最新探索勾股定理教學(xué)設(shè)計(jì)(匯總19篇)

字號(hào):

    針對(duì)周末的規(guī)劃與安排,我們需要寫(xiě)一份總結(jié)了吧。如何保持良好的心態(tài)和情緒對(duì)于個(gè)人的健康和幸福至關(guān)重要。在閱讀總結(jié)范文時(shí)要有批判性思維,不盲目追隨,注重個(gè)性化表達(dá)。
    探索勾股定理教學(xué)設(shè)計(jì)篇一
    勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。
    教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
    據(jù)此,制定教學(xué)目標(biāo)如下:
    3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
    4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
    教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
    以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的`主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。
    切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
    通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
    本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
    1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
    2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。
    3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。
    教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。
    1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。
    2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
    (1)這兩個(gè)圖形有什么特點(diǎn)?
    (2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?
    (3)如何運(yùn)用勾股定理?是否還有其他形式?
    這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。
    1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
    2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
    引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
    探索勾股定理教學(xué)設(shè)計(jì)篇二
    通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生親身經(jīng)歷和體驗(yàn),感受發(fā)現(xiàn)規(guī)律的樂(lè)趣,同時(shí)體會(huì)計(jì)算器的工具性作用。
    五年級(jí)學(xué)生已經(jīng)基本掌握計(jì)算器的使用方法,但是還并不完全認(rèn)識(shí)計(jì)算器在學(xué)習(xí)、生活中的工具性作用,所以教學(xué)中還要讓學(xué)生進(jìn)一步加深認(rèn)識(shí);在數(shù)學(xué)計(jì)算過(guò)程中,學(xué)生已有一定的通過(guò)計(jì)算結(jié)果尋找計(jì)算規(guī)律的經(jīng)驗(yàn),通過(guò)進(jìn)一步探討,體會(huì)發(fā)現(xiàn)規(guī)律是學(xué)習(xí)捷徑,感受其中的樂(lè)趣。
    1、能借助計(jì)算器探求簡(jiǎn)單的數(shù)學(xué)規(guī)律。
    2、培養(yǎng)學(xué)生觀察、歸納、概括、推理的數(shù)學(xué)能力。
    3、讓學(xué)生感受到計(jì)算器給學(xué)習(xí)與生活帶來(lái)的便捷。
    重點(diǎn):
    1、能讓學(xué)生發(fā)現(xiàn)簡(jiǎn)單的數(shù)學(xué)規(guī)律。
    2、培養(yǎng)學(xué)生合作交流的學(xué)習(xí)方法。
    難點(diǎn):
    幫助學(xué)生培養(yǎng)觀察、推理的數(shù)學(xué)能力。
    一、激發(fā)學(xué)生興趣。
    1、小組合作。
    巡視,指導(dǎo)學(xué)生討論。
    2、小組討論,匯報(bào)。
    二、自主探索。
    出示例題10,讓學(xué)生觀察等式的變化,發(fā)現(xiàn)規(guī)律。
    1、觀察,發(fā)現(xiàn)。
    2、知識(shí)遷移。
    不用計(jì)算,用發(fā)現(xiàn)的規(guī)律直接寫(xiě)出后幾題的商。
    學(xué)生能應(yīng)用所發(fā)現(xiàn)的規(guī)律填出后幾題的商。
    敘述發(fā)現(xiàn)的規(guī)律。
    設(shè)計(jì)意圖【發(fā)揮學(xué)生的觀察、發(fā)現(xiàn)的自主能動(dòng)性】。
    3、小結(jié)。
    三、知識(shí)拓展。
    1、練習(xí)。
    出示題目:先找規(guī)律,再按規(guī)律填數(shù)。
    6×7=42。
    6.6×6.7=44.22。
    6.66×66.7=444.222。
    6.6666×6666.7=。
    6.66666×66666.7=。
    2、觀察式子所呈現(xiàn)的特征。
    設(shè)計(jì)意圖【培養(yǎng)學(xué)生知識(shí)遷移能力、應(yīng)用能力】。
    四、指導(dǎo)學(xué)生總結(jié)。
    設(shè)計(jì)意圖【培養(yǎng)學(xué)生歸納、概括、推理能力。因?yàn)橛?jì)算器顯示的數(shù)位有限?!?。
    五、作業(yè)。
    1÷0.1=1×10。
    3×100=3÷。
    設(shè)計(jì)意圖【感受數(shù)學(xué)美。】。
    板書(shū)設(shè)計(jì)。
    探索勾股定理教學(xué)設(shè)計(jì)篇三
    3、探求給定的事物中隱含的規(guī)律或變化趨勢(shì)。
    1、經(jīng)歷探索數(shù)與數(shù)之間、圖形與圖形之間的規(guī)律,驗(yàn)證規(guī)律的過(guò)程。
    2、培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
    1、培養(yǎng)學(xué)生合作意識(shí)。
    2、使學(xué)生在探索規(guī)律的過(guò)程中體會(huì)與日常生活的聯(lián)系,獲得成功體驗(yàn)。
    3、能用語(yǔ)言和其它方式把事物中的規(guī)律表示出來(lái)。
    1、探索、猜想、歸納、驗(yàn)證等能力的培養(yǎng)。
    2、發(fā)現(xiàn)數(shù)學(xué)規(guī)律。
    多媒體。
    一、激趣引入:一年之內(nèi)1對(duì)家鴿可以繁殖成多少對(duì)?
