總結(jié)是對生活的總結(jié),通過總結(jié)可以幫助我們更好地發(fā)現(xiàn)和體會生活的樂趣和意義。時間是不可逆轉(zhuǎn)的流逝,我們應(yīng)該合理利用時間,追求自己的價值和成就。以下是專家對于如何提高工作效率的建議,供大家參考。
人教版函數(shù)的教學(xué)設(shè)計篇一
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
這節(jié)課,我們來學(xué)習(xí)二次函數(shù)的三種表達方式。
二、師生共同研究形成概念
1、用函數(shù)表達式表示
做一做書本p56矩形的周長與邊長、面積的關(guān)系
鼓勵學(xué)生間的互相交流,一定要讓學(xué)生理解周長與邊長、面積的關(guān)系。
比較全面、完整、簡單地表示出變量之間的關(guān)系
2、用表格表示
做一做書本p56填表
由于運算量比較大,學(xué)生的運算能力又一般,因此,建議把這個表格的一部分?jǐn)?shù)據(jù)先給出來,讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系
3、用圖象表示
議一議書本p56議一議
關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時,可適當(dāng)多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
做一做書本p57
4、三種方法對比
議一議書本p58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點,它們服務(wù)于不同的需要。
在對三種表示方式進行比較時,學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇二
《函數(shù)的奇偶性》這節(jié)課采用的是我校712課堂模式,主要給老師們展示教學(xué)環(huán)節(jié)。
在《函數(shù)的奇偶性》這節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運算,驗證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個方面的問題:
1、幻燈片的設(shè)計。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計,在出現(xiàn)某些字或者數(shù)字時應(yīng)直接出現(xiàn),而不要設(shè)計成動畫的形式,以免學(xué)生分散注意力。
2、學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3、例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學(xué)生仿照。
4、語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5、教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6、教案設(shè)計的完整。
在本節(jié)課教學(xué)中我因為考慮到有幻燈片而沒有在教案中設(shè)計“板書設(shè)計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計“板書設(shè)計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
人教版函數(shù)的教學(xué)設(shè)計篇三
二、目標(biāo)和目標(biāo)解析。
2.零點知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。
三、教學(xué)問題診斷分析。
四、教學(xué)支持條件分析。
(一)引入課題。
問題引入:求方程3x2+6x-1=0的實數(shù)根。
變式:解方程3x5+6x-1=0的實數(shù)根.(一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運算,乘方與開方等運算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個方程的問題。)。
設(shè)計意圖:從學(xué)生的認知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動問題進一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點明本節(jié)課的目標(biāo)。
人教版函數(shù)的教學(xué)設(shè)計篇四
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個重要內(nèi)容,它不僅與現(xiàn)實生活中的對稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)打下了堅實的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學(xué)重點是:函數(shù)的奇偶性及其幾何意義。
2、本課時的教學(xué)難點是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標(biāo)。
1、知識與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學(xué)生體會數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析。
1、教學(xué)方法:啟發(fā)引導(dǎo)式。
結(jié)合本章實際,教材簡單易懂,重在應(yīng)用、解決實際問題,本節(jié)課準(zhǔn)備采用“引導(dǎo)發(fā)現(xiàn)法”進行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會學(xué)習(xí)。
三、教輔手段。
四、教學(xué)過程。
為了達到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進行了系統(tǒng)地規(guī)劃,設(shè)計了五個主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標(biāo)有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的.痕跡,然后將紙展開。觀察坐標(biāo)喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標(biāo)有什么特點。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個函數(shù)圖象的對稱性如何。
給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對稱呢此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律。
借助課件演示,學(xué)生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內(nèi)是否對所有的x,都有類似的情況借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。
思考:由于對任一x,必須有一-x與之對應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點對稱。根據(jù)以上特點,請學(xué)生用完整的語言敘述定義,同時給出板書:
(1)函數(shù)f(x)的定義域為a,且關(guān)于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)。
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強調(diào)注意點:“定義域關(guān)于原點對稱”的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點:既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進行課堂鞏固,強調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點對稱,二是定義域雖關(guān)于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進行當(dāng)堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)。
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè):課本p39習(xí)題1、3(a組)第6題,b組第3。
五、板書設(shè)計。
人教版函數(shù)的教學(xué)設(shè)計篇五
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學(xué)生更形象的看到對稱。例題展現(xiàn)、問題展現(xiàn),節(jié)約了教師黑板抄題的時間,提高了課堂效率。當(dāng)然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內(nèi)容呈現(xiàn)在課件上才能真正體現(xiàn)多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時候就要效率高,有一些內(nèi)容就不用放入課件,如:例題的解題過程和在黑板上必須呈現(xiàn)的內(nèi)容不用再搬到課件上去,否則學(xué)生也不知道該看黑板還是課件,增大了學(xué)生學(xué)習(xí)負擔(dān),降低了學(xué)習(xí)效率。所以我在課件制作中,注重內(nèi)容與黑板板書不重疊。
在多媒體應(yīng)用上,我們要注重區(qū)分什么該用,什么不該用以確實提高課堂效率。
設(shè)計教學(xué)設(shè)計的過程中,充分考慮課程標(biāo)準(zhǔn)和教材的要求來確定教學(xué)目標(biāo),把握學(xué)生的學(xué)習(xí)水平,在教學(xué)中給學(xué)生充分思考的時間和空間,尊重學(xué)生的思想方法,點評優(yōu)化學(xué)生的學(xué)習(xí)收獲,充分調(diào)動學(xué)生探究的積極性,培養(yǎng)學(xué)生學(xué)習(xí)的興趣。在教學(xué)中不變的是先進的教學(xué)理念和合理的教學(xué)設(shè)計。放手給學(xué)生們自主學(xué)和研究就是我們應(yīng)該大膽做的。從學(xué)生的角度設(shè)計教學(xué),才能體現(xiàn)以學(xué)生為本!
三.做到重點突出和難點突破。
如何重點突出和難點突破是教學(xué)技術(shù)、教學(xué)專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時都必須精心設(shè)計,那樣的課堂才能高效,學(xué)生才會喜歡。
在本節(jié)課中重點之一是函數(shù)奇偶性概念的理解,從實例引入,讓學(xué)生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質(zhì)讓學(xué)生給出概念,老師總結(jié),再讓學(xué)生回頭感悟,有利于學(xué)生真正理解概念和應(yīng)用概念。如何理解0再定義域內(nèi)時,奇函數(shù)在0處的值為0時本節(jié)課難點之一,從一條辨析題到處問題,在研究問題,自然!同時激發(fā)了學(xué)生探究的欲望,學(xué)得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學(xué)素養(yǎng)、技術(shù),才能真正提高咱們的教學(xué)理念。
人教版函數(shù)的教學(xué)設(shè)計篇六
這節(jié)課的內(nèi)容是八年級(第二學(xué)期)第二十章“一次函數(shù)”的第二節(jié)“一次函數(shù)的圖像”的第三課時,內(nèi)容是結(jié)合一次函數(shù)圖像研究一次函數(shù)與一元一次方程以及一元一次不等式之間的關(guān)系。
學(xué)生在本節(jié)課之前已經(jīng)學(xué)習(xí)過一次函數(shù)及其圖像,一元一次方程,一元一次不等式,通過本節(jié)的教學(xué),可加強這些知識間的聯(lián)系,發(fā)揮函數(shù)對相關(guān)內(nèi)容的統(tǒng)領(lǐng)作用,能用一次函數(shù)可以把以前學(xué)習(xí)的方程和不等式等不同的數(shù)學(xué)概念統(tǒng)一起來,從而深化學(xué)生對方程與不等式的理解,使新舊知識融會貫通,促進學(xué)生良好知識結(jié)構(gòu)的形成。同時也為進一步學(xué)習(xí)“三個二次之間的關(guān)系”打下基礎(chǔ)。
二、教學(xué)目標(biāo)分析。
1.能借助一次函數(shù)的圖像認識一元一次方程的解、一元一次不等式的解集,理解一元一次方程、一元一次不等式與一次函數(shù)之間的內(nèi)在聯(lián)系。
