七年級數(shù)學有理數(shù)的減法教案大全(15篇)

字號:

    教案的分享和交流有助于教師之間的互相借鑒和提高,促進教學方法的創(chuàng)新。教案的評價應該根據(jù)學生的實際表現(xiàn)和教學目標的實現(xiàn)情況來進行客觀分析。以下是小編為大家收集的優(yōu)秀教案范文,供大家參考和借鑒。
    七年級數(shù)學有理數(shù)的減法教案篇一
    學習目標:。
    1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算。
    2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.
    3、培養(yǎng)語言表達能力.調動學習積極性,培養(yǎng)學習數(shù)學的興趣.
    學習重點:有理數(shù)乘法。
    學習難點:法則推導。
    教學方法:引導、探究、歸納與練習相結合。
    教學過程。
    一、學前準備。
    計算:
    (1)(一2)十(一2)。
    (2)(一2)十(一2)十(一2)。
    (3)(一2)十(一2)十(一2)十(一2)。
    (4)(一2)十(一2)十(一2)十(一2)十(一2)。
    猜想下列各式的值:
    (一2)×2(一2)×3。
    (一2)×4(一2)×5。
    二、探究新知。
    1、自學有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.
    2、觀察以上各式,結合對問題的研究,請同學們回答:
    (3)負數(shù)乘以正數(shù)積為__________數(shù),(4)負數(shù)乘以負數(shù)積為__________數(shù)。
    提出問題:一個數(shù)和零相乘如何解釋呢?
    七年級數(shù)學有理數(shù)的減法教案篇二
    1.1正數(shù)和負數(shù)(2)。
    教學目標:
    教學重點:
    深化對正負數(shù)概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復習引入:
    學生思考并討論.
    (數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
    二、講解新課。
    度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結。
    引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設計:
    七年級數(shù)學有理數(shù)的減法教案篇三
    理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
    二、過程與方法。
    經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
    三、情感態(tài)度與價值觀。
    通過對有理數(shù)的學習,體會到數(shù)學與現(xiàn)實世界的緊密聯(lián)系。
    教學重難點及突破。
    在引入了負數(shù)后,本課對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習,使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
    教學準備。
    用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
    教學過程。
    四、課堂引入。
    2.舉例說明現(xiàn)實中具有相反意義的量。
    3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
    4.舉兩個例子說明+5與-5的區(qū)別。
    七年級數(shù)學有理數(shù)的減法教案篇四
    學習目標:。
    1、理解加減法統(tǒng)一成加法運算的意義.
    2、會將有理數(shù)的加減混合運算轉化為有理數(shù)的加法運算.
    3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
    教學方法:講練相結合。
    教學過程。
    1、一架飛機作特技表演,起飛后的高度變化如下表:
    高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
    記作+4.5千米—3.2千米+1.1千米—1.4千米。
    請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
    2、你是怎么算出來的,方法是。
    1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
    2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
    如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
    =(-20)+(+3)+(+5)+(-7)先把減法轉化為加法。
    =-20+3+5-7再把加號記在腦子里,省略不寫。
    可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
    4、師生完整寫出解題過程。
    1、解決引例中的問題,再比較前面的方法,你的感覺是。
    2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
    3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
    1、小結:說說這節(jié)課的收獲。
    2、p241、2。
    3、計算。
    1)27—18+(—7)—322)。
