案)。
    一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。
    一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().
    一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
    2.在練習(xí)本上完成下列判斷題。(獨立完成后,師訂正答案)。
    (1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。
    (2)15的倍數(shù)一定大于15。()。
    (3)1是除0以外所有自然數(shù)的因數(shù)。()。
    (4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。
    (5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。
    (6)1.2是3的倍數(shù)。()。
    (七)全課總結(jié),交流收獲。
    這節(jié)課我們學(xué)了哪些知識?你有什么收獲?
    (八)布置作業(yè)。
    完成課時練第3、4頁,提交家校本。
    小學(xué)因數(shù)和倍數(shù)的教案篇十六
    教材第6頁例3及練習(xí)二第3~8題及思考題。
    1.通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個數(shù)的倍數(shù)的方法。
    2.結(jié)合具體情境,使學(xué)生進(jìn)一步認(rèn)識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
    3.初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。
    重點:掌握求一個數(shù)的倍數(shù)的方法。
    難點:理解因數(shù)和倍數(shù)兩者之間的關(guān)系。
    1、探索找倍數(shù)的方法。(教學(xué)例3)。
    出示例3:2的倍數(shù)有哪些?
    師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準(zhǔn)備好了嗎?開始!
    師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。
    師:大家都是用的什么方法呢?
    生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
    生2:我也是用乘法,用2去乘1、乘2……。
    師:哪些同學(xué)也是用乘法做的?
    師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
    生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。
    師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?(不能)。
    師:為什么?(因為2的倍數(shù)有無數(shù)個)。
    師:怎么辦?(用省略號)。
    師:通過交流,你有什么發(fā)現(xiàn)?
    引導(dǎo)學(xué)生初步體會2的倍數(shù)的個數(shù)是無限的。
    追問:你能用集合圖表示2的倍數(shù)嗎?
    學(xué)生填完后,教師組織學(xué)生進(jìn)行核對。
    (4)即時練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時可能會產(chǎn)生錯誤,教師要引導(dǎo)學(xué)生根據(jù)錯例進(jìn)行適時剖析。
    2、反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
    先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識以下三點:
    (1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
    (2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
    (3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
    1、指導(dǎo)學(xué)生完成教材第7~8頁練習(xí)二第3~8題及思考題。
    學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體訂正。
    集體訂正時,教師著重引導(dǎo)學(xué)生認(rèn)識以下幾點:
    (1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
    (2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。
    (3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
    2、利用求倍數(shù)的方法解決生活中的實際問題。
    理解題意,分析解答。
    教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5個地數(shù),也正好數(shù)完,說明西瓜的個數(shù)是5的倍數(shù),所以西瓜的個數(shù)同時是2和5的倍數(shù)。
    交流匯報:2的倍數(shù)有2,4,6,8,10,12,14,16,18,20,…。
    5的倍數(shù)有5,10,15,20,25,30,…。
    2和5共同的倍數(shù)有10,20,…所以2和5共同的倍數(shù)最小的是10。
    答:這些西瓜最少有10個。
    1、師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?(學(xué)生交流)。
    2、讓學(xué)生自學(xué)“你知道嗎?”
    2×1=22÷2=1。
    2×2=44÷2=2。
    2×3=66÷2=3。
    2×4=88÷2=4。
    2的倍數(shù)有2,4,6,……。
    一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
    小學(xué)因數(shù)和倍數(shù)的教案篇十七
    (父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。
    在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。
    (二)探究新知-理解因數(shù)和倍數(shù)的意義。
    教學(xué)例1:
    1.觀察算式的特點,進(jìn)行分類。
    (1)仔細(xì)觀察算式的特點,你能把這些算式分類嗎?
    (2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)。
    第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
    2.明確因數(shù)和倍數(shù)的意義。
    (1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
    (2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
    (3)強(qiáng)調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
    3.理解因數(shù)和倍數(shù)的依存關(guān)系。
    (1)獨立完成教材第5頁“做一做”。
    (2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?
    4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
    (1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
    課件出示:
    乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
    (2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?
    “倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。
    (3)交流匯報。
    (三)探究新知-找一個數(shù)的因數(shù)。
    教學(xué)例2:
    1.探究找18的因數(shù)的方法。
    (1)18的因數(shù)有哪些?你是怎么找的?
    (2)交流方法。
    預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
    因為18÷1=18,所以1和18是18的因數(shù)。
    因為18÷2=9,所以2和9是18的因數(shù)。
    因為18÷3=6,所以3和6是18的.因數(shù)。
    方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
    因為1×18=18,所以1和18是18的因數(shù)。
    因為2×9=18,所以2和9是18的因數(shù)。
    因為3×6=18,所以3和6是18的因數(shù)。
    2.明確18的因數(shù)的表示方法。
    (1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
    (2)交流方法。
    預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。
    集合圖的方法(如下圖所示)。
    3.練習(xí)找一個數(shù)的因數(shù)。
    (1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
    (2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?
    (四)探究新知-找一個數(shù)的倍數(shù)。
    教學(xué)例3:
    1.探究找2的倍數(shù)的方法。
    (1)2的倍數(shù)有哪些?你是怎么找的?