2.經(jīng)歷由具體到抽象、由直觀感知到得出一般結(jié)論的認知過程,體會數(shù)形結(jié)合的數(shù)學(xué)思想,提高由圖像獲取有用信息的能力以及分析與解決問題的能力。
教學(xué)重點、難點。
能以函數(shù)的觀點認識一元一次方程的解、一元一次不等式的解集。
三、教學(xué)問題診斷。
在學(xué)習(xí)本課內(nèi)容時,學(xué)生已經(jīng)掌握了一元一次方程,一元一次不等式,一次函數(shù)等知識,會畫一次函數(shù)的圖像,會用代數(shù)方法解一元一次不等式。大部分的學(xué)生正在艱難的由形象思維向抽象思維發(fā)展。觀察力偏重于第一印象,仍用自己原有的認識與知識結(jié)構(gòu)作出判斷,不會自覺利用直角坐標(biāo)系從函數(shù)的這種數(shù)形對應(yīng)角度出發(fā)考慮,很難利用圖像中的信息分析和解決問題?;谏鲜銮闆r,預(yù)測學(xué)生在理解一次函數(shù)與一元一次不等式之間的關(guān)系時會產(chǎn)生困難。
四、教法特點。
1.突出數(shù)形結(jié)合的數(shù)學(xué)思想。
2.創(chuàng)設(shè)實際問題情景。
數(shù)學(xué)來源于生活,數(shù)學(xué)應(yīng)用于生活。世博是今年大家十分關(guān)注的一個話題,許多學(xué)生已經(jīng)是多次進入園區(qū)參觀,大溫度計上的數(shù)學(xué)問題來自于學(xué)生真實的日常生活,有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,大家在不知不覺中進入了今天學(xué)習(xí)的內(nèi)容。
在溫度計的背景下,提出溫度的兩種度量制度。圍繞這一情景提出了如下三個問題:第一個問題是畫出一次函數(shù)圖像,這既復(fù)習(xí)了舊知,又為新知的學(xué)習(xí)創(chuàng)造了條件;第二個問題是當(dāng)華氏度為0時,攝氏度為多少?對這一問題從“數(shù)”與“形”兩個方面入手分析研究,得出了這個一次函數(shù)與相應(yīng)一元一次方程之間的關(guān)系,然后推廣到一般情形;第三個問題是當(dāng)華氏度大于(小于0)時,相應(yīng)攝氏度應(yīng)在什么范圍內(nèi)取值?對這一問題的研究得出了這個一次函數(shù)與相應(yīng)一元一次不等式之間的關(guān)系。
3.充分展現(xiàn)知識的形成過程。
4.通過問題驅(qū)動來激發(fā)思維。
首先,由問題引發(fā)學(xué)生的思考,體會一次函數(shù)與一元一次方程之間的關(guān)系。這一部分的學(xué)習(xí),比較多的學(xué)生能夠通過觀察得出具體的結(jié)論:一次函數(shù)圖像與x軸交點坐標(biāo)的橫坐標(biāo)就是此函數(shù)對應(yīng)的一元一次方程的解。反之亦然。這一部分內(nèi)容的學(xué)習(xí)不僅是本節(jié)課的重點之一,為接下來的難點突破打下了基礎(chǔ)。
接下來,繼續(xù)由問題引發(fā)學(xué)生的思考,這一部分的教學(xué)是本節(jié)課的重難點,相比較前一部分(一次函數(shù)與一元一次方程之間的關(guān)系)這部分的內(nèi)容對于學(xué)生來說更抽象,更難以理解。為了幫助學(xué)生理解這部分內(nèi)容,我設(shè)計了這幾個環(huán)節(jié):
(1)通過思考問題2,學(xué)生找到圖像中符合條件的那一部分,為下面的從具體到抽象提供載體;在這里問題的設(shè)計具有層次性,學(xué)生在問題中得到適當(dāng)?shù)囊龑?dǎo)與啟發(fā),學(xué)生的積極性會很高,對于他們的回答我也都將給予充分的肯定與表揚。
(2)從具體問題入手,討論一次函數(shù)圖像與一元一次不等式之間的關(guān)系。為了使得學(xué)生深入理解這一問題且考慮到學(xué)生群體學(xué)習(xí)能力的參差不齊,利用幾何畫板動態(tài)演示,追蹤符合條件的點的軌跡,使學(xué)生從圖像上直觀獲取符合條件的點的橫坐標(biāo)的取值范圍這一信息。
(3)在最后抽象到一般時采用先小組討論再全班交流的形式,這樣安排使學(xué)生形成自己對數(shù)學(xué)知識的理解并且進行了有效的學(xué)習(xí),培養(yǎng)了學(xué)生數(shù)形結(jié)合的思想以及在交流中發(fā)展學(xué)生的合作意識和交流能力。
五、預(yù)期效果分析。
總之,本節(jié)課采用觀察、探究、交流、歸納等多種教學(xué)方式,并配合多媒體操作演示、師生互動,給學(xué)生以充分展示自我的機會和平臺,從而調(diào)動學(xué)生主動參與課堂教學(xué)的積極性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)了學(xué)生自主探究的能力,使之真正成為了學(xué)習(xí)的主人。然而,如何很好地調(diào)控學(xué)生,激發(fā)每一位同學(xué)的學(xué)習(xí)潛能,在今后的教學(xué)中還有待努力去探索。
人教版函數(shù)的教學(xué)設(shè)計篇七
在本節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運算,驗證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個方面的問題:
1.幻燈片的設(shè)計。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計,在出現(xiàn)某些字或者數(shù)字時應(yīng)直接出現(xiàn),而不要設(shè)計成動畫的形式,以免學(xué)生分散注意力。
2.學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的`考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3.例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學(xué)生仿照。
4.語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5.教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6.教案設(shè)計的完整。
在本節(jié)課教學(xué)中我因為考慮到有幻燈片而沒有在教案中設(shè)計“板書設(shè)計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計“板書設(shè)計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
人教版函數(shù)的教學(xué)設(shè)計篇八
教學(xué)中,對函數(shù)與方程的關(guān)系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則。分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。
除了函數(shù)模型的應(yīng)用之外,還要介紹函數(shù)的零點與方程的根的關(guān)系,用二分法求方程的近似解,以及幾種不同增長的函數(shù)模型。教科書在處理上,以函數(shù)模型的應(yīng)用這一內(nèi)容為主線,以幾個重要的函數(shù)模型為對象或工具,將各部分內(nèi)容緊密結(jié)合起來,使之成為一個系統(tǒng)的整體。教學(xué)中應(yīng)當(dāng)注意貫徹教科書的這個意圖,是學(xué)生經(jīng)歷函數(shù)模型應(yīng)用的完整。
人教版函數(shù)的教學(xué)設(shè)計篇九
本設(shè)計遵循了由淺入深、循序漸進的原則,分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的'二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。本節(jié)只是函數(shù)與方程的關(guān)系建立的第一步,教學(xué)中忌面面具到,延展太深。
恰當(dāng)使用信息技術(shù):本節(jié)的教學(xué)中應(yīng)當(dāng)充分使用信息技術(shù)。實際上,一些內(nèi)容因為涉及大數(shù)字運算、大量的數(shù)據(jù)處理、超越方程求解以及復(fù)雜的函數(shù)作圖,因此如果沒有信息技術(shù)的支持,教學(xué)是不容易展開的。因此,教學(xué)中會加強信息技術(shù)的使用力度,合理使用多媒體和計算器。讓學(xué)生直觀形象地理解問題,了解知識的形成過程。
采用問題式教學(xué),“設(shè)問——探索——歸納——定論”層層遞進的方式來突破本課的重難點。引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、體會知識的形成過程。創(chuàng)設(shè)民主、和諧的課堂氛圍。引導(dǎo)學(xué)生進行積極主動的學(xué)習(xí),培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)情感。對數(shù)學(xué)思想如函數(shù)方程思想、數(shù)形結(jié)合思想的滲透還不到位,課后需要進一步加強引導(dǎo)。
方程的根與函數(shù)的零點是高中課程標(biāo)準(zhǔn)新增的內(nèi)容,表面上看,這一內(nèi)容的教學(xué)并不困難,但要讓學(xué)生能夠真正理解,教學(xué)還需要妥善處理其中的一些問題。首先要讓學(xué)生認識到學(xué)習(xí)函數(shù)的零點的必要性,其次教學(xué)要把握內(nèi)容結(jié)構(gòu),突出思想方法。在實踐和反思中不斷地發(fā)現(xiàn)和解決新的問題,教學(xué)效果才會逐步得到提高。
人教版函數(shù)的教學(xué)設(shè)計篇十
在新課程中,教學(xué)過程要符合學(xué)生學(xué)習(xí)過程,學(xué)生在學(xué)習(xí)過程中應(yīng)該以探究、實踐、合作學(xué)習(xí)為重,要善于引導(dǎo)學(xué)生積極參與教學(xué)過程中的探討活動,讓學(xué)生在動手實踐、自主探究與合作交流的過程中來學(xué)習(xí)數(shù)學(xué)。教師的教學(xué)活動要能激發(fā)學(xué)生探求新知識的興趣和欲望,逐步培養(yǎng)他們提問的意識,鼓勵學(xué)生多思考。同時還要關(guān)注他們在數(shù)學(xué)學(xué)習(xí)過程中的變化和發(fā)展,關(guān)注學(xué)習(xí)方法與習(xí)慣的養(yǎng)成。
在初中一元二次方程和二次函數(shù)學(xué)習(xí)的基礎(chǔ)上,教學(xué)中通過比較一元二次方程的根與對應(yīng)的二次函數(shù)的圖象和x軸的交點的橫坐標(biāo)之間的關(guān)系,給出函數(shù)的零點的概念,并揭示了方程的根與對應(yīng)的函數(shù)的零點之間的關(guān)系。然后,通過探究介紹了判斷一個函數(shù)在某個給定區(qū)間存在零點的方法和二分法。并且,教科書在“用二分法求函數(shù)零點的步驟”中滲透了算法的思想,為學(xué)生后續(xù)學(xué)習(xí)算法內(nèi)容埋下伏筆。
人教版函數(shù)的教學(xué)設(shè)計篇十一
1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進行一個全方位的研究,不僅僅是通過對比總結(jié)得到指數(shù)函數(shù)的性質(zhì),更重要的是讓學(xué)生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
2.教學(xué)中借助信息技術(shù)可以彌補傳統(tǒng)教學(xué)在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學(xué)難點、突破教學(xué)重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學(xué)生直觀觀察底數(shù)對指數(shù)函數(shù)單調(diào)性的影響。
人教版函數(shù)的教學(xué)設(shè)計篇十二
【目標(biāo)】。
1.借助生活實例,引領(lǐng)學(xué)生參與函數(shù)概念的形成過程.
2.體會從生活實例抽象出數(shù)學(xué)知識的方法,感知現(xiàn)實世界中變量之間聯(lián)系的復(fù)雜性.
【學(xué)習(xí)目標(biāo)】。
1.初步掌握函數(shù)概念,判斷兩個變量間的關(guān)系是否能看作函數(shù).
2.初步感受函數(shù)表示的三種形式:表格法、圖象法、解析式法.根據(jù)兩個變量間的關(guān)系式,給定其中一個量,會相應(yīng)地求出另一個量的值.
3.經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力.
【教學(xué)重點】。
2.判斷兩個變量之間的關(guān)系是否可看作函數(shù).
【教學(xué)難點】。
1.準(zhǔn)確理解函數(shù)概念中“唯一確定”的含義.
2.能把實際問題抽象概括為函數(shù)問題.