    二、新課探索:
    1、填表。
    師:(投影展示未完成的乘法表)這張乘法表中有好多的空白,你們能把它補(bǔ)充完整嗎?
    (生親自填乘法表,為發(fā)現(xiàn)其中的規(guī)律做準(zhǔn)備)。
    1)師:現(xiàn)在我們已經(jīng)填好了一張完整的乘法表,我們一起對(duì)照表,找一找數(shù)字之間有哪些規(guī)律?(展示完整的表)你們可以小組之間互相交流。
    (教師巡視參與討論)。
    2)交流發(fā)現(xiàn)。
    師:現(xiàn)在我們就一起來(lái)交流我們發(fā)現(xiàn)的規(guī)律,告訴教師你們都發(fā)現(xiàn)了哪些規(guī)律?
    生:從1這個(gè)表格出發(fā),得到的數(shù)字都是一樣的。
    師:這是什么規(guī)律呢?
    生:1和任何相乘都等于它本身。
    師:還有什么規(guī)律呢?
    (生各抒已見(jiàn))。
    3、找規(guī)律,填一填。
    1)8111417()23()。
    2)491625()4964。
    3)1827()125(),
    4)3691524()63()。
    (學(xué)生思考其中的規(guī)律,抽生回答,并說(shuō)明原因)。
    學(xué)生認(rèn)真思考,找出其中的規(guī)律,并嘗試用字母表示出來(lái)。
    5、為了迎接“六一”的到來(lái),我班準(zhǔn)備按如下的方式為教室掛上氣球。
    (抽生回答問(wèn)題,并說(shuō)明理由)。
    (抽生回答問(wèn)題,并說(shuō)明理由)。
    7、學(xué)生討論生活中還有哪些有規(guī)律的事情?(激發(fā)學(xué)生的學(xué)習(xí)興趣,體會(huì)的美)。
    8、解決引題問(wèn)題。
    三、本節(jié)小結(jié)。
    今天老師和大家一起探索了許多有趣的規(guī)律,同時(shí)也運(yùn)用發(fā)現(xiàn)的規(guī)律解決了生活中的許多問(wèn)題,在我們的樂(lè)園里還有許多更有趣的知識(shí)等待我們大家去繼續(xù)探索,希望大家做有心人,永攀高峰。
    探索勾股定理教學(xué)設(shè)計(jì)篇四
    教學(xué)過(guò)程:
    一、創(chuàng)設(shè)情境。
    出示有規(guī)律的葡萄,讓學(xué)生們猜一猜下一串會(huì)是什么顏色?說(shuō)說(shuō)你是怎么知道的?
    師:像葡萄這樣一串紫一串綠連續(xù)重復(fù)出現(xiàn)的,我們就說(shuō)它們是有規(guī)律的,有規(guī)律的排列幫大家猜準(zhǔn)了葡萄的顏色。其實(shí)在生活中對(duì)規(guī)律的排列還有很多,今天這節(jié)課我們繼續(xù)探索規(guī)律。(板書(shū):探索規(guī)律)。
    二、探索新知。
    1、出示超市開(kāi)業(yè)情境圖,讓同學(xué)們仔細(xì)觀察,圖中哪些東西的排列是有規(guī)律的?它們的排列有什么規(guī)律?小組合作,互相說(shuō)一說(shuō)吧!開(kāi)始。
    2、找同學(xué)說(shuō)一說(shuō)你發(fā)現(xiàn)了什么東西的排列是有規(guī)律的?
    學(xué)生可能回答:
    我發(fā)現(xiàn)彩旗的排列是有規(guī)律的。(有什么規(guī)律,你能說(shuō)說(shuō)嗎?)。
    彩旗的排列規(guī)律是……(多找同學(xué)說(shuō))(和同桌說(shuō)一說(shuō))。
    師:我們看彩旗的排列規(guī)律是一面紅色,一面黃色,一面藍(lán)色,三個(gè)一組連續(xù)重復(fù)出現(xiàn)的,也就是這一組的后面緊跟著又出現(xiàn)一組,又一組,這就是連續(xù)重復(fù)出現(xiàn)。
    (板書(shū):一組一組連續(xù)重復(fù))。
    師:我們找到了彩旗的排列規(guī)律,下面我們接著看,圖中還有哪些東西的排列是有規(guī)律的?