    (2)想方法:利用乘法算式找2的倍數(shù)。
    因為2×1=2,所以2是2的倍數(shù)。
    因為2×2=4,所以4是2的倍數(shù)。
    因為2×3=6,所以6是2的倍數(shù)?!?。
    (3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
    (4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。
    2.練習(xí)找一個數(shù)的倍數(shù)。
    你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
    (五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。
    舉例子,找規(guī)律,勾畫知識點,讀一讀。
    預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
    (六)智慧樂園。
    1.在練習(xí)本上完成下列填空題。(獨立完成后,師訂正答案)。
    一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。
    一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().
    一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
    2.在練習(xí)本上完成下列判斷題。(獨立完成后,師訂正答案)。
    (1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。
    (2)15的倍數(shù)一定大于15。()。
    (3)1是除0以外所有自然數(shù)的因數(shù)。()。
    (4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。
    (5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。
    (6)1.2是3的倍數(shù)。()。
    (七)全課總結(jié),交流收獲。
    這節(jié)課我們學(xué)了哪些知識?你有什么收獲?
    (八)布置作業(yè)。
    完成課時練第3、4頁,提交家校本。
    小學(xué)因數(shù)和倍數(shù)的教案篇十八
    由于學(xué)生對辨析、理清除盡和整除的關(guān)系、整除的兩種讀法等易混淆的概念,使學(xué)生明確一個數(shù)是否是另一個數(shù)的倍數(shù)或因數(shù)時,必須是以整除為前提,因數(shù)和倍數(shù)是相互依存的概念,不能獨立存在。所以本節(jié)課的教學(xué)我把重點定位于理解因數(shù)和倍數(shù)的含義。
    小學(xué)因數(shù)和倍數(shù)的教案篇十九
    (非零自然數(shù)中)。
    1×36=3636÷1=3636÷36=1。
    2×18=3636÷2=1836÷18=2。
    3×12=3636÷3=1236÷12=3。
    4×9=3636÷4=936÷9=4。
    6×6=3636÷6=6。
    36的因數(shù)有:1、2、3、4、6、9、12、18、36.
    小學(xué)因數(shù)和倍數(shù)的教案篇二十
    1.使學(xué)生初步掌握2、5的倍數(shù)的特征。
    2.使學(xué)生知道奇數(shù)、偶數(shù)的概念。
    能力目標(biāo)。
    1.會判斷一個數(shù)是否能被2、5整除。
    2.會判斷奇數(shù)、偶數(shù)。
    3.培養(yǎng)類推能力及主動獲取知識的能力。
    情感目標(biāo)。
    激發(fā)學(xué)生的學(xué)習(xí)興趣。
    小學(xué)因數(shù)和倍數(shù)的教案篇二十一
    課本第15頁,練習(xí)二第一題前半題15的因數(shù)有哪些?,第二題,第4題前半題填在書上。
    設(shè)計意圖:本節(jié)課主要的學(xué)習(xí)目標(biāo)一是使生明白因數(shù)和倍數(shù)的意義,二是讓生掌握求一個數(shù)因數(shù)的方法,作業(yè)中鞏固了學(xué)生今天的數(shù)學(xué)技能。
    小學(xué)因數(shù)和倍數(shù)的教案篇二十二
    一、引入新課。
    1、出示主題圖,讓學(xué)生各列一道乘法算式。
    2、師:看你能不能讀懂下面的算式?
    出示:因為2×6=12。
    所以2是12的因數(shù),6也是12的因數(shù);
    12是2的倍數(shù),12也是6的倍數(shù)。
    3、師:你能不能用同樣的方法說說另一道算式?
    (指名生說一說)。
    師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
    那你還能找出12的其他因數(shù)嗎?
    4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
    師:誰來出一個算式考考全班同學(xué)?
    5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
    齊讀p12的注意。
    二、新授:
    (一)找因數(shù):
    1、出示例1:18的因數(shù)有哪幾個?
    學(xué)生嘗試完成:匯報。
    (18的因數(shù)有:1,2,3,6,9,18)。
    師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
    師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
    2、用這樣的方法,請你再找一找36的因數(shù)有那些?
    匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
    師:你是怎么找的?
    舉錯例(1,2,3,4,6,6,9,12,18,36)。
    師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
    仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
    看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
    3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
    4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
    18的因數(shù)。
    小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
    從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
    (二)找倍數(shù):
    1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
    匯報:2、4、6、8、10、16、……。
    師:為什么找不完?
    你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
    那么2的倍數(shù)最小是幾?最大的你能找到嗎?
    2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
    匯報3的倍數(shù)有:3,6,9,12。
    師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
    改寫成:3的倍數(shù)有:3,6,9,12,……。
    你是怎么找的?(用3分別乘以1,2,3,……倍)。
    5的倍數(shù)有:5,10,15,20,……。
    師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ?,還可以用集合來表示。
    2的倍數(shù)3的倍數(shù)5的倍數(shù)。
    師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
    (一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
    三、課堂小結(jié):
    我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
    四、獨立作業(yè):
    完成練習(xí)二1~4題。