計意圖】。
本節(jié)公開課在教師的精心準(zhǔn)備之下,按照djp教學(xué)模式常規(guī)要求,順利完成了教學(xué)目標(biāo)?,F(xiàn)將本節(jié)課中具體作以下幾點反思:
1.函數(shù)對初中生來是第一次接觸,在教學(xué)設(shè)計的時候,充分列舉生活中有關(guān)變量的例子,讓學(xué)生去感受兩個變量之間的關(guān)系,提高學(xué)生的學(xué)習(xí)興趣.
2.本節(jié)課屬于概念課,根據(jù)djp教學(xué)模式下概念課的要求,認真設(shè)計教學(xué)過程和修改學(xué)案,經(jīng)過教研組多次研討,最終形成此教學(xué)設(shè)計.
3.本節(jié)課在原有基礎(chǔ)上作出了一些調(diào)整,在情境引入時,列舉生活中的變量,并演示摩天輪模型轉(zhuǎn)動,同時提出問題:在轉(zhuǎn)動過程中,有幾個變量?你了解它們之間的關(guān)系嗎?從而引出本節(jié)課的主題――函數(shù)的概念,并由此進入情境1的學(xué)習(xí),此環(huán)節(jié)由教師主講,目的在于為后面學(xué)生講解情境2,3作出示范,特別是在圖像中,判斷兩個變量是否成函數(shù)關(guān)系時,由于學(xué)生還沒學(xué)習(xí)直角坐標(biāo)系,所以通過ppt多次演示,教會學(xué)生判斷方法,為后面的練習(xí)作好鋪墊.
作者簡介:冉龍海,男,1980年4月出生,本科,就職于四川省成都市龍泉驛區(qū)第十中學(xué)校,研究方向:班主任教育工作。
人教版函數(shù)的教學(xué)設(shè)計篇十三
由于每個學(xué)生的基礎(chǔ)知識、智力水平和學(xué)習(xí)方法等都存在一定差別,所以本節(jié)課采用分層教學(xué)。既創(chuàng)設(shè)舞臺讓優(yōu)秀生表演,又要重視給后進生提供參與的機會,使其增強學(xué)習(xí)數(shù)學(xué)的信心。具體題目安排從易到難,形成梯度,符合學(xué)生的認知規(guī)律,使全體學(xué)生都能得到不同程度的提高。
1.掌握二次函數(shù)的圖像和性質(zhì),了解一元二次方程與二次函數(shù)的關(guān)系,能依據(jù)已知條件確定二次函數(shù)的關(guān)系式。
2.通過研究生活中實際問題,讓學(xué)生體會建立數(shù)學(xué)建模的思想.通過學(xué)習(xí)和探究xxxx考點問題,滲透數(shù)形結(jié)合思想及分類討論思想。
3.查漏補缺,采用小組學(xué)習(xí)使復(fù)習(xí)更有效,學(xué)生在自主探索與合作交流的過程中,全方位“參與”問題的解決,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法。
如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題。
[活動1]學(xué)生分組處理前置性作業(yè)
教師出示習(xí)題答案。組織學(xué)生合作交流,深入到每個小組,針對不同情況加強指導(dǎo)。
教師重點關(guān)注學(xué)困生。
針對學(xué)生的實際情況,對習(xí)題進行分層處理,樹立學(xué)困生學(xué)習(xí)數(shù)學(xué)的信心。
[活動2]師生共同解決作業(yè)中存在的問題
學(xué)生自主研究,分組討論后,然后提出問題,教師對學(xué)生回答的問題進行評價
教師重點歸納數(shù)學(xué)思想。
通過對習(xí)題的處理,使學(xué)生進一步加深對二次函數(shù)有關(guān)概念及性質(zhì)的理解,能用函數(shù)觀點解決實際問題。同時,小組學(xué)習(xí)也使學(xué)生全方位參與問題的解決。
[活動3]習(xí)題現(xiàn)中考
例1(xxxx,南寧)
教師結(jié)合教材對比、分析
學(xué)生小組合作,完成例題
教師歸納:本題考查了二次函數(shù)、一元二次方程與梯形的面積等知識。
對于二次函數(shù)與其他知識的綜合應(yīng)用,關(guān)鍵要讓學(xué)生掌握解題思路,把握題型,能利用數(shù)形結(jié)合思想進行分析,從而把握解題的突破口。
[活動4]例題現(xiàn)中考
例2(xxxx,濟寧)
例3(xxxx,黔東南州)
學(xué)生自學(xué),教師指導(dǎo),讓學(xué)生討論回答這兩道題的共同特點。
讓學(xué)生根據(jù)討論的結(jié)果概括、歸納出“每每型”二次函數(shù)模型的題型特點和解決這類問題的關(guān)鍵。
[活動5]知識提高階段
教師給出一組習(xí)題,學(xué)生討論完成。
知識再運用有助于知識的鞏固。
[活動6]小結(jié)、布置作業(yè)
問題
本節(jié)學(xué)了哪些內(nèi)容?你認為最重要的內(nèi)容是什么?
布置作業(yè)
把錯題整理到作業(yè)本上。
師生共同小結(jié),加深對本節(jié)課知識的理解。
讓學(xué)生參與小結(jié)并有不同的答案,可以增強學(xué)生學(xué)習(xí)的積極性和主動性,培養(yǎng)學(xué)生對所學(xué)知識回顧思考的習(xí)慣。
人教版函數(shù)的教學(xué)設(shè)計篇十四
二次函數(shù)的圖象及性質(zhì)近8年考查7次,以解答題為主,且綜合性較強,一般涉及求交點坐標(biāo)及頂點坐標(biāo)。在選擇、填空題中考查的知識點有二次函數(shù)圖象與系數(shù)a、b、c的關(guān)系、與一元二次方程的關(guān)系、增減性、對稱軸、頂點坐標(biāo)及與x軸、y軸的交點。
2、教學(xué)目標(biāo)
(1)認識二次函數(shù)是常見的簡單函數(shù)之一,也是刻畫現(xiàn)實世界變量之間關(guān)系的重要數(shù)學(xué)模型。理解二次函數(shù)的概念,掌握其函數(shù)關(guān)系式以及自變量的取值范圍。
(2)能正確地描述二次函數(shù)的圖象,能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題。
(3)、了解二次函數(shù)與一元二次方程的關(guān)系,能利用二次函數(shù)的圖象求一元二次方程的近似解。
3、教學(xué)重點:
(1)二次函數(shù)的圖象與性質(zhì)
(2)二次函數(shù)的平移
4、教學(xué)難點:
能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題。
基于本節(jié)課的特點和我們學(xué)校正在進行的“三、三、六”教學(xué)模式,我采用“先學(xué)后教,當(dāng)堂訓(xùn)練”的教學(xué)方法。即:教師激情導(dǎo)課,學(xué)生自學(xué)自做,教師進行面批,組織小組交流,展示學(xué)習(xí)成果,檢測導(dǎo)結(jié)反饋。對于課堂上學(xué)生出現(xiàn)的疑問,盡量讓學(xué)生互相解決,教師起到幫助、組織、合作、協(xié)調(diào)的作用。最后讓學(xué)生當(dāng)堂完成實踐練題和檢測導(dǎo)結(jié),經(jīng)過嚴(yán)格有梯度的訓(xùn)練,使學(xué)生學(xué)會知識、形成能力。同時鼓勵和培養(yǎng)學(xué)生提高分析能力、表達能力和探究能力。以“學(xué)—導(dǎo)—練”三步為主線,以“六環(huán)節(jié)”為結(jié)構(gòu),來進行本節(jié)課的教學(xué)。在整個教學(xué)過程中加強學(xué)生自學(xué)方法的指導(dǎo)。以問題“引”自學(xué),以自測“顯”問題,以優(yōu)生“帶”差生,以點撥“疏”疑點,以訓(xùn)練“鞏”新知。
由于是復(fù)習(xí)課,因此我在以學(xué)生為主體的原則下,讓他們通過畫圖、觀察、比較、推理、小組交流,直至最后探索出結(jié)論。以引導(dǎo)、探究、合作、點拔、評價的方式貫穿整個課堂。
本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):
1、挑戰(zhàn)自我;
2、考點清單;
3、夯實基礎(chǔ);
4、小結(jié)感悟;
5、目標(biāo)檢測
6、拓展延伸
7、作業(yè)布置。
1、挑戰(zhàn)自我
出示3道有關(guān)二次函數(shù)的圖象與性質(zhì),二次函數(shù)圖象的平移的中考試題,讓學(xué)生自主完成,引起有關(guān)知識點的回憶。第一題是二次函數(shù)對稱軸的考查;第二題考察圖象的平移;第三題解有關(guān)拋物線與系數(shù)a、b、c關(guān)系的題。
教學(xué)效果:學(xué)生積極投入思考,開篇就為學(xué)生創(chuàng)設(shè)了一個自由、寬松的討論氛圍。
2、考點清單
師生共同回憶
1、二次函數(shù)的圖象與性質(zhì)
2、二次函數(shù)圖象與系數(shù)a、b、c
的關(guān)系3、二次函數(shù)圖象的平移
教學(xué)效果:預(yù)計學(xué)生對這些知識有遺忘,應(yīng)積極引導(dǎo)回憶問題,達到對知識點有明確的認識。
3、夯實基礎(chǔ)
師生共同探討四道典型例題,強化知識點的靈活應(yīng)用。題讓學(xué)生先想后答,遇到難題小組交流,教師點撥,全班展示,充分發(fā)揮學(xué)生對積極主動性。
教學(xué)效果:大部分學(xué)生學(xué)習(xí)二次函數(shù)有困難,應(yīng)互幫互助,共同進步。
4、小結(jié)感悟:說說你在本節(jié)課解題過程中的收獲及疑惑?(小組交流)
教師給學(xué)生一定的時間去反思回顧,本節(jié)課對知識的研究探索過程,小結(jié)方法及相關(guān)結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律,從而達到鞏固所學(xué)知識目的增強學(xué)習(xí)興趣和合作意識。
5、目標(biāo)檢測:
為學(xué)生提供自我檢測的機會,教師針對學(xué)生反饋情況,及時調(diào)整授課,查漏補缺。并要求學(xué)生在規(guī)定五分鐘內(nèi)完成,同時對每道題進行分?jǐn)?shù)量化。當(dāng)大部分學(xué)生完成后,教師出示答案,以便學(xué)生核對。同組的學(xué)生進行作業(yè)互相批改。并把結(jié)果告訴老師,以便老師掌握每位學(xué)生是否都當(dāng)堂達到學(xué)習(xí)目標(biāo)。對于當(dāng)堂不能完成任務(wù)的學(xué)生課下進行適當(dāng)?shù)妮o導(dǎo)。
6、拓展延伸:給學(xué)有余力的學(xué)生提供更多的練習(xí)機會。
7、課后作業(yè):《中考指導(dǎo)》62頁——64頁。
以上就是我的說課內(nèi)容,歡迎各位領(lǐng)導(dǎo)、同仁批評指導(dǎo)!