    (學(xué)生想說(shuō)哪個(gè)說(shuō)哪個(gè),提示學(xué)生用完整的話說(shuō))。
    三、游戲。
    師:好了,現(xiàn)在我們放松一下。
    做拍手、跺腳、伸手臂游戲。
    師:其實(shí)我們都發(fā)現(xiàn)了規(guī)律,知道后面怎么做了,我們把拍手、跺腳、伸手臂這一組動(dòng)作連著做了三次,我們就發(fā)現(xiàn)了規(guī)律,找到了規(guī)律,我們就知道怎么做了。其實(shí)一組固定的事物,他就是要連續(xù)重復(fù)出現(xiàn)三次,也就是至少要三次,三次可以,比三次多也可以,它們的排列是有規(guī)律的,我們就能找出規(guī)律,并且按規(guī)律接著去完成了。
    師:好了,等了這么久,我們?nèi)コ锌匆豢础?BR>    瞧,這些物品多整齊啊,它們的排列有規(guī)律嗎?(小組合作學(xué)習(xí),找同學(xué)匯報(bào))。
    五、闖一闖。
    (學(xué)生說(shuō)一道解釋為什么?)。
    第三關(guān)設(shè)計(jì)一幅有規(guī)律的圖形,請(qǐng)同學(xué)們拿出老師給大家準(zhǔn)備的學(xué)具,倒出里邊的學(xué)具,再拿出作業(yè)紙,把長(zhǎng)長(zhǎng)的雙面膠撕下來(lái),用這些學(xué)具在作業(yè)紙上擺出有規(guī)律的圖形。聽(tīng)明白了嗎?開(kāi)始。(你可以邊擺邊說(shuō))。
    找同學(xué)說(shuō)設(shè)計(jì)想法,并把作品粘貼在黑板上。
    六、欣賞。
    下面就請(qǐng)同學(xué)們開(kāi)動(dòng)你的小腦筋去想一想在我們身邊還有哪些有規(guī)律的事物?
    生:自由說(shuō)。(說(shuō)出具體的規(guī)律)。
    師:為了獎(jiǎng)勵(lì)大家,老師這也有幾幅有規(guī)律的圖片,我們一起看一看。
    最后,請(qǐng)同學(xué)們?cè)O(shè)計(jì)一幅有規(guī)律的圖畫(huà)。
    探索勾股定理教學(xué)設(shè)計(jì)篇五
    勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)。《20xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    本節(jié)課的教學(xué)目標(biāo)是:
    1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
    教學(xué)重點(diǎn)和難點(diǎn):
    應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
    把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
    根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄?,合作交流中分析?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類(lèi)討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
    在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
    第一環(huán)節(jié):情境引入。
    情景1:復(fù)習(xí)提問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
    設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)。
    設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)。
    情景3:課本引例(螞蟻怎樣走最近)。
    第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)。
    設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類(lèi)討論思想。
    第四環(huán)節(jié):議一議。
    設(shè)計(jì)意圖:
    第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
    1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
    2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題。
    3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
    第七環(huán)作業(yè)設(shè)計(jì):
    第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
    知識(shí)技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程、
    數(shù)學(xué)思考:在勾股定理的探索過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想、解決問(wèn)題:
    1、通過(guò)拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維、
    2、在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究結(jié)果、
    情感態(tài)度:
    1、通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情、
    2、在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神、
    2、難點(diǎn)是用拼圖的方法證明勾股定理、
    探索勾股定理教學(xué)設(shè)計(jì)篇六
    (2)了解互逆命題、互逆定理.
    2.目標(biāo)解析。
    目標(biāo)(2)能根據(jù)原命題寫(xiě)出它的逆命題,并了解原命題為真命題時(shí),逆命題不一定為真命題.
    三、教學(xué)問(wèn)題診斷分析。
    勾股定理的逆定理的證明是先作一個(gè)合適的直角三角形,再證明有已知條件的三角形和直角三角形全等等,這種證法學(xué)生不容易想到,難以理解,在教學(xué)時(shí)應(yīng)該注意啟發(fā)引導(dǎo).
    本課的教學(xué)難點(diǎn)是證明勾股定理的逆定理.
    1.創(chuàng)設(shè)問(wèn)題情境。
    師生活動(dòng):學(xué)生獨(dú)立回憶勾股定理,師生共同分析得出其題設(shè)和結(jié)論,教師引導(dǎo)指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關(guān)系.
    追問(wèn)1:你能把勾股定理的題設(shè)與結(jié)論交換得到一個(gè)新的命題嗎?
    師生活動(dòng):師生共同得出新的命題,教師指出其為勾股定理的逆命題.
    追問(wèn)2:“如果三角形三邊長(zhǎng)、b、c滿足,那么這個(gè)三角形是直角三角形.”能否把它作為判定直角三角形的依據(jù)呢?本節(jié)課我們一起來(lái)研究這個(gè)問(wèn)題.
    探索勾股定理教學(xué)設(shè)計(jì)篇七
    生:首先是任意兩邊大于第三邊。
    師:任意兩邊大于第三邊?
    生:任意兩邊之和大于第三邊。
    生:a加上b大于c。
    師:好的。a+bc,我們選擇兩條直角邊的和大于斜邊。非常好,還有沒(méi)有?
    生:還有斜邊一定是大于a或者b。
    生(齊):有!