    五、作業(yè)。
    1、p2552、p26第8題、14題。
    七年級數(shù)學有理數(shù)的減法教案篇五
    3.進一步感悟“轉化”的思想。
    把有理數(shù)的加減法混合運算統(tǒng)一為加法運算。
    省略負數(shù)前面的加號的有理數(shù)加法,運用運算律交換加數(shù)位置時,符號不變。
    根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運算可以統(tǒng)一為加法運算。
    1、完成下列計算:
    (1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
    歸納:根據(jù)有理數(shù)的減法法則,有理數(shù)的`加減混合運算可以統(tǒng)一為運算;
    省略負數(shù)前面的加號和()后的形式是______________________;
    展示交流。
    1、把下列運算統(tǒng)一成加法運算:
    2、將下列有理數(shù)加法運算中,加號省略:
    (1)12+(-8)=________________;
    3、將下列運算先統(tǒng)一成加法,再省略加號:
    =___[]______________________。
    4、仿照本p37例6,完成下列計算:
    盤點收獲。
    個案補充。
    1.計算:
    本p39習題2。5第6題(1)、(3)、(5),第7題。
    七年級數(shù)學有理數(shù)的減法教案篇六
    三、情感態(tài)度與價值觀。
    體會數(shù)學與現(xiàn)實生活的聯(lián)系,提高學生學習數(shù)學的興趣、
    教學重點、難點與關鍵。
    1、重點:有理數(shù)加減法統(tǒng)一為加法運算,掌握有理數(shù)加減混合運算、
    2、難點:省略括號和加號的加法算式的運算方法、
    投影儀、
    四、教學過程。
    一、復習提問,引入新課。
    1、敘述有理數(shù)的加法、減法法則、
    2、計算、
    (1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
    (4)(—8)—6;(5)5—14、
    五、新授。
    我們已學習了有理數(shù)加、減法的運算,今天我們來研究怎樣進行有理數(shù)的加減混合運算、
    六、鞏固練習。
    1、課本第24頁練習、
    (1)題是已寫成省略加號的代數(shù)和,可運用加法交換律、結合律、
    原式=1+3—4—0。5=0—0。5=—0。5。
    (2)題運用加減混合運算律,同號結合、
    原式=—2。4—4。6+3。5+3。5=—7+7=0。
    (3)題先把加減混合運算統(tǒng)一為加法運算、
    原式=(—7)+(—5)+(—4)+(+10)。
    =—7—5—4+10(省略括號和加號)。
    =—16+10。
    =—6。
    七、課堂小結。
    八、作業(yè)布置。
    1、課本第25頁第26頁習題1、3第5、6、13題、
    九、板書設計:
    第四課時。
    1、把有理數(shù)加減混合運算轉化為加法后,常用加法交換律和結合律使計算簡便、
    歸納:加減混合運算可以統(tǒng)一為加法運算、
    用式子表示為a+b—c=a+b+(—c)、
    2、隨堂練習。
    3、小結。
    4、課后作業(yè)。
    十、課后反思。
    本課教學反思。
    本節(jié)課主要采用過程教案法訓練學生的聽說讀寫。過程教案法的理論基礎是交際理論,認為寫作的過程實質上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學生指導,更正其錯誤,幫助學生完成寫作各階段任務。課堂是寫作車間,學生與教師,學生與學生彼此交流,提出反饋或修改意見,學生不斷進行寫作,修改和再寫作。在應用過程教案法對學生進行寫作訓練時,學生從沒有想法到有想法,從不會構思到會構思,從不會修改到會修改,這一過程有利于培養(yǎng)學生的寫作能力和自主學習能力。學生由于能得到教師的及時幫助和指導,所以,即使是英語基礎薄弱的同學,也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學生寫作興趣,增強了寫作的自信心。
    這個話題很容易引起學生的共鳴,比較貼近生活,能激發(fā)學生的興趣,在教授知識的同時,應注意將本單元情感目標融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡能為后續(xù)學習打下基礎。此教案設計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
    在此教案過程中,應注重培養(yǎng)學生的自學能力,通過輔導學生掌握一套科學的學習方法,才能使學生的學習積極性進一步提高。再者,培養(yǎng)學生的學習興趣,增強教案效果,才能避免在以后的學習中產(chǎn)生兩極分化。
    在教案中任然存在的問題是,學生在“說”英語這個環(huán)節(jié)還有待提高,大部分學生都不愿意開口朗讀課文,所以復述課文便尚有難度,對于這一部分學生的學習成績的提高還有待研究。
    七年級數(shù)學有理數(shù)的減法教案篇七
    2.培養(yǎng)學生觀察、分析、歸納及運算能力。
    三、教學重點。
    四、教學難點。
    五、教學用具。
    三角尺、小黑板、小卡片。
    六、課時安排。
    1課時。
    七、教學過程。
    (一)、從學生原有認知結構提出問題。
    1.計算:
    (1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
    2.化簡下列各式符號:
    (1)-(-6);(2)-(+8);(3)+(-7);。
    (4)+(+4);(5)-(-9);(6)-(+3).