1、給學(xué)生展示自我的空間。本節(jié)課的設(shè)計本著以教師為主導(dǎo)、學(xué)生為主體,以知識為載體、培養(yǎng)學(xué)生的思維能力為重點的教學(xué)思想。教師以探究任務(wù)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供給學(xué)生自主合作探究的舞臺。在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生分類、探究、合作、歸納的能力。課堂上把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)的能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。
2、在課堂上要給予學(xué)生充分的時間去思考、動手實踐,而不是使合作流于形式。要把合作交流的空間真正的還給學(xué)生。教師在課堂中還要照顧到每一名學(xué)生,讓全體的學(xué)生都動起來。
人教版函數(shù)的教學(xué)設(shè)計篇十五
1、教材的地位和作用: 函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
2、教學(xué)的重點和難點:根據(jù)這一節(jié)課的內(nèi)容特點以及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
基于對教材的理解和分析,我制定了以下的教學(xué)目標(biāo)
1、知識目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用。
2、能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論,增強學(xué)生識圖用圖的能力。
3、情感目標(biāo)(可持續(xù)性目標(biāo)): 通過學(xué)習(xí),使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
1、教學(xué)策略:首先從實際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
2、教學(xué): 貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況, 本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
人教版函數(shù)的教學(xué)設(shè)計篇十六
《指數(shù)函數(shù)》是人教b版高中數(shù)學(xué)必修1第三章第二節(jié)第1課時,是繼第二章函數(shù)的概念、函數(shù)的性質(zhì)、一次函數(shù)、二次函數(shù)之后,學(xué)生要認識的一個新的函數(shù)。下面是我對本節(jié)課的教學(xué)反思:
(一)對課前準(zhǔn)備的反思。
上課前認真?zhèn)湔n,多次請教了指導(dǎo)教師孫久志老師的意見與建議,在他的指導(dǎo)下,我對新課標(biāo)和新教材有了較為整體的把握和認識,將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成了知識框架,了解了學(xué)生的現(xiàn)狀和認知結(jié)構(gòu),做到了因材施教。
(一)對情境創(chuàng)設(shè)的反思。
這是本節(jié)課的一個成功之處,整堂課的問題情景創(chuàng)設(shè)很恰當(dāng),幾乎所有的結(jié)論都是在教師的引導(dǎo)下,學(xué)生自己總結(jié)出來的。
本節(jié)課是以問題的形式引入,采用兩個實際問題,既激發(fā)了學(xué)生學(xué)習(xí)的積極性,又讓他們體會到數(shù)學(xué)是來自于生活,也是服務(wù)于生活的。引出函數(shù)的一般式12y=ax'type=“#_x0000_t75”以后,我又讓學(xué)生自己舉幾個例子,他們舉的例子中有a=1,a=0,a0的情況,我又是以提問的形式讓學(xué)生自己分析相應(yīng)的函數(shù)定義域與函數(shù)值,結(jié)果學(xué)生自己意識到這些情況不必研究或者不容易研究,自然的得到了參數(shù)a0且a12鈮?'type=“#_x0000_t75”的范圍,進而讓學(xué)生自己求出此時函數(shù)的定義域,此時指數(shù)函數(shù)的定義已經(jīng)呼之欲出,不言自明了,甚至學(xué)生自己已經(jīng)可以給指數(shù)函數(shù)下定義了。
(二)對教學(xué)模式的反思。
本節(jié)課的另一個成功之處就是采用“引導(dǎo)啟發(fā)探討”式教學(xué),在授課的過程中,我一直在和學(xué)生進行探討,讓學(xué)生自己舉例子,自己畫圖象,自己歸納概括。剛上課的時候,有位同學(xué)就對我們舉的例子提出了問題,我耐心地進行了解答,正好他的問題也為下一步的討論提供了思路,我就順勢進行了。其實在平時的課堂中,我就比較注意和學(xué)生的交流,盡量地讓學(xué)生把問題暴漏出來,因為這樣的問題一般就是大家共同的問題。在和學(xué)生探討指數(shù)函數(shù)的特性時,他們觀察得非常細致,幾乎把圖象上能反映出來的函數(shù)性質(zhì)都說出來了,每位發(fā)言的同學(xué)我都給予了肯定,大家很積極,有位同學(xué)還說出了函數(shù)增長速度的問題,我就順勢講了一個與此有關(guān)的故事,大家聽得津津有味。
(三)對現(xiàn)代化多媒體應(yīng)用的反思。
本節(jié)課的第三個成功之處是:教學(xué)課件用得恰到好處,我采用的是幾何畫板數(shù)學(xué)軟件,非常形象直觀地展示了描點法作圖的全過程,因為這個過程是我們歸納圖像與性質(zhì)的一個準(zhǔn)備工作,應(yīng)該向?qū)W生展示,但是如果在黑板上演示,既要花費大量的時間,對于較精確的計算也無法進行。幾何畫板正好解決了這個問題,通過演示,讓學(xué)生了解到數(shù)學(xué)需要嚴(yán)謹(jǐn)科學(xué)的計算,而且數(shù)學(xué)其實也是一種很美的科學(xué)。但是數(shù)學(xué)這門學(xué)科又要求老師要正確規(guī)范地板書,除了練習(xí)、例題的題目和作圖的過程,其他重要內(nèi)容我都進行了規(guī)范的板書,讓學(xué)生的思維始終跟著我。在課堂中,我還用投影儀展示了個別學(xué)生的作業(yè),進行了點評,讓學(xué)生發(fā)現(xiàn)自己學(xué)習(xí)中的優(yōu)點和缺點。
(四)對于贊賞評價的反思。
對于學(xué)生創(chuàng)造性的回答我給予了鼓勵與肯定,而對于學(xué)生不足甚至錯誤的回答,指出了不足,但沒有損傷其自尊心和自信心。在新課標(biāo)下,我們的學(xué)生應(yīng)該是自由的`、真實的、快樂的、幸福的。我們的數(shù)學(xué)課堂教學(xué),應(yīng)該從數(shù)學(xué)的實際出發(fā)給學(xué)生自由、真實、快樂、幸福。
(五)對不足之處的反思。
在讓學(xué)生歸納指數(shù)函數(shù)的圖象時,學(xué)生總結(jié)了a1與01的代表就是我們畫出的12y=2x涓?/m:tm:rpry=3x'type=“#_x0000_t75”的圖像,而0y=(13)x'type=“#_x0000_t75”的圖像,這樣就更形象直觀一些;由于上課的教室聽不見鈴聲,時間控制得不是很準(zhǔn)確,提前了一分鐘下課,如果能利用這一分鐘再稍深入地探討一下例2中利用找中間量的方法比較兩個冪的大小,這堂課就更加完滿,雖然是一個很小的問題,不影響整堂課的效果,但是卻提醒我自己在平時的上課中就得注意小的細節(jié)問題;板書方面,行與行的疏密控制得不夠準(zhǔn)確,導(dǎo)致最后一行的空間有點小了。
人教版函數(shù)的教學(xué)設(shè)計篇十七
指數(shù)函數(shù)的教學(xué)共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應(yīng)用。指數(shù)函數(shù)第一課時是在學(xué)習(xí)指數(shù)概念的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)作好準(zhǔn)備。
1.知識目標(biāo):掌握指數(shù)函數(shù)的概念,圖像和性質(zhì)
2.能力目標(biāo):通過數(shù)形結(jié)合,利用圖像來認識,掌握函數(shù)的性質(zhì),增強學(xué)生分析問題,解決問題的能力。
3.德育目標(biāo):對學(xué)生進行辯證唯物主義思想的教育,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
(三
1、重點:指數(shù)函數(shù)的定義、性質(zhì)和圖象
2、難點:指數(shù)函數(shù)的定義理解,指數(shù)函數(shù)的圖象特征及指數(shù)函數(shù)的性質(zhì)。
3、關(guān)鍵:能正確描繪指數(shù)函數(shù)的圖象
(三)
在講解指數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復(fù)雜且不夠精確,并且是本節(jié)課的教學(xué)關(guān)鍵,教學(xué)中,我借助電腦手段,通過描點作圖,觀察圖像,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
一.