    師:大家都很有信心。但是,直接去找它的數(shù)量關(guān)系是不是感到有些困難,無(wú)從入手?我給大家一些提示,嘗試學(xué)習(xí)一下古人用面積法來(lái)探究直角三角形三邊的數(shù)量關(guān)系。
    請(qǐng)同學(xué)們?cè)诜礁窦埳先切蝍bc外,畫(huà)一個(gè)以ac為一邊的正方形,畫(huà)一個(gè)以bc為邊的正方形;再求出這兩個(gè)正方形的面積。(如圖1--1)。
    (一名學(xué)生上黑板畫(huà)圖,教師巡視、指導(dǎo)。)學(xué)生畫(huà)好后。
    師:怎樣畫(huà)以ab為邊的正方形呢?(學(xué)生思考,部分學(xué)生竊竊私語(yǔ))。
    師:哪位同學(xué)愿意上來(lái)畫(huà)?(少數(shù)同學(xué)欲舉手,但還猶豫)。
    師:請(qǐng)李斯婷上黑板畫(huà)一下;。
    教師巡視中發(fā)現(xiàn):許多同學(xué)畫(huà)“以ab為邊的正方形”時(shí),正方形的另外兩個(gè)頂點(diǎn)不是格點(diǎn),使求面積發(fā)生困難。
    師:請(qǐng)同學(xué)們思考:以ab為邊的正方形的另兩個(gè)頂點(diǎn)是不是格點(diǎn)?為什么?
    學(xué)生遇到困難,教師及時(shí)點(diǎn)拔、指導(dǎo),這是學(xué)生自主學(xué)習(xí)過(guò)程中不可忽缺的,也是學(xué)生自主探究活動(dòng)取得實(shí)效,教師應(yīng)做的工作。)。
    師:請(qǐng)同學(xué)們思考:怎樣求出圖1-2中,以ab為一邊的正方形的面積?(由于不知道邊長(zhǎng),學(xué)生“冷場(chǎng)”)。
    師:假設(shè)每格的長(zhǎng)為1,請(qǐng)每組前后兩桌四位同學(xué)為一小組討論,然后我們一起交流!(課堂氣氛活躍、熱烈起來(lái)。約一分鐘后有學(xué)生舉手,教師和他進(jìn)行了個(gè)別交流,隨后舉手的同學(xué)又有一些。)。
    師:請(qǐng)同學(xué)們來(lái)交流思路與方法。
    生(阮穎旋):我用割補(bǔ)法。
    師:請(qǐng)把你的方法用圖展示一下。
    阮穎旋走上講臺(tái),教師用展示平臺(tái)投影出該生的示意圖(如圖3)。
    生(劉世航):我用補(bǔ)形法,在正方形各邊上補(bǔ)一個(gè)直角三角形在形外,變成一個(gè)大的正方形。
    師:請(qǐng)把你的方法用圖展示一下。
    生(劉世航):走上講臺(tái),教師用展示平臺(tái)投影出該生的示意圖(如圖4)。
    生(劉世航):等于25。
    師:圖2--2中,以pq為一邊的正方形的面積等于多少?
    生:等于4××4×2+22=20。
    師:圖2--2中,三個(gè)正方形的面積有什么關(guān)系?
    二、定理探索。
    師:請(qǐng)同學(xué)們?cè)趫D5中,考察各直角三角形周?chē)娜齻€(gè)正方形的面積之間的關(guān)系。(學(xué)生獨(dú)立操作,教師巡視。)。
    生(李梅):大正方形減小正方形等于第三個(gè)正方形。
    生(潔婷):兩個(gè)小正方形相加等于大正方形。
    生(炯輝):兩個(gè)小正方形面積相加等于大正方形面積。
    ……。
    生(李梅):兩邊平方和等于第三邊的平方。
    生(潔婷):兩直角邊的平方和等于斜邊的平方。
    師:你真棒!這就是在數(shù)學(xué)史上具有里程碑意義、非常著名的勾股定理(板書(shū)課題),即:直角三角形中,兩直角邊的平方和等于斜邊的平方。(投影)但這僅僅是在幾個(gè)直角三角形(有具體數(shù)值)中發(fā)現(xiàn)的,在任意一個(gè)直角三角形(斜邊為c、兩直角邊為a、b)中是否仍成立(a2+b2=c2)呢?(投影)。
    師:請(qǐng)同學(xué)們用課前準(zhǔn)備好的四個(gè)全等的直角三角形在桌面上拼圖,圍成一個(gè)正方形可以嗎?(教師巡視)。
    師:比一比,誰(shuí)的圖形漂亮?(教師繼續(xù)巡視)。
    師:誰(shuí)愿把自己拼(圍)得到的優(yōu)美圖案與大家共享?(同學(xué)們紛紛舉手。)。
    師:同學(xué)們自由上臺(tái)展示(可一起上臺(tái))。
    教師拿出課前準(zhǔn)備的“雙面膠”供學(xué)生在黑板上粘貼。
    生(潘思婷):面積為c2+2ab。
    師:介紹一下算法。
    生(潘思婷):中間小正方形的面積為c2,再加四個(gè)直角三角形的面積就行了。
    師:還有什么不同方法呢?
    生(宋彬賢):大正方形的邊長(zhǎng)就是a+b,所以大正方形的面積就等于(a+b)2。
    生(潘思婷):c2+2ab=(a+b)2。
    師:能簡(jiǎn)化嗎?