    3.填空:
    (1)______+6=20;(2)20+______=17;。
    (3)______+(-2)=-20;(4)(-20)+______=-6.
    在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。
    (二)、師生共同研究有理數(shù)減法法則。
    問題1(1)(+10)-(+3)=______;。
    (2)(+10)+(-3)=______.
    教師引導學生發(fā)現(xiàn):兩式的結果相同,(更多內容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
    (2)(+10)+(+3)=______.
    (2)的結果是多少?
    于是,(+10)-(-3)=(+10)+(+3).
    至此,教師引導學生歸納出有理數(shù)減法法則:
    減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。
    教師強調運用此法則時注意“兩變”:一是減法變?yōu)榧臃?;二是減數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。
    (三)、運用舉例變式練習。
    例1計算:
    (1)(-3)-(-5);(2)0-7.
    例2計算:
    (1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
    通過計算上面一組有理數(shù)減法算式,引導學生發(fā)現(xiàn):
    在小學里學習的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。
    閱讀課本63頁例3。
    (四)、小結。
    1.教師指導學生閱讀教材后強調指出:
    由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。
    2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。
    (五)、課堂練習。
    1.計算:
    (1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
    2.計算:
    3.計算:
    (1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
    (4)(-5.9)-(-6.1);。
    (5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
    利用有理數(shù)減法解下列問題。
    八、布置課后作業(yè):
    課本習題2.6知識技能的2、3、4和問題解決1。
    九、板書設計。
    2.5有理數(shù)的減法。
    (一)知識回顧(三)例題解析(五)課堂小結。
    例1、例2、例3。
    (二)觀察發(fā)現(xiàn)(四)課堂練習練習設計。
    十、課后反思。
    七年級數(shù)學有理數(shù)的減法教案篇八
    2.內容解析。
    有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學習有理數(shù)的除法、乘方的基礎,對后續(xù)代數(shù)學習是至關重要的.
    與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學已掌握的乘法運算的基礎上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結果應該是什么”的結論,從而使學生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質特征,也是乘法法則的核心.
    基于以上分析,可以確定本課的教學重點是兩個有理數(shù)相乘的符號法則.
    二、目標及其解析。
    1.目標。
    (1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
    (2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
    2.目標解析。
    達成目標(1)的標志是學生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結果.
    達成目標(2)的標志是學生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
    三、教學問題診斷分析。
    有理數(shù)的乘法與小學學習的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎,構造一組有規(guī)律的算式,先讓學生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應有……”為引導,讓學生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應有什么運算結果,并從積的符號和絕對值兩個角度總結出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
    本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
    四、教學過程設計。
    教師引導學生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
    設計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復習有關知識,為下面的教學做好準備,又滲透了分類討論思想.
    問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
    3×3=9,
    3×2=6,
    3×1=3,
    3×0=0.
    追問1:你認為問題要我們“觀察”什么?應該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
    如果學生仍然有困難,教師給予提示:
    (1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
    (2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
    設計意圖:構造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
    教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應該從0遞減3而得-3.
    追問2:根據(jù)這個規(guī)律,下面的兩個積應該是什么?
    3×(-2)=,
    3×(-3)=.
    練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規(guī)律.
    設計意圖:讓學生自主構造算式,加深對運算規(guī)律的理解.
    先讓學生觀察、敘述、補充,教師再總結:都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
    設計意圖:先得到一類情況的結果,降低歸納概括的難度,同時也為后面的學習奠定基礎.
    問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
    3×3=9,
    2×3=6,
    1×3=3,
    0×3=0.
    鼓勵學生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
    設計意圖:為得到負數(shù)乘正數(shù)的結論做準備;培養(yǎng)學生的模仿、概括的能力.
    追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應各填什么數(shù)?
    (-1)×3=,
    (-2)×3=,
    (-3)×3=.
    練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規(guī)律.
    先讓學生觀察、敘述、補充,教師再總結:都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
    追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結論有什么共性?你能把它概括出來嗎?
    設計意圖:讓學生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
    問題4利用上面歸納的結論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
    (-3)×3=,
    (-3)×2=,
    (-3)×1=,
    (-3)×0=.
    追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
    (-3)×(-1)=,
    (-3)×(-2)=,
    (-3)×(-3)=.