1,學(xué)情分析:大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高。
2, 學(xué)法指導(dǎo):針對這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動獲取知識,養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會獨立提出問題、解決問題??傊?,調(diào)動學(xué)生的非智力因素來促進智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
人教版函數(shù)的教學(xué)設(shè)計篇十八
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
四、教學(xué)過程:
(一)復(fù)習(xí)提問。
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
(四)鞏固練習(xí)。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇十九
“指數(shù)函數(shù)”的教學(xué)共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應(yīng)用?!爸笖?shù)函數(shù)”第一課時是在學(xué)習(xí)指數(shù)概念的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)作好準(zhǔn)備。
在講解指數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復(fù)雜且不夠精確,并且是本節(jié)課的教學(xué)關(guān)鍵,教學(xué)中,我借助電腦手段,通過描點作圖,觀察圖像,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高。針對這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動獲取知識,養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會獨立提出問題、解決問題??傊?,調(diào)動學(xué)生的非智力因素來促進智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
為了調(diào)動學(xué)生學(xué)習(xí)的積極性,使學(xué)生變被動學(xué)習(xí)為主動愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性??傊?,本堂課充分體現(xiàn)了“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
人教版函數(shù)的教學(xué)設(shè)計篇一
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
這節(jié)課,我們來學(xué)習(xí)二次函數(shù)的三種表達方式。
二、師生共同研究形成概念
1、用函數(shù)表達式表示
做一做書本p56矩形的周長與邊長、面積的關(guān)系
鼓勵學(xué)生間的互相交流,一定要讓學(xué)生理解周長與邊長、面積的關(guān)系。
比較全面、完整、簡單地表示出變量之間的關(guān)系
2、用表格表示
做一做書本p56填表
由于運算量比較大,學(xué)生的運算能力又一般,因此,建議把這個表格的一部分?jǐn)?shù)據(jù)先給出來,讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系
3、用圖象表示
議一議書本p56議一議
關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時,可適當(dāng)多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
做一做書本p57
4、三種方法對比
議一議書本p58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點,它們服務(wù)于不同的需要。
在對三種表示方式進行比較時,學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇二
《函數(shù)的奇偶性》這節(jié)課采用的是我校712課堂模式,主要給老師們展示教學(xué)環(huán)節(jié)。
在《函數(shù)的奇偶性》這節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運算,驗證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個方面的問題:
1、幻燈片的設(shè)計。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計,在出現(xiàn)某些字或者數(shù)字時應(yīng)直接出現(xiàn),而不要設(shè)計成動畫的形式,以免學(xué)生分散注意力。
2、學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3、例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學(xué)生仿照。
4、語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5、教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6、教案設(shè)計的完整。
在本節(jié)課教學(xué)中我因為考慮到有幻燈片而沒有在教案中設(shè)計“板書設(shè)計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計“板書設(shè)計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
人教版函數(shù)的教學(xué)設(shè)計篇三
二、目標(biāo)和目標(biāo)解析。
2.零點知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。
三、教學(xué)問題診斷分析。
四、教學(xué)支持條件分析。
(一)引入課題。
問題引入:求方程3x2+6x-1=0的實數(shù)根。
變式:解方程3x5+6x-1=0的實數(shù)根.(一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運算,乘方與開方等運算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個方程的問題。)。
設(shè)計意圖:從學(xué)生的認知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動問題進一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點明本節(jié)課的目標(biāo)。
人教版函數(shù)的教學(xué)設(shè)計篇四
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個重要內(nèi)容,它不僅與現(xiàn)實生活中的對稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)打下了堅實的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學(xué)重點是:函數(shù)的奇偶性及其幾何意義。
2、本課時的教學(xué)難點是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標(biāo)。
1、知識與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學(xué)生體會數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析。
1、教學(xué)方法:啟發(fā)引導(dǎo)式。
結(jié)合本章實際,教材簡單易懂,重在應(yīng)用、解決實際問題,本節(jié)課準(zhǔn)備采用“引導(dǎo)發(fā)現(xiàn)法”進行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會學(xué)習(xí)。
三、教輔手段。
四、教學(xué)過程。
為了達到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進行了系統(tǒng)地規(guī)劃,設(shè)計了五個主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標(biāo)有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的.痕跡,然后將紙展開。觀察坐標(biāo)喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標(biāo)有什么特點。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個函數(shù)圖象的對稱性如何。
給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對稱呢此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律。
借助課件演示,學(xué)生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內(nèi)是否對所有的x,都有類似的情況借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。
思考:由于對任一x,必須有一-x與之對應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點對稱。根據(jù)以上特點,請學(xué)生用完整的語言敘述定義,同時給出板書:
(1)函數(shù)f(x)的定義域為a,且關(guān)于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)。
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強調(diào)注意點:“定義域關(guān)于原點對稱”的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點:既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進行課堂鞏固,強調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點對稱,二是定義域雖關(guān)于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進行當(dāng)堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)。
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè):課本p39習(xí)題1、3(a組)第6題,b組第3。
五、板書設(shè)計。
人教版函數(shù)的教學(xué)設(shè)計篇五
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學(xué)生更形象的看到對稱。例題展現(xiàn)、問題展現(xiàn),節(jié)約了教師黑板抄題的時間,提高了課堂效率。當(dāng)然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內(nèi)容呈現(xiàn)在課件上才能真正體現(xiàn)多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時候就要效率高,有一些內(nèi)容就不用放入課件,如:例題的解題過程和在黑板上必須呈現(xiàn)的內(nèi)容不用再搬到課件上去,否則學(xué)生也不知道該看黑板還是課件,增大了學(xué)生學(xué)習(xí)負擔(dān),降低了學(xué)習(xí)效率。所以我在課件制作中,注重內(nèi)容與黑板板書不重疊。
在多媒體應(yīng)用上,我們要注重區(qū)分什么該用,什么不該用以確實提高課堂效率。
設(shè)計教學(xué)設(shè)計的過程中,充分考慮課程標(biāo)準(zhǔn)和教材的要求來確定教學(xué)目標(biāo),把握學(xué)生的學(xué)習(xí)水平,在教學(xué)中給學(xué)生充分思考的時間和空間,尊重學(xué)生的思想方法,點評優(yōu)化學(xué)生的學(xué)習(xí)收獲,充分調(diào)動學(xué)生探究的積極性,培養(yǎng)學(xué)生學(xué)習(xí)的興趣。在教學(xué)中不變的是先進的教學(xué)理念和合理的教學(xué)設(shè)計。放手給學(xué)生們自主學(xué)和研究就是我們應(yīng)該大膽做的。從學(xué)生的角度設(shè)計教學(xué),才能體現(xiàn)以學(xué)生為本!
三.做到重點突出和難點突破。
如何重點突出和難點突破是教學(xué)技術(shù)、教學(xué)專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時都必須精心設(shè)計,那樣的課堂才能高效,學(xué)生才會喜歡。
在本節(jié)課中重點之一是函數(shù)奇偶性概念的理解,從實例引入,讓學(xué)生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質(zhì)讓學(xué)生給出概念,老師總結(jié),再讓學(xué)生回頭感悟,有利于學(xué)生真正理解概念和應(yīng)用概念。如何理解0再定義域內(nèi)時,奇函數(shù)在0處的值為0時本節(jié)課難點之一,從一條辨析題到處問題,在研究問題,自然!同時激發(fā)了學(xué)生探究的欲望,學(xué)得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學(xué)素養(yǎng)、技術(shù),才能真正提高咱們的教學(xué)理念。
人教版函數(shù)的教學(xué)設(shè)計篇六
這節(jié)課的內(nèi)容是八年級(第二學(xué)期)第二十章“一次函數(shù)”的第二節(jié)“一次函數(shù)的圖像”的第三課時,內(nèi)容是結(jié)合一次函數(shù)圖像研究一次函數(shù)與一元一次方程以及一元一次不等式之間的關(guān)系。