    生(潘思婷):能,結(jié)果是c2=a2+b2。
    生(齊):哇!就是勾股定理哎。學(xué)生的臉上流露出欣喜、愉悅的表情。這就是成就感!是教師課堂教學(xué)的最大成功。
    師:剛才我們通過(guò)圖6的面積計(jì)算,驗(yàn)證了勾股定理;能否在圖7中,通過(guò)面積計(jì)算,驗(yàn)證勾股定理?圖7中,大正方形的面積=c2或4(ab)+(a-b)2.步驟類(lèi)似于圖6中的驗(yàn)證過(guò)程。
    師:至此,我們已用兩種方法證明了勾股定理,從勾股定理的發(fā)現(xiàn)到今,已有了400多種證明方法,同學(xué)們課后有興趣可查閱有關(guān)資料。
    三、小結(jié)。
    師:什么樣的三角形適合用勾股定理?如何用代數(shù)式表示勾股定理?你能用一種方法證明勾股定理?(鄭曉珊、蘇俊輝在黑板做)。
    生:(齊)點(diǎn)評(píng)。
    (布置作業(yè):書(shū)后69頁(yè)第1,2,3題)。
    (鈴響,圓滿完成教學(xué)任務(wù))師生下課。
    探索勾股定理教學(xué)設(shè)計(jì)篇八
    1、知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。
    2、過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
    3、情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育。
    知識(shí)點(diǎn)1:(已知兩邊求第三邊)。
    1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為xx。
    2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是xx。
    3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長(zhǎng)?
    知識(shí)點(diǎn)2:
    利用方程求線段長(zhǎng)。
    (1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
    (2)de與ce的位置關(guān)系。
    (3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
    利用方程解決翻折問(wèn)題。
    3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長(zhǎng)。
    談一談你這節(jié)課都有哪些收獲?
    本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的'有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。
    探索勾股定理教學(xué)設(shè)計(jì)篇九
    1、讓學(xué)生通過(guò)對(duì)的圖形創(chuàng)造、觀察、思考、猜想、驗(yàn)證等過(guò)程,體會(huì)勾股定理的產(chǎn)生過(guò)程。
    2、通過(guò)介紹我國(guó)古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學(xué)生為祖國(guó)的復(fù)興努力學(xué)習(xí)。
    3、培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)分析和數(shù)學(xué)推理證明的能力。
    探索勾股定理教學(xué)設(shè)計(jì)篇十
    一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識(shí)和方法)。
    二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時(shí)對(duì)大家進(jìn)行思想教育。
    通過(guò)本節(jié)課的教學(xué),讓我更深刻地認(rèn)識(shí)到:
    3.要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會(huì)。我相信:只要堅(jiān)持不懈地這樣去做,不但能很好地實(shí)施新課改,實(shí)現(xiàn)教育的本來(lái)目標(biāo),而且也一定能讓學(xué)生“考出”好的成績(jī)。
    探索勾股定理教學(xué)設(shè)計(jì)篇十一
    勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    本節(jié)課的教學(xué)目標(biāo)是:
    1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
    教學(xué)重點(diǎn)和難點(diǎn):
    應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
    把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
    二、教學(xué)設(shè)想。
    根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄?,合作交流中分析?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類(lèi)討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
    在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的`學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
    三、教學(xué)過(guò)程分析。
    第一環(huán)節(jié):情境引入。
    情景1:復(fù)習(xí)提問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
    設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)。
    設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)。
    情景3:課本引例(螞蟻怎樣走最近)。
    第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)。
    設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類(lèi)討論思想。
    第四環(huán)節(jié):議一議。
    設(shè)計(jì)意圖:
    第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
    1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
    2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題。
    3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
    第七環(huán)作業(yè)設(shè)計(jì):
    第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
    探索勾股定理教學(xué)設(shè)計(jì)篇十二
    1、知識(shí)目標(biāo):
    (2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;。
    2、能力目標(biāo):
    (1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;。
    (2)通過(guò)問(wèn)題的解決,提高學(xué)生的運(yùn)算能力。
    3、情感目標(biāo):
    (1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;。
    (2)通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
    教學(xué)難點(diǎn):通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
    教學(xué)用具:直尺,微機(jī)。
    教學(xué)方法:以學(xué)生為主體的討論探索法。
    探索勾股定理教學(xué)設(shè)計(jì)篇十三
    這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
    2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。
    3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。
    4、通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
    本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。
    教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分。
    學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
    首先創(chuàng)設(shè)這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?問(wèn)題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問(wèn)題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。
    1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將c劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
    2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。
    3、給出一個(gè)邊長(zhǎng)為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。
    1、歸納通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。
    2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測(cè)量、計(jì)算來(lái)驗(yàn)證結(jié)論的正確性。這一過(guò)程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育。
    讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。
    主要通過(guò)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
    課本p6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開(kāi)放題。
    1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
    2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。
    3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問(wèn)題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開(kāi)放題,大致思路是在已畫(huà)出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。
    4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開(kāi),既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。
    探索勾股定理教學(xué)設(shè)計(jì)篇十四
    教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的“形”的特點(diǎn),轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。
    學(xué)生分析:
    1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
    2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
    設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的自豪感和探究創(chuàng)新的精神。
    教學(xué)目標(biāo):
    1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
    2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的'文化價(jià)值。
    3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。
    4、欣賞設(shè)計(jì)圖形美。
    教學(xué)準(zhǔn)備階段:
    學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
    (一)引入
    同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)
    (二)實(shí)驗(yàn)探究
    設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:
    (討論難點(diǎn):以斜邊為邊的正方形的面積找法)
    交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)
    (三)探索所得結(jié)論的正確性
    當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?
