農(nóng)學(xué)門(mén)類(lèi)聯(lián)考書(shū)(三篇)

字號(hào):

    無(wú)論是身處學(xué)校還是步入社會(huì),大家都嘗試過(guò)寫(xiě)作吧,借助寫(xiě)作也可以提高我們的語(yǔ)言組織能力。寫(xiě)范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來(lái)看看吧
    農(nóng)學(xué)門(mén)類(lèi)聯(lián)考書(shū)篇一
    2017考研招生簡(jiǎn)章
    2017考研專(zhuān)業(yè)目錄
    2017考研報(bào)名
    2017考研報(bào)名時(shí)間
    2017考研報(bào)名流程
    農(nóng)學(xué)門(mén)類(lèi)聯(lián)考書(shū)篇二
    一、函數(shù)、極限、連續(xù)
    考試內(nèi)容
    函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立
    數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較極限的四則運(yùn)算極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個(gè)重要極限:
    函數(shù)連續(xù)的概念函數(shù)間斷點(diǎn)的類(lèi)型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
    考試要求
    1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題中的函數(shù)關(guān)系.
    2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
    3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
    4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.
    5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念.
    6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法.
    7.理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法,了解無(wú)窮大量的概念及其與無(wú)窮小量的關(guān)系.
    8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判斷函數(shù)間斷點(diǎn)的類(lèi)型.
    9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).
    二、一元函數(shù)微分學(xué)
    考試內(nèi)容
    導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)微分中值定理洛必達(dá)(l’hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線函數(shù)的最大值與最小值
    考試要求
    1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程.
    2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)的導(dǎo)數(shù).
    3.了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法.
    4.了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會(huì)求函數(shù)的微分.
    5.理解羅爾(rolle)定理和拉格朗日(lagrange)中值定理,掌握這兩個(gè)定理的簡(jiǎn)單應(yīng)用.
    6.會(huì)用洛必達(dá)法則求極限.
    7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)用.
    三、一元函數(shù)積分學(xué)
    考試內(nèi)容
    原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)與其導(dǎo)數(shù)牛頓-萊布尼茨(newton-leibniz)公式不定積分和定積分的換元積分方法與分部積分法反常(廣義)積分定積分的應(yīng)用
    考試要求
    1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)與基本積分公式,掌握不定積分的換元積分法與分部積分法.
    2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式,以及定積分的換元積分法與分部積分法.
    3.會(huì)利用定積分計(jì)算平面圖形的面積和旋轉(zhuǎn)體的體積.
    4.了解無(wú)窮區(qū)間上的反常積分的概念,會(huì)計(jì)算無(wú)窮區(qū)間上的反常積分.
    四、多元函數(shù)微積分學(xué)
    考試內(nèi)容
    多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法二階偏導(dǎo)數(shù)全微分多元函數(shù)的極值和條件極值二重積分的概念、基本性質(zhì)和計(jì)算
    考試要求
    1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
    2.了解二元函數(shù)的極限與連續(xù)的概念.
    3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).
    4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件.
    5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)).
    五、常微分方程
    考試內(nèi)容
    常微分方程的基本概念變量可分離的微分方程一階線性微分方程
    考試要求
    1.了解微分方程及其階、解、通解、初始條件和特解等概念.
    2.掌握變量可分離的微分方程和一階線性微分方程的求解方法.
    小編精心為您推薦:農(nóng)學(xué)門(mén)類(lèi)聯(lián)考書(shū)篇三
    一、試卷滿分及考試時(shí)間
    試卷滿分為150分,考試時(shí)間為180分鐘.
    二、答題方式
    答題方式為閉卷、筆試.
    三、試卷內(nèi)容結(jié)構(gòu)
    高等數(shù)學(xué)56%
    線性代數(shù)22%
    概率論與數(shù)理統(tǒng)計(jì)22%
    四、試卷題型結(jié)構(gòu)
    單項(xiàng)選擇題8小題,每小題4分,共32分
    填空題6小題,每小題4分,共24分
    解答題(包括證明題)9小題,共94分
    ⅳ.考查內(nèi)容