學(xué)生在本節(jié)課之前已經(jīng)學(xué)習(xí)過一次函數(shù)及其圖像,一元一次方程,一元一次不等式,通過本節(jié)的教學(xué),可加強這些知識間的聯(lián)系,發(fā)揮函數(shù)對相關(guān)內(nèi)容的統(tǒng)領(lǐng)作用,能用一次函數(shù)可以把以前學(xué)習(xí)的方程和不等式等不同的數(shù)學(xué)概念統(tǒng)一起來,從而深化學(xué)生對方程與不等式的理解,使新舊知識融會貫通,促進學(xué)生良好知識結(jié)構(gòu)的形成。同時也為進一步學(xué)習(xí)“三個二次之間的關(guān)系”打下基礎(chǔ)。
二、教學(xué)目標(biāo)分析。
1.能借助一次函數(shù)的圖像認識一元一次方程的解、一元一次不等式的解集,理解一元一次方程、一元一次不等式與一次函數(shù)之間的內(nèi)在聯(lián)系。
2.經(jīng)歷由具體到抽象、由直觀感知到得出一般結(jié)論的認知過程,體會數(shù)形結(jié)合的數(shù)學(xué)思想,提高由圖像獲取有用信息的能力以及分析與解決問題的能力。
教學(xué)重點、難點。
能以函數(shù)的觀點認識一元一次方程的解、一元一次不等式的解集。
三、教學(xué)問題診斷。
在學(xué)習(xí)本課內(nèi)容時,學(xué)生已經(jīng)掌握了一元一次方程,一元一次不等式,一次函數(shù)等知識,會畫一次函數(shù)的圖像,會用代數(shù)方法解一元一次不等式。大部分的學(xué)生正在艱難的由形象思維向抽象思維發(fā)展。觀察力偏重于第一印象,仍用自己原有的認識與知識結(jié)構(gòu)作出判斷,不會自覺利用直角坐標(biāo)系從函數(shù)的這種數(shù)形對應(yīng)角度出發(fā)考慮,很難利用圖像中的信息分析和解決問題?;谏鲜銮闆r,預(yù)測學(xué)生在理解一次函數(shù)與一元一次不等式之間的關(guān)系時會產(chǎn)生困難。
四、教法特點。
1.突出數(shù)形結(jié)合的數(shù)學(xué)思想。
2.創(chuàng)設(shè)實際問題情景。
數(shù)學(xué)來源于生活,數(shù)學(xué)應(yīng)用于生活。世博是今年大家十分關(guān)注的一個話題,許多學(xué)生已經(jīng)是多次進入園區(qū)參觀,大溫度計上的數(shù)學(xué)問題來自于學(xué)生真實的日常生活,有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,大家在不知不覺中進入了今天學(xué)習(xí)的內(nèi)容。
在溫度計的背景下,提出溫度的兩種度量制度。圍繞這一情景提出了如下三個問題:第一個問題是畫出一次函數(shù)圖像,這既復(fù)習(xí)了舊知,又為新知的學(xué)習(xí)創(chuàng)造了條件;第二個問題是當(dāng)華氏度為0時,攝氏度為多少?對這一問題從“數(shù)”與“形”兩個方面入手分析研究,得出了這個一次函數(shù)與相應(yīng)一元一次方程之間的關(guān)系,然后推廣到一般情形;第三個問題是當(dāng)華氏度大于(小于0)時,相應(yīng)攝氏度應(yīng)在什么范圍內(nèi)取值?對這一問題的研究得出了這個一次函數(shù)與相應(yīng)一元一次不等式之間的關(guān)系。
3.充分展現(xiàn)知識的形成過程。
4.通過問題驅(qū)動來激發(fā)思維。
首先,由問題引發(fā)學(xué)生的思考,體會一次函數(shù)與一元一次方程之間的關(guān)系。這一部分的學(xué)習(xí),比較多的學(xué)生能夠通過觀察得出具體的結(jié)論:一次函數(shù)圖像與x軸交點坐標(biāo)的橫坐標(biāo)就是此函數(shù)對應(yīng)的一元一次方程的解。反之亦然。這一部分內(nèi)容的學(xué)習(xí)不僅是本節(jié)課的重點之一,為接下來的難點突破打下了基礎(chǔ)。
接下來,繼續(xù)由問題引發(fā)學(xué)生的思考,這一部分的教學(xué)是本節(jié)課的重難點,相比較前一部分(一次函數(shù)與一元一次方程之間的關(guān)系)這部分的內(nèi)容對于學(xué)生來說更抽象,更難以理解。為了幫助學(xué)生理解這部分內(nèi)容,我設(shè)計了這幾個環(huán)節(jié):
(1)通過思考問題2,學(xué)生找到圖像中符合條件的那一部分,為下面的從具體到抽象提供載體;在這里問題的設(shè)計具有層次性,學(xué)生在問題中得到適當(dāng)?shù)囊龑?dǎo)與啟發(fā),學(xué)生的積極性會很高,對于他們的回答我也都將給予充分的肯定與表揚。
(2)從具體問題入手,討論一次函數(shù)圖像與一元一次不等式之間的關(guān)系。為了使得學(xué)生深入理解這一問題且考慮到學(xué)生群體學(xué)習(xí)能力的參差不齊,利用幾何畫板動態(tài)演示,追蹤符合條件的點的軌跡,使學(xué)生從圖像上直觀獲取符合條件的點的橫坐標(biāo)的取值范圍這一信息。
(3)在最后抽象到一般時采用先小組討論再全班交流的形式,這樣安排使學(xué)生形成自己對數(shù)學(xué)知識的理解并且進行了有效的學(xué)習(xí),培養(yǎng)了學(xué)生數(shù)形結(jié)合的思想以及在交流中發(fā)展學(xué)生的合作意識和交流能力。
五、預(yù)期效果分析。
總之,本節(jié)課采用觀察、探究、交流、歸納等多種教學(xué)方式,并配合多媒體操作演示、師生互動,給學(xué)生以充分展示自我的機會和平臺,從而調(diào)動學(xué)生主動參與課堂教學(xué)的積極性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)了學(xué)生自主探究的能力,使之真正成為了學(xué)習(xí)的主人。然而,如何很好地調(diào)控學(xué)生,激發(fā)每一位同學(xué)的學(xué)習(xí)潛能,在今后的教學(xué)中還有待努力去探索。
人教版函數(shù)的教學(xué)設(shè)計篇七
在本節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運算,驗證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個方面的問題:
1.幻燈片的設(shè)計。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計,在出現(xiàn)某些字或者數(shù)字時應(yīng)直接出現(xiàn),而不要設(shè)計成動畫的形式,以免學(xué)生分散注意力。
2.學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的`考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3.例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學(xué)生仿照。
4.語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5.教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6.教案設(shè)計的完整。
在本節(jié)課教學(xué)中我因為考慮到有幻燈片而沒有在教案中設(shè)計“板書設(shè)計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計“板書設(shè)計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
人教版函數(shù)的教學(xué)設(shè)計篇八
教學(xué)中,對函數(shù)與方程的關(guān)系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則。分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。
除了函數(shù)模型的應(yīng)用之外,還要介紹函數(shù)的零點與方程的根的關(guān)系,用二分法求方程的近似解,以及幾種不同增長的函數(shù)模型。教科書在處理上,以函數(shù)模型的應(yīng)用這一內(nèi)容為主線,以幾個重要的函數(shù)模型為對象或工具,將各部分內(nèi)容緊密結(jié)合起來,使之成為一個系統(tǒng)的整體。教學(xué)中應(yīng)當(dāng)注意貫徹教科書的這個意圖,是學(xué)生經(jīng)歷函數(shù)模型應(yīng)用的完整。
人教版函數(shù)的教學(xué)設(shè)計篇九
本設(shè)計遵循了由淺入深、循序漸進的原則,分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的'二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。本節(jié)只是函數(shù)與方程的關(guān)系建立的第一步,教學(xué)中忌面面具到,延展太深。
恰當(dāng)使用信息技術(shù):本節(jié)的教學(xué)中應(yīng)當(dāng)充分使用信息技術(shù)。實際上,一些內(nèi)容因為涉及大數(shù)字運算、大量的數(shù)據(jù)處理、超越方程求解以及復(fù)雜的函數(shù)作圖,因此如果沒有信息技術(shù)的支持,教學(xué)是不容易展開的。因此,教學(xué)中會加強信息技術(shù)的使用力度,合理使用多媒體和計算器。讓學(xué)生直觀形象地理解問題,了解知識的形成過程。
采用問題式教學(xué),“設(shè)問——探索——歸納——定論”層層遞進的方式來突破本課的重難點。引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、體會知識的形成過程。創(chuàng)設(shè)民主、和諧的課堂氛圍。引導(dǎo)學(xué)生進行積極主動的學(xué)習(xí),培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)情感。對數(shù)學(xué)思想如函數(shù)方程思想、數(shù)形結(jié)合思想的滲透還不到位,課后需要進一步加強引導(dǎo)。
方程的根與函數(shù)的零點是高中課程標(biāo)準(zhǔn)新增的內(nèi)容,表面上看,這一內(nèi)容的教學(xué)并不困難,但要讓學(xué)生能夠真正理解,教學(xué)還需要妥善處理其中的一些問題。首先要讓學(xué)生認識到學(xué)習(xí)函數(shù)的零點的必要性,其次教學(xué)要把握內(nèi)容結(jié)構(gòu),突出思想方法。在實踐和反思中不斷地發(fā)現(xiàn)和解決新的問題,教學(xué)效果才會逐步得到提高。
人教版函數(shù)的教學(xué)設(shè)計篇十
在新課程中,教學(xué)過程要符合學(xué)生學(xué)習(xí)過程,學(xué)生在學(xué)習(xí)過程中應(yīng)該以探究、實踐、合作學(xué)習(xí)為重,要善于引導(dǎo)學(xué)生積極參與教學(xué)過程中的探討活動,讓學(xué)生在動手實踐、自主探究與合作交流的過程中來學(xué)習(xí)數(shù)學(xué)。教師的教學(xué)活動要能激發(fā)學(xué)生探求新知識的興趣和欲望,逐步培養(yǎng)他們提問的意識,鼓勵學(xué)生多思考。同時還要關(guān)注他們在數(shù)學(xué)學(xué)習(xí)過程中的變化和發(fā)展,關(guān)注學(xué)習(xí)方法與習(xí)慣的養(yǎng)成。
在初中一元二次方程和二次函數(shù)學(xué)習(xí)的基礎(chǔ)上,教學(xué)中通過比較一元二次方程的根與對應(yīng)的二次函數(shù)的圖象和x軸的交點的橫坐標(biāo)之間的關(guān)系,給出函數(shù)的零點的概念,并揭示了方程的根與對應(yīng)的函數(shù)的零點之間的關(guān)系。然后,通過探究介紹了判斷一個函數(shù)在某個給定區(qū)間存在零點的方法和二分法。并且,教科書在“用二分法求函數(shù)零點的步驟”中滲透了算法的思想,為學(xué)生后續(xù)學(xué)習(xí)算法內(nèi)容埋下伏筆。
人教版函數(shù)的教學(xué)設(shè)計篇十一
1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進行一個全方位的研究,不僅僅是通過對比總結(jié)得到指數(shù)函數(shù)的性質(zhì),更重要的是讓學(xué)生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
2.教學(xué)中借助信息技術(shù)可以彌補傳統(tǒng)教學(xué)在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學(xué)難點、突破教學(xué)重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學(xué)生直觀觀察底數(shù)對指數(shù)函數(shù)單調(diào)性的影響。
人教版函數(shù)的教學(xué)設(shè)計篇十二
【目標(biāo)】。
1.借助生活實例,引領(lǐng)學(xué)生參與函數(shù)概念的形成過程.
2.體會從生活實例抽象出數(shù)學(xué)知識的方法,感知現(xiàn)實世界中變量之間聯(lián)系的復(fù)雜性.
【學(xué)習(xí)目標(biāo)】。
1.初步掌握函數(shù)概念,判斷兩個變量間的關(guān)系是否能看作函數(shù).
2.初步感受函數(shù)表示的三種形式:表格法、圖象法、解析式法.根據(jù)兩個變量間的關(guān)系式,給定其中一個量,會相應(yīng)地求出另一個量的值.
3.經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力.
【教學(xué)重點】。
2.判斷兩個變量之間的關(guān)系是否可看作函數(shù).
【教學(xué)難點】。
1.準(zhǔn)確理解函數(shù)概念中“唯一確定”的含義.
2.能把實際問題抽象概括為函數(shù)問題.
計意圖】。
本節(jié)公開課在教師的精心準(zhǔn)備之下,按照djp教學(xué)模式常規(guī)要求,順利完成了教學(xué)目標(biāo)?,F(xiàn)將本節(jié)課中具體作以下幾點反思:
1.函數(shù)對初中生來是第一次接觸,在教學(xué)設(shè)計的時候,充分列舉生活中有關(guān)變量的例子,讓學(xué)生去感受兩個變量之間的關(guān)系,提高學(xué)生的學(xué)習(xí)興趣.