    1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)
    在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:
    如圖2(用補(bǔ)的方法說(shuō)明)
    師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門(mén)就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為“畢達(dá)哥拉斯定理”。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2―1,欣賞圖片)
    如圖3(用割的方法去探索)
    師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前20xx年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用“勾三、股四、弦五”測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為“勾股定理”。(點(diǎn)題)
    20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。(見(jiàn)課本50頁(yè)彩圖,欣賞圖片)
    如圖4(構(gòu)造新圖形的方法去探索)
    本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:
    1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。
    2、探索勾股定理的運(yùn)用。
    探索勾股定理教學(xué)設(shè)計(jì)篇十五
    知識(shí)與技能:
    了解勾股定理的一些證明方法,會(huì)簡(jiǎn)單應(yīng)用勾股定理解決問(wèn)題。
    在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過(guò)程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
    通過(guò)對(duì)我國(guó)古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
    1、創(chuàng)設(shè)情境。
    師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過(guò)今天的學(xué)習(xí),就能理解會(huì)徽?qǐng)D案的含義。
    設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽說(shuō)起,設(shè)置懸念,引入課題。
    觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界。
    追問(wèn):由這三個(gè)正方形的邊長(zhǎng)構(gòu)成的等腰直角三角形三條邊長(zhǎng)之間又有怎么樣的關(guān)系?
    師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長(zhǎng)的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
    設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論。
    問(wèn)題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測(cè)在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
    師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長(zhǎng)的正方形的面積,可由師生共同總結(jié)得出可以通過(guò)割、補(bǔ)兩種方法,求出其面積。
    探索勾股定理教學(xué)設(shè)計(jì)篇十六
    作為一名數(shù)學(xué)教師,如何才能引領(lǐng)一年級(jí)學(xué)生走進(jìn)數(shù)學(xué),培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣呢?我想,應(yīng)該從孩子們接觸到的真正意義上的第一堂數(shù)學(xué)課開(kāi)始,用心地為孩子們翻開(kāi)這精彩的第一頁(yè)。于是,我把各種教學(xué)常規(guī)、學(xué)生的實(shí)際情況以及相應(yīng)的數(shù)學(xué)知識(shí)進(jìn)行有機(jī)整合,精心設(shè)計(jì)了以下兩個(gè)環(huán)節(jié),和大家一起共享。
    環(huán)節(jié)一:我和數(shù)學(xué)書(shū)交朋友。
    1、認(rèn)一認(rèn)數(shù)學(xué)書(shū)。(片段摘要)師:小朋友,這一節(jié)是數(shù)學(xué)課,那你認(rèn)識(shí)數(shù)學(xué)書(shū)嗎?
    師:(拿數(shù)學(xué)書(shū)演示)請(qǐng)小朋友仔細(xì)觀察數(shù)學(xué)書(shū)的封面上都有些什么呢?他們?cè)诟墒裁??(生自由說(shuō),重點(diǎn)引導(dǎo)學(xué)生說(shuō)出有幾個(gè)小朋友在干什么。)。
    師:你能找到“數(shù)學(xué)”兩個(gè)字嗎?誰(shuí)會(huì)指著讀一讀?你還認(rèn)識(shí)封面上的哪些字呢?(師可帶領(lǐng)學(xué)生認(rèn)一認(rèn),讀一讀,如:一年級(jí),上冊(cè)等等。)。
    反思:剛上一年級(jí)的小朋友,通過(guò)三年的幼兒園學(xué)習(xí),已經(jīng)掌握了一些知識(shí),但在孩子們的思想中對(duì)語(yǔ)文、數(shù)學(xué)、音樂(lè)等課程的區(qū)分并不清楚,也從未接觸過(guò)具體的課本,于是,在這真正意義上的第一堂數(shù)學(xué)課上,指導(dǎo)他們來(lái)認(rèn)一認(rèn)數(shù)學(xué)書(shū)是很有必要的。實(shí)踐也證明,通過(guò)此環(huán)節(jié)的設(shè)計(jì),在后來(lái)的教學(xué)中,我很難發(fā)現(xiàn)學(xué)生有拿錯(cuò)數(shù)學(xué)課本的現(xiàn)象。