    設計意圖:由學生自主探究得出負數(shù)乘負數(shù)的結論.因為有前面積累的豐富經(jīng)驗,學生能獨立完成.
    問題5總結上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
    學生獨立思考后進行課堂交流,師生共同完成,得出結論后再讓學生看教科書.
    學生獨立思考、回答.如果有困難,可先讓學生看課本第29頁有理數(shù)乘法法則后面的一段文字.
    設計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關鍵步驟.
    例1計算:
    (1)。
    ;(2)。
    ;(3)。
    學生獨立完成后,全班交流.
    教師說明:在(3)中,我們得到了。
    =1.與以前學習過的倒數(shù)概念一樣,我們說。
    與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
    追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
    設計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關系(反過來有-8=8×(―1)).
    設計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學的應用價值.
    小結、布置作業(yè)。
    請同學們帶著下列問題回顧本節(jié)課的內容:
    (2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
    (3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
    (4)你能舉例說明符號法則“負負得正”的合理性嗎?
    設計意圖:引導學生從知識內容和學習過程兩個方面進行小結.
    作業(yè):教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
    五、目標檢測設計。
    1.判斷下列運算結果的符號:
    (1)5×(-3);。
    (2)(-3)×3;。
    (3)(-2)×(-7);。
    (4)(+0.5)×(+0.7).
    2計算:
    (1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
    (4)。
    ;(5)0×(-6);(6)8×。
    設計意圖:檢測學生對有理數(shù)乘法法則的理解情況.
    七年級數(shù)學有理數(shù)的減法教案篇九
    1、知識目標:了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進行準確運算。
    2、能力目標:通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
    3、情感目標:培養(yǎng)積極思考和勇于探索的精神,形成良好的學習習慣。
    重點:有理數(shù)乘法運算法則的推導及熟練運用。
    難點:有理數(shù)乘法運算中積的符號的確定。
    1、在小學我們已經(jīng)接觸了乘法,那什么叫乘法呢?
    求幾個的運算,叫乘法。
    一個數(shù)同0相乘,得0。
    2、請你列舉幾道小學學過的乘法算式。
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘后蝸牛應在o點的()邊()cm處。
    可以列式為:(+2)(+3)=。
    問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘后蝸牛應在o點的()邊()cm處。
    可以列式為:
    問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘前蝸牛應在o點的()邊()cm處。
    可以表示為:
    問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘前蝸牛應在o點的()邊()cm處。
    可以表示為:
    2、觀察這四個式子:
    (+2)(+3)=+6(—2)(—3)=+6。
    (—2)(+3)=—6(+2)(—3)=—6。
    正數(shù)乘正數(shù)積為__數(shù):負數(shù)乘負數(shù)積為__數(shù):
    負數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負數(shù)積為__數(shù):
    乘積的絕對值等于各乘數(shù)絕對值的_____。
    思考:當一個因數(shù)為0時,積是多少?
    兩數(shù)相乘,同號得,異號得,并把絕對值。
    任何數(shù)同0相乘,都得。
    1、你能確定下列乘積的符號嗎?
    37積的符號為;(—3)7積的符號為;
    3(—7)積的`符號為;(—3)(—7)積的符號為。
    2先閱讀,再填空:
    (—5)x(—3)。同號兩數(shù)相乘。
    (—5)x(—3)=+()得正。
    5x3=15把絕對值相乘。
    所以(—5)x(—3)=15。
    填空:(—7)x4____________________。
    (—7)x4=—()___________。
    7x4=28_____________。
    所以(—7)x4=____________。
    [例1]計算:
    (1)(—5)(2)(—5)。
    (3)(—6)(—0.45)(4)(—7)0=。
    解:(1)(—5)(—6)=+(56)=+30=30。
    請同學們仿照上述步驟計算(2)(3)(4)。
    (2)(—5)6==。
    (3)(—6)(—0.45)==。
    (4)(—7)0=。
    讓我們來總結求解步驟:
    兩個數(shù)相乘,應先確定積的,再確定積的。
    1、小組口算比賽,看誰更棒。
    (1)3(—4)(2)2(—6)(3)(—6)2。
    (4)6(—2)(5)(—6)0(6)0(—6)。
    2、仔細計算。,注意積的符號和絕對值。
    (1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
    (4)(—2)(—)(5)(—)(—)(6)(—)5。
    1、下列說法錯誤的是()。
    a、一個數(shù)同0相乘,仍得0。
    b、一個數(shù)同1相乘,仍得原數(shù)。
    c、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)。
    d、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)。
    2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()。
    a、10b、12c、—20d、不是以上的答案。
    3、計算下列各題:
    (5)(—6)(—5)=;(6)(—5)(—6)=。
    七年級數(shù)學有理數(shù)的減法教案篇十
    3.注意培養(yǎng)學生的運算能力.。
    教學重點和難點。
    重點:有理數(shù)的混合運算.。
    難點:準確地掌握有理數(shù)的運算順序和運算中的符號問題.。
    課堂教學過程設計。
    一、從學生原有認知結構提出問題。
    1.計算(五分鐘練習):
    (17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
    (24)3.4×104÷(-5).。
    加法交換律:a+b=b+a;
    加法結合律:(a+b)+c=a+(b+c);
    乘法交換律:ab=ba;
    乘法結合律:(ab)c=a(bc);
    乘法分配律:a(b+c)=ab+ac.