2.本節(jié)課屬于概念課,根據(jù)djp教學(xué)模式下概念課的要求,認真設(shè)計教學(xué)過程和修改學(xué)案,經(jīng)過教研組多次研討,最終形成此教學(xué)設(shè)計.
3.本節(jié)課在原有基礎(chǔ)上作出了一些調(diào)整,在情境引入時,列舉生活中的變量,并演示摩天輪模型轉(zhuǎn)動,同時提出問題:在轉(zhuǎn)動過程中,有幾個變量?你了解它們之間的關(guān)系嗎?從而引出本節(jié)課的主題――函數(shù)的概念,并由此進入情境1的學(xué)習(xí),此環(huán)節(jié)由教師主講,目的在于為后面學(xué)生講解情境2,3作出示范,特別是在圖像中,判斷兩個變量是否成函數(shù)關(guān)系時,由于學(xué)生還沒學(xué)習(xí)直角坐標(biāo)系,所以通過ppt多次演示,教會學(xué)生判斷方法,為后面的練習(xí)作好鋪墊.
作者簡介:冉龍海,男,1980年4月出生,本科,就職于四川省成都市龍泉驛區(qū)第十中學(xué)校,研究方向:班主任教育工作。
人教版函數(shù)的教學(xué)設(shè)計篇十三
由于每個學(xué)生的基礎(chǔ)知識、智力水平和學(xué)習(xí)方法等都存在一定差別,所以本節(jié)課采用分層教學(xué)。既創(chuàng)設(shè)舞臺讓優(yōu)秀生表演,又要重視給后進生提供參與的機會,使其增強學(xué)習(xí)數(shù)學(xué)的信心。具體題目安排從易到難,形成梯度,符合學(xué)生的認知規(guī)律,使全體學(xué)生都能得到不同程度的提高。
1.掌握二次函數(shù)的圖像和性質(zhì),了解一元二次方程與二次函數(shù)的關(guān)系,能依據(jù)已知條件確定二次函數(shù)的關(guān)系式。
2.通過研究生活中實際問題,讓學(xué)生體會建立數(shù)學(xué)建模的思想.通過學(xué)習(xí)和探究xxxx考點問題,滲透數(shù)形結(jié)合思想及分類討論思想。
3.查漏補缺,采用小組學(xué)習(xí)使復(fù)習(xí)更有效,學(xué)生在自主探索與合作交流的過程中,全方位“參與”問題的解決,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法。
如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題。
[活動1]學(xué)生分組處理前置性作業(yè)
教師出示習(xí)題答案。組織學(xué)生合作交流,深入到每個小組,針對不同情況加強指導(dǎo)。
教師重點關(guān)注學(xué)困生。
針對學(xué)生的實際情況,對習(xí)題進行分層處理,樹立學(xué)困生學(xué)習(xí)數(shù)學(xué)的信心。
[活動2]師生共同解決作業(yè)中存在的問題
學(xué)生自主研究,分組討論后,然后提出問題,教師對學(xué)生回答的問題進行評價
教師重點歸納數(shù)學(xué)思想。
通過對習(xí)題的處理,使學(xué)生進一步加深對二次函數(shù)有關(guān)概念及性質(zhì)的理解,能用函數(shù)觀點解決實際問題。同時,小組學(xué)習(xí)也使學(xué)生全方位參與問題的解決。
[活動3]習(xí)題現(xiàn)中考
例1(xxxx,南寧)
教師結(jié)合教材對比、分析
學(xué)生小組合作,完成例題
教師歸納:本題考查了二次函數(shù)、一元二次方程與梯形的面積等知識。
對于二次函數(shù)與其他知識的綜合應(yīng)用,關(guān)鍵要讓學(xué)生掌握解題思路,把握題型,能利用數(shù)形結(jié)合思想進行分析,從而把握解題的突破口。
[活動4]例題現(xiàn)中考
例2(xxxx,濟寧)
例3(xxxx,黔東南州)
學(xué)生自學(xué),教師指導(dǎo),讓學(xué)生討論回答這兩道題的共同特點。
讓學(xué)生根據(jù)討論的結(jié)果概括、歸納出“每每型”二次函數(shù)模型的題型特點和解決這類問題的關(guān)鍵。
[活動5]知識提高階段
教師給出一組習(xí)題,學(xué)生討論完成。
知識再運用有助于知識的鞏固。
[活動6]小結(jié)、布置作業(yè)
問題
本節(jié)學(xué)了哪些內(nèi)容?你認為最重要的內(nèi)容是什么?
布置作業(yè)
把錯題整理到作業(yè)本上。
師生共同小結(jié),加深對本節(jié)課知識的理解。
讓學(xué)生參與小結(jié)并有不同的答案,可以增強學(xué)生學(xué)習(xí)的積極性和主動性,培養(yǎng)學(xué)生對所學(xué)知識回顧思考的習(xí)慣。
人教版函數(shù)的教學(xué)設(shè)計篇十四
二次函數(shù)的圖象及性質(zhì)近8年考查7次,以解答題為主,且綜合性較強,一般涉及求交點坐標(biāo)及頂點坐標(biāo)。在選擇、填空題中考查的知識點有二次函數(shù)圖象與系數(shù)a、b、c的關(guān)系、與一元二次方程的關(guān)系、增減性、對稱軸、頂點坐標(biāo)及與x軸、y軸的交點。
2、教學(xué)目標(biāo)
(1)認識二次函數(shù)是常見的簡單函數(shù)之一,也是刻畫現(xiàn)實世界變量之間關(guān)系的重要數(shù)學(xué)模型。理解二次函數(shù)的概念,掌握其函數(shù)關(guān)系式以及自變量的取值范圍。
(2)能正確地描述二次函數(shù)的圖象,能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題。
(3)、了解二次函數(shù)與一元二次方程的關(guān)系,能利用二次函數(shù)的圖象求一元二次方程的近似解。
3、教學(xué)重點:
(1)二次函數(shù)的圖象與性質(zhì)
(2)二次函數(shù)的平移
4、教學(xué)難點:
能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題。
基于本節(jié)課的特點和我們學(xué)校正在進行的“三、三、六”教學(xué)模式,我采用“先學(xué)后教,當(dāng)堂訓(xùn)練”的教學(xué)方法。即:教師激情導(dǎo)課,學(xué)生自學(xué)自做,教師進行面批,組織小組交流,展示學(xué)習(xí)成果,檢測導(dǎo)結(jié)反饋。對于課堂上學(xué)生出現(xiàn)的疑問,盡量讓學(xué)生互相解決,教師起到幫助、組織、合作、協(xié)調(diào)的作用。最后讓學(xué)生當(dāng)堂完成實踐練題和檢測導(dǎo)結(jié),經(jīng)過嚴(yán)格有梯度的訓(xùn)練,使學(xué)生學(xué)會知識、形成能力。同時鼓勵和培養(yǎng)學(xué)生提高分析能力、表達能力和探究能力。以“學(xué)—導(dǎo)—練”三步為主線,以“六環(huán)節(jié)”為結(jié)構(gòu),來進行本節(jié)課的教學(xué)。在整個教學(xué)過程中加強學(xué)生自學(xué)方法的指導(dǎo)。以問題“引”自學(xué),以自測“顯”問題,以優(yōu)生“帶”差生,以點撥“疏”疑點,以訓(xùn)練“鞏”新知。
由于是復(fù)習(xí)課,因此我在以學(xué)生為主體的原則下,讓他們通過畫圖、觀察、比較、推理、小組交流,直至最后探索出結(jié)論。以引導(dǎo)、探究、合作、點拔、評價的方式貫穿整個課堂。
本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):
1、挑戰(zhàn)自我;
2、考點清單;
3、夯實基礎(chǔ);
4、小結(jié)感悟;
5、目標(biāo)檢測
6、拓展延伸
7、作業(yè)布置。
1、挑戰(zhàn)自我
出示3道有關(guān)二次函數(shù)的圖象與性質(zhì),二次函數(shù)圖象的平移的中考試題,讓學(xué)生自主完成,引起有關(guān)知識點的回憶。第一題是二次函數(shù)對稱軸的考查;第二題考察圖象的平移;第三題解有關(guān)拋物線與系數(shù)a、b、c關(guān)系的題。
教學(xué)效果:學(xué)生積極投入思考,開篇就為學(xué)生創(chuàng)設(shè)了一個自由、寬松的討論氛圍。
2、考點清單
師生共同回憶
1、二次函數(shù)的圖象與性質(zhì)
2、二次函數(shù)圖象與系數(shù)a、b、c
的關(guān)系3、二次函數(shù)圖象的平移
教學(xué)效果:預(yù)計學(xué)生對這些知識有遺忘,應(yīng)積極引導(dǎo)回憶問題,達到對知識點有明確的認識。
3、夯實基礎(chǔ)
師生共同探討四道典型例題,強化知識點的靈活應(yīng)用。題讓學(xué)生先想后答,遇到難題小組交流,教師點撥,全班展示,充分發(fā)揮學(xué)生對積極主動性。
教學(xué)效果:大部分學(xué)生學(xué)習(xí)二次函數(shù)有困難,應(yīng)互幫互助,共同進步。
4、小結(jié)感悟:說說你在本節(jié)課解題過程中的收獲及疑惑?(小組交流)
教師給學(xué)生一定的時間去反思回顧,本節(jié)課對知識的研究探索過程,小結(jié)方法及相關(guān)結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律,從而達到鞏固所學(xué)知識目的增強學(xué)習(xí)興趣和合作意識。
5、目標(biāo)檢測:
為學(xué)生提供自我檢測的機會,教師針對學(xué)生反饋情況,及時調(diào)整授課,查漏補缺。并要求學(xué)生在規(guī)定五分鐘內(nèi)完成,同時對每道題進行分?jǐn)?shù)量化。當(dāng)大部分學(xué)生完成后,教師出示答案,以便學(xué)生核對。同組的學(xué)生進行作業(yè)互相批改。并把結(jié)果告訴老師,以便老師掌握每位學(xué)生是否都當(dāng)堂達到學(xué)習(xí)目標(biāo)。對于當(dāng)堂不能完成任務(wù)的學(xué)生課下進行適當(dāng)?shù)妮o導(dǎo)。
6、拓展延伸:給學(xué)有余力的學(xué)生提供更多的練習(xí)機會。
7、課后作業(yè):《中考指導(dǎo)》62頁——64頁。
以上就是我的說課內(nèi)容,歡迎各位領(lǐng)導(dǎo)、同仁批評指導(dǎo)!