    2、聞一聞數(shù)學(xué)書(shū)。我一直保留著一個(gè)習(xí)慣,不,應(yīng)該是一種癖好,就是一拿到新書(shū),就會(huì)不自覺(jué)地隨手一翻,然后用鼻子靠近書(shū)頁(yè),去聞一聞新書(shū)所特有的那種濃濃的油墨香味。細(xì)細(xì)想來(lái),這個(gè)癖好是從何而起?記憶最深處,還是和這群學(xué)生一樣大時(shí),跟幾個(gè)同齡人背著一大包新書(shū)聚在一起,用隔年的年歷紙小心翼翼地包書(shū),期間,就會(huì)不時(shí)聞到一縷縷幽幽的油墨香味,漸漸地,便記住并喜歡上了這種獨(dú)特的味道。無(wú)獨(dú)有偶,跟同事或朋友談起這個(gè)話題,他們竟然也有著同樣的感受。于是,我堅(jiān)信,讓學(xué)生來(lái)聞一聞新書(shū)的味道是學(xué)習(xí)的開(kāi)始,讓他們?cè)谶@種濃濃的油墨香味中感受到要學(xué)習(xí)新知的美好憧憬,并教育學(xué)生要愛(ài)惜書(shū)本,等把這本書(shū)都學(xué)完了,再讓他們來(lái)問(wèn)聞聞它的味道。
    3、翻一翻數(shù)學(xué)書(shū)。翻書(shū)最基本的要求是要認(rèn)識(shí)頁(yè)碼,還要準(zhǔn)確地知道數(shù)字的排列規(guī)律。一年級(jí)的小朋友基本上都會(huì)熟練地從1數(shù)到100,也會(huì)比較一些數(shù)字的大小。根據(jù)這一情況,我設(shè)計(jì)了一個(gè)翻書(shū)的小游戲“比誰(shuí)找得快”。
    (片段摘要)。
    師:請(qǐng)小朋友把書(shū)翻到第8頁(yè)。
    師:你是怎樣找到第8頁(yè)的?
    生1:我是一頁(yè)一頁(yè)翻過(guò)去的。
    生2:因?yàn)榈?頁(yè)在很前面,我就先翻一點(diǎn)點(diǎn),看看是不是,我翻到的是第10頁(yè),第8頁(yè)在前面,我就再往前翻過(guò)一頁(yè)。
    師:你真會(huì)動(dòng)腦筋,想的方法很好,鼓掌表?yè)P(yáng)。小朋友們,看來(lái)翻書(shū)也有很大的學(xué)問(wèn)呢。接著,我有連續(xù)地變換著方式來(lái)讓學(xué)生找頁(yè)數(shù)。
    -反思:備課時(shí),這一環(huán)節(jié)的設(shè)計(jì)旨在讓學(xué)生學(xué)會(huì)翻書(shū),認(rèn)識(shí)頁(yè)碼,知道數(shù)字的大小,也便于自己能更好地熟悉和了解學(xué)生對(duì)已有知識(shí)的掌握情況。但學(xué)生的實(shí)際反應(yīng)太讓我驚訝了,原來(lái)他們已經(jīng)對(duì)數(shù)字有把如此深刻的理解。而且在具體的操作中有部分同學(xué)已經(jīng)有了估計(jì)的意識(shí),對(duì)于具體的數(shù)字頁(yè)碼,他們沒(méi)有一頁(yè)一頁(yè)地去翻,而是會(huì)用“先翻過(guò)一些,再比較”的方法來(lái)快速找到教師所要求的頁(yè)碼,這是一條捷徑,這條捷徑就是學(xué)生對(duì)于認(rèn)識(shí)數(shù)字的已有經(jīng)驗(yàn),也是教師進(jìn)行再次教學(xué)的一個(gè)起點(diǎn),教師若摸不清學(xué)生原有的`知識(shí)基礎(chǔ),也就找不到再次教學(xué)時(shí)的這個(gè)關(guān)鍵起點(diǎn),更不能抓住學(xué)生學(xué)習(xí)的生長(zhǎng)點(diǎn),那樣在以后的教學(xué)中,必將多走重復(fù)路、冤枉路。
    環(huán)節(jié)二:我的“新家”在哪里?
    1、認(rèn)一認(rèn)教室。師:小朋友,你知道自己在哪個(gè)班嗎?
    (開(kāi)學(xué)初,經(jīng)常有學(xué)生會(huì)走錯(cuò)教室,此設(shè)計(jì)旨在讓學(xué)生認(rèn)清并記住自己的班級(jí)所在地。)。
    師:小朋友,這個(gè)教室就是你們?cè)趯W(xué)校里的“新家”,看一看,我們的“新家”布置得怎樣?你會(huì)按著前后左右的順序來(lái)說(shuō)一說(shuō)嗎?(鼓勵(lì)并引導(dǎo)學(xué)生按一定的順序來(lái)敘述)。
    2、找一找位置。教師先介紹教室課桌的擺放,告訴學(xué)生什么叫“一排”,什么叫“一組”,然后舉例:×××坐在第3排,×××坐在第2組第5個(gè)。讓學(xué)生學(xué)著說(shuō)說(shuō)自己的位置。
    變換方式:說(shuō)出你好朋友的位置,讓大家來(lái)猜一猜。
    (這一環(huán)節(jié)的設(shè)計(jì)旨在讓學(xué)生認(rèn)識(shí)并喜歡自己的教室,熟悉身邊的同學(xué)、老師,在交流中培養(yǎng)學(xué)生的觀察能力和語(yǔ)言表達(dá)能力。)。
    探索勾股定理教學(xué)設(shè)計(jì)篇十七
    1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。
    2.過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
    3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
    一、知識(shí)點(diǎn)講解。
    知識(shí)點(diǎn)1:(已知兩邊求第三邊)。
    1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為_(kāi)____________。
    2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是______________。
    3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長(zhǎng)?