    二、講授新課。
    1.在只有加減或只有乘除的同一級運算中,按照式子的順序從左向右依次進行.。
    審題:(1)運算順序如何?
    (2)符號如何?
    七年級數(shù)學有理數(shù)的減法教案篇十一
    比較正數(shù)和負數(shù)的大小。
    1、借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。
    2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結構的初步構建。
    負數(shù)與負數(shù)的比較。
    一、復習:
    1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?
    —85。6+0。9—+0—82。
    2、如果+20%表示增加20%,那么—6%表示。
    二、新授:
    (一)教學例3:
    1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)。
    2、出示例3:
    (1)提問你能在一條直線上表示他們運動后的情況嗎?
    (2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
    (3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數(shù)表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數(shù)對應起來。
    (4)學生回答,教師在相應點的下方標出對應的數(shù),再讓學生說說直線上其他幾個點代表的數(shù),讓學生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。
    (5)總結:我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。
    (6)引導學生觀察:
    a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?
    (7)練習:做一做的第1、2題。
    (二)教學例4:
    1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。
    2、學生交流比較的方法。
    3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
    4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
    5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。
    6、總結:負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。
    7、練習:做一做第3題。
    三、鞏固練習。
    1、練習一第4、5題。
    2、練習一第6題。
    3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
    四、全課總結。
    (1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
    (2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。
    第二課教學反思:
    許多教師認為“負數(shù)”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內容可以向學生補充介紹。
    例3——兩個不同層面的拓展:
    1、在數(shù)軸上表示數(shù)要求的拓展。
    數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學生數(shù)形結合能力,為例4的教學打下夯實的基礎。
    2、滲透負數(shù)加減法。
    教材中所呈現(xiàn)的數(shù)軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數(shù)知識是極為有利的。
    例4——薄書讀厚、厚書讀薄。
    薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))。
    例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
    將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
    無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小?!奔词褂袑W生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應萬變。
    在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。