1、給學(xué)生展示自我的空間。本節(jié)課的設(shè)計本著以教師為主導(dǎo)、學(xué)生為主體,以知識為載體、培養(yǎng)學(xué)生的思維能力為重點的教學(xué)思想。教師以探究任務(wù)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供給學(xué)生自主合作探究的舞臺。在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生分類、探究、合作、歸納的能力。課堂上把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)的能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。
2、在課堂上要給予學(xué)生充分的時間去思考、動手實踐,而不是使合作流于形式。要把合作交流的空間真正的還給學(xué)生。教師在課堂中還要照顧到每一名學(xué)生,讓全體的學(xué)生都動起來。
人教版函數(shù)的教學(xué)設(shè)計篇十五
1、教材的地位和作用: 函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
2、教學(xué)的重點和難點:根據(jù)這一節(jié)課的內(nèi)容特點以及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
基于對教材的理解和分析,我制定了以下的教學(xué)目標(biāo)
1、知識目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用。
2、能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論,增強學(xué)生識圖用圖的能力。
3、情感目標(biāo)(可持續(xù)性目標(biāo)): 通過學(xué)習(xí),使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
1、教學(xué)策略:首先從實際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
2、教學(xué): 貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況, 本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
人教版函數(shù)的教學(xué)設(shè)計篇十六
《指數(shù)函數(shù)》是人教b版高中數(shù)學(xué)必修1第三章第二節(jié)第1課時,是繼第二章函數(shù)的概念、函數(shù)的性質(zhì)、一次函數(shù)、二次函數(shù)之后,學(xué)生要認識的一個新的函數(shù)。下面是我對本節(jié)課的教學(xué)反思:
(一)對課前準(zhǔn)備的反思。
上課前認真?zhèn)湔n,多次請教了指導(dǎo)教師孫久志老師的意見與建議,在他的指導(dǎo)下,我對新課標(biāo)和新教材有了較為整體的把握和認識,將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成了知識框架,了解了學(xué)生的現(xiàn)狀和認知結(jié)構(gòu),做到了因材施教。
(一)對情境創(chuàng)設(shè)的反思。
這是本節(jié)課的一個成功之處,整堂課的問題情景創(chuàng)設(shè)很恰當(dāng),幾乎所有的結(jié)論都是在教師的引導(dǎo)下,學(xué)生自己總結(jié)出來的。
本節(jié)課是以問題的形式引入,采用兩個實際問題,既激發(fā)了學(xué)生學(xué)習(xí)的積極性,又讓他們體會到數(shù)學(xué)是來自于生活,也是服務(wù)于生活的。引出函數(shù)的一般式12y=ax'type=“#_x0000_t75”以后,我又讓學(xué)生自己舉幾個例子,他們舉的例子中有a=1,a=0,a0的情況,我又是以提問的形式讓學(xué)生自己分析相應(yīng)的函數(shù)定義域與函數(shù)值,結(jié)果學(xué)生自己意識到這些情況不必研究或者不容易研究,自然的得到了參數(shù)a0且a12鈮?'type=“#_x0000_t75”的范圍,進而讓學(xué)生自己求出此時函數(shù)的定義域,此時指數(shù)函數(shù)的定義已經(jīng)呼之欲出,不言自明了,甚至學(xué)生自己已經(jīng)可以給指數(shù)函數(shù)下定義了。
(二)對教學(xué)模式的反思。
本節(jié)課的另一個成功之處就是采用“引導(dǎo)啟發(fā)探討”式教學(xué),在授課的過程中,我一直在和學(xué)生進行探討,讓學(xué)生自己舉例子,自己畫圖象,自己歸納概括。剛上課的時候,有位同學(xué)就對我們舉的例子提出了問題,我耐心地進行了解答,正好他的問題也為下一步的討論提供了思路,我就順勢進行了。其實在平時的課堂中,我就比較注意和學(xué)生的交流,盡量地讓學(xué)生把問題暴漏出來,因為這樣的問題一般就是大家共同的問題。在和學(xué)生探討指數(shù)函數(shù)的特性時,他們觀察得非常細致,幾乎把圖象上能反映出來的函數(shù)性質(zhì)都說出來了,每位發(fā)言的同學(xué)我都給予了肯定,大家很積極,有位同學(xué)還說出了函數(shù)增長速度的問題,我就順勢講了一個與此有關(guān)的故事,大家聽得津津有味。
(三)對現(xiàn)代化多媒體應(yīng)用的反思。
本節(jié)課的第三個成功之處是:教學(xué)課件用得恰到好處,我采用的是幾何畫板數(shù)學(xué)軟件,非常形象直觀地展示了描點法作圖的全過程,因為這個過程是我們歸納圖像與性質(zhì)的一個準(zhǔn)備工作,應(yīng)該向?qū)W生展示,但是如果在黑板上演示,既要花費大量的時間,對于較精確的計算也無法進行。幾何畫板正好解決了這個問題,通過演示,讓學(xué)生了解到數(shù)學(xué)需要嚴(yán)謹(jǐn)科學(xué)的計算,而且數(shù)學(xué)其實也是一種很美的科學(xué)。但是數(shù)學(xué)這門學(xué)科又要求老師要正確規(guī)范地板書,除了練習(xí)、例題的題目和作圖的過程,其他重要內(nèi)容我都進行了規(guī)范的板書,讓學(xué)生的思維始終跟著我。在課堂中,我還用投影儀展示了個別學(xué)生的作業(yè),進行了點評,讓學(xué)生發(fā)現(xiàn)自己學(xué)習(xí)中的優(yōu)點和缺點。
(四)對于贊賞評價的反思。
對于學(xué)生創(chuàng)造性的回答我給予了鼓勵與肯定,而對于學(xué)生不足甚至錯誤的回答,指出了不足,但沒有損傷其自尊心和自信心。在新課標(biāo)下,我們的學(xué)生應(yīng)該是自由的`、真實的、快樂的、幸福的。我們的數(shù)學(xué)課堂教學(xué),應(yīng)該從數(shù)學(xué)的實際出發(fā)給學(xué)生自由、真實、快樂、幸福。
(五)對不足之處的反思。
在讓學(xué)生歸納指數(shù)函數(shù)的圖象時,學(xué)生總結(jié)了a1與01的代表就是我們畫出的12y=2x涓?/m:tm:rpry=3x'type=“#_x0000_t75”的圖像,而0y=(13)x'type=“#_x0000_t75”的圖像,這樣就更形象直觀一些;由于上課的教室聽不見鈴聲,時間控制得不是很準(zhǔn)確,提前了一分鐘下課,如果能利用這一分鐘再稍深入地探討一下例2中利用找中間量的方法比較兩個冪的大小,這堂課就更加完滿,雖然是一個很小的問題,不影響整堂課的效果,但是卻提醒我自己在平時的上課中就得注意小的細節(jié)問題;板書方面,行與行的疏密控制得不夠準(zhǔn)確,導(dǎo)致最后一行的空間有點小了。
人教版函數(shù)的教學(xué)設(shè)計篇十七
指數(shù)函數(shù)的教學(xué)共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應(yīng)用。指數(shù)函數(shù)第一課時是在學(xué)習(xí)指數(shù)概念的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)作好準(zhǔn)備。
1.知識目標(biāo):掌握指數(shù)函數(shù)的概念,圖像和性質(zhì)
2.能力目標(biāo):通過數(shù)形結(jié)合,利用圖像來認識,掌握函數(shù)的性質(zhì),增強學(xué)生分析問題,解決問題的能力。
3.德育目標(biāo):對學(xué)生進行辯證唯物主義思想的教育,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
(三
1、重點:指數(shù)函數(shù)的定義、性質(zhì)和圖象
2、難點:指數(shù)函數(shù)的定義理解,指數(shù)函數(shù)的圖象特征及指數(shù)函數(shù)的性質(zhì)。
3、關(guān)鍵:能正確描繪指數(shù)函數(shù)的圖象
(三)
在講解指數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復(fù)雜且不夠精確,并且是本節(jié)課的教學(xué)關(guān)鍵,教學(xué)中,我借助電腦手段,通過描點作圖,觀察圖像,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
一.
1,學(xué)情分析:大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高。
2, 學(xué)法指導(dǎo):針對這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動獲取知識,養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會獨立提出問題、解決問題??傊?,調(diào)動學(xué)生的非智力因素來促進智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
人教版函數(shù)的教學(xué)設(shè)計篇十八
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
四、教學(xué)過程:
(一)復(fù)習(xí)提問。
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
(四)鞏固練習(xí)。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇十九
“指數(shù)函數(shù)”的教學(xué)共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應(yīng)用?!爸笖?shù)函數(shù)”第一課時是在學(xué)習(xí)指數(shù)概念的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)作好準(zhǔn)備。
在講解指數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復(fù)雜且不夠精確,并且是本節(jié)課的教學(xué)關(guān)鍵,教學(xué)中,我借助電腦手段,通過描點作圖,觀察圖像,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高。針對這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動獲取知識,養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會獨立提出問題、解決問題??傊?,調(diào)動學(xué)生的非智力因素來促進智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
為了調(diào)動學(xué)生學(xué)習(xí)的積極性,使學(xué)生變被動學(xué)習(xí)為主動愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性??傊?,本堂課充分體現(xiàn)了“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。