    知識(shí)點(diǎn)2:
    利用方程求線段長(zhǎng)。
    (1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
    (2)de與ce的位置關(guān)系。
    (3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
    利用方程解決翻折問(wèn)題。
    3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長(zhǎng)。
    5、折疊矩形abcd的一邊ad,折痕為ae,且使點(diǎn)d落在bc邊上的點(diǎn)f處,已知ab=8cm,bc=10cm,以b點(diǎn)為原點(diǎn),bc為x軸,ba為y軸建立平面直角坐標(biāo)系。求點(diǎn)f和點(diǎn)e坐標(biāo)。
    6、邊長(zhǎng)為8和4的矩形oabc的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對(duì)角線ac折疊后,點(diǎn)b落在第四象限b1處,設(shè)b1c交x軸于點(diǎn)d,求(1)三角形adc的面積,(2)點(diǎn)b1的坐標(biāo),(3)ab1所在的直線解析式.
    知識(shí)點(diǎn)3:判斷一個(gè)三角形是否為直角三角形間接給出三邊的長(zhǎng)度或比例關(guān)系。
    1.(1).若一個(gè)三角形的周長(zhǎng)12cm,一邊長(zhǎng)為3cm,其他兩邊之差為1cm,則這個(gè)三角形是___________。
    (2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是____________。
    (3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。
    二、課堂小結(jié)。
    談一談你這節(jié)課都有哪些收獲?
    三、課堂練習(xí)以上習(xí)題。
    四、課后作業(yè)卷子。
    本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。
    針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):
    一、復(fù)習(xí)引入。
    對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡(jiǎn)短明了,花費(fèi)時(shí)間短。
    二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法。
    活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問(wèn)題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門(mén)內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書(shū)寫(xiě)板書(shū)。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。
    活動(dòng)二:解決例二梯子滑落的問(wèn)題。學(xué)生自主討論解決問(wèn)題,書(shū)寫(xiě)過(guò)程,之后投影學(xué)生書(shū)寫(xiě)過(guò)程,教師與學(xué)生一起合作修改解題過(guò)程。
    活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,然后利用勾股定理解決問(wèn)題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過(guò)程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
    二、鞏固練習(xí),熟練新知。
    通過(guò)測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的經(jīng)驗(yàn)和感受。
    在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問(wèn)題:
    1.由于本班學(xué)生能力的差距,本想著通過(guò)學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問(wèn)題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來(lái)。
    2.課堂上質(zhì)疑追問(wèn)要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。
    3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。
    探索勾股定理教學(xué)設(shè)計(jì)篇十八
    一、教案背景概述:
    教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的“形”的特點(diǎn),轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。
    學(xué)生分析:
    1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
    2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
    設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
    教學(xué)目標(biāo):
    1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
    2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。
    3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。
    4、欣賞設(shè)計(jì)圖形美。
    二、教案運(yùn)行描述:
    教學(xué)準(zhǔn)備階段:
    學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
    三、教學(xué)流程:
    (一)引入。
    同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)。
    (二)實(shí)驗(yàn)探究。
    設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:
    (討論難點(diǎn):以斜邊為邊的正方形的面積找法)。
    交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
    (三)探索所得結(jié)論的正確性。
    當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?
    1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)。
    在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:
    如圖2(用補(bǔ)的方法說(shuō)明)。
    師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門(mén)就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為“畢達(dá)哥拉斯定理”。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2―1,欣賞圖片)。
    如圖3(用割的方法去探索)。
    師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用“勾三、股四、弦五”測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為“勾股定理”。(點(diǎn)題)。
    20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。(見(jiàn)課本50頁(yè)彩圖,欣賞圖片)。
    如圖4(構(gòu)造新圖形的方法去探索)。
    四、總結(jié):
    本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:
    五、作業(yè):
    1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。
    探索勾股定理教學(xué)設(shè)計(jì)篇十九
    教學(xué)目標(biāo)具體要求:
    1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。
    2.過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
    3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
    重點(diǎn):
    難點(diǎn):
    教案設(shè)計(jì)。
    一、知識(shí)點(diǎn)講解。
    知識(shí)點(diǎn)1:(已知兩邊求第三邊)。
    1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為xx。
    2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是xx。
    3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長(zhǎng)?
    知識(shí)點(diǎn)2:
    利用方程求線段長(zhǎng)。
    (1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
    (2)de與ce的位置關(guān)系。
    (3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
    利用方程解決翻折問(wèn)題。
    3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長(zhǎng)。
    二、課堂小結(jié)。
    談一談你這節(jié)課都有哪些收獲?
    三、課堂練習(xí)以上習(xí)題。
    四、課后作業(yè)卷子。
    本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。