    七年級數(shù)學有理數(shù)的減法教案篇十二
    一、問題的引入:在問題的引入上。新課標規(guī)定應從實際情景入手,并且使學生能夠對問題產(chǎn)生強烈的求知欲。我采用了敵軍對我軍進行小規(guī)模軍事偵察的問題,使學生處在一個指揮官的角色。對問題提出解決的辦法,并且在對學生提出的各種情況,作出實際的操作,使學生明白數(shù)學在解決實際問題中的應用。我感覺在問題的引入上問題過于簡單,使學生思考的范圍過于局限。沒有出現(xiàn)比較熱烈的學習氣氛。所以問題的引入應加大深度,應具有一定的挑戰(zhàn)性。
    二、問題的探索:在問題的探索上,我采用了一個小人在坐標軸上來回行走,產(chǎn)生一種動態(tài)效果,使學生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時間和空間的條件下,親身參加探索發(fā)現(xiàn),主動的獲取知識和技能。但在整個的實施過程中出現(xiàn)了一些問題,比如:在法則的得出上學生的總結出現(xiàn)了一些問題,我再處理時由于怕時間不夠充裕所以學生出現(xiàn)的問題我給作出了解答,其實這里應由學生自己來解決,這樣對學生能力的提高非常有幫助。
    三、習題的配備:整個習題的配備大致是按從易到難的順序排列的,面向全體學生,采用多種形式,使不同層次的學生都有所得,并且采用循序漸進的方法,使學生對加法法則的理解進一步的加強。在講解完例題后,讓學生互相提問,以促使學生積極踴躍的參與到教學活動中來,創(chuàng)造一種輕松的學習氛圍。在最后的習題配備上,讓學生對兩個加數(shù)及和之間的關系作出判斷,并且對各種情況作出討論,達到本節(jié)課的一個高潮。促使學生的思路得到進一步的加強。但我總體感覺習題的量不夠充足,學生的練習機會較少。
    七年級數(shù)學有理數(shù)的減法教案篇十三
    本節(jié)是在學習有理數(shù)加.減.乘.除.乘方的基礎上。引入了有理數(shù)的混合運算,學生通過討論、理解有理數(shù)混合運算順序,掌握有理數(shù)混合運算.它是有理數(shù)運算的推廣和延續(xù)。
    本節(jié)課的重點是能熟練的按照有理數(shù)的運算順序進行混合運算。難點是在正確運算的基礎上,適當?shù)倪\用運算律簡化運算。首先,我先復習了運算律,既是對上節(jié)的復習,又對這節(jié)學習作鋪墊。又通過詳細分析了例題,小組討論。學生自主學習,使他們更明確了運算順序,進行有理數(shù)運算,培養(yǎng)了學生自主探究的習慣。第三,在例題的講解中穿插了讓學生自己動手鍛煉的過程.及時的反饋學習情況.最后,通過“算24點”游戲,創(chuàng)設良好的氛圍,讓學生動腦動手動口,不僅可以提高學生學習興趣,訓練學生的'思維,還可以培養(yǎng)學生的數(shù)學運算能力和數(shù)學表達能力.
    課后的專家的對教學過程和課堂的學生的學習效果進行了肯定,同時也提出了建議,希望根據(jù)學生的實際情況,將例題的難度降低,讓學生能更好的適應.
    本次活動,無論是課上,還是課后的研討,老師們都表現(xiàn)出高度的熱情,整個研討過程都呈現(xiàn)出濃厚的氛圍。通過本次活動,鍛煉和提高了我們的教學能力,相信通過堅持不懈地實踐,我們教師的專業(yè)成長步伐會更快!
    七年級數(shù)學有理數(shù)的減法教案篇十四
    3+4表示3和+4的代數(shù)和。
    等。代數(shù)和概念是掌握有理數(shù)運算的一個重要概念,請老師務必給予充分注意。
    4、先把正數(shù)與負數(shù)分別相加,可以使運算簡便。
    5、在交換加數(shù)的位置時,要連同前面的符號一起交換。如。
    12-5+7應變成12+7-5,而不能變成12-7+5。
    教學設計示例一。
    一、素質目標。
    (一)知識教學點。
    1.了解:代數(shù)和的概念.。
    2.理解:有理數(shù)加減法可以互相轉化.。
    (二)能力訓練點。
    培養(yǎng)學生的口頭表達能力及計算的準確能力.。
    (三)德育滲透點。
    (四)美育滲透點。
    七年級數(shù)學有理數(shù)的減法教案篇十五
    1、(6分)把下列各數(shù)填在相應的集合內:
    -23,0.25,,-5.18,18,-38,10,+7,0,+12。
    正數(shù)集合:{………}。
    整數(shù)集合:{………}。
    分數(shù)集合:{………}。
    2、某校對七年級男生進行俯臥撐測試,以能做7個為標準,超過的次數(shù)用正數(shù)表示,不足的次數(shù)用負數(shù)表示,其中8名男生的成績如下表:
    2-103-2-310。
    (1)這8名男生的達標率是百分之幾?
    (2)這8名男生共做了多少個俯臥撐?
    答案。
    1、
    正數(shù)集合:{0.25,18,10,+7,+12………}。
    整數(shù)集合:{-23,18,-38,10,+7,0,+12………}。
    分數(shù)集合:{0.25,,-5.18………}。
    2、
    (1)50%,(2)56個。