教案的編寫需要考慮學生的學習特點和能力,促進他們的主動參與和學習興趣。教案的編寫應注重評價和反思,以不斷改進和完善教學設計和活動安排。根據(jù)教案范文進行修改和創(chuàng)新,使自己的教學更加生動和有效。
初三數(shù)學二次函數(shù)教案篇一
1.質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
初三數(shù)學二次函數(shù)教案篇二
二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
三、教師在設計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
四、激發(fā)興趣,提高質量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
初三數(shù)學二次函數(shù)教案篇三
1.從具體函數(shù)的圖象中認識二次函數(shù)的基本性質,了解二次函數(shù)與二次方程的相互關系.
2.探索二次函數(shù)的變化規(guī)律,掌握函數(shù)的最大值(或最小值)及函數(shù)的增減性的概念.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
3.通過具體實例,讓學生經(jīng)歷概念的形成過程,使學生體會到函數(shù)能夠反映實際事物的變化規(guī)律,體驗數(shù)學來源于生活,服務于生活的辯證觀點.
教學重點。
二次函數(shù)的最大值,最小值及增減性的理解和求法.
教學難點。
二次函數(shù)的性質的應用.
初三數(shù)學二次函數(shù)教案篇四
老師講課認真聽講,不會的問題及時標記。在課堂上,做一個好學生,認真聽講,對于老師講的問題及時記錄,進行相應的標記,在下課的時候,及時詢問老師,早日解決問題。
一定要課前預習一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預習,預習比復習更加重要,真的很重要,關乎到課堂的思維能力的轉變,多多看看,對自己的理解有幫助。
課上要學會學習,記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學習高中數(shù)學,與老師探討學習方法,記筆記,記住講的重點。
多做一些比較普通而又常出的問題,來熟悉自己學的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進行做和學,總有一份題目適合自己做,便會更熟悉自己學的知識。
學會總結本節(jié)課的知識點,重點,做一個學會學習的人。及時總結所學的知識點,做一個學好習的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。
建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學習到知識,能夠復習到自己以前錯過的題。
與老師經(jīng)常交流學習方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學習,及時的詢問一下高中數(shù)學的學習方法,總有一個適合自己。
初三數(shù)學二次函數(shù)教案篇五
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;。
(2)分解因式的結果要以積的形式表示;。
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知。
例題學習:
p166例1、例2(略)。
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習。
1.p167練習;。
2.看誰連得準。
x2-y2(x+1)2。
9-25x2y(x-y)。
x2+2x+1(3-5x)(3+5x)。
xy-y2(x+y)(x-y)。
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a-3)=a2-9。
(2)a2-4=(a+2)(a-2)。
(3)a2-b2+1=(a+b)(a-b)+1。
(4)2πr+2πr=2π(r+r)。
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結。
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發(fā)言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數(shù)學思想的理解。
活動8:課后作業(yè)。
課本p170習題的第1、4大題。
學生自主完成。
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)。
15.4.1提公因式法例題。
1.因式分解的定義。
2.提公因式法。
初三數(shù)學二次函數(shù)教案篇六
數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
做到教師入題海,學生出題海。教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果。
興趣是學習最好的動力,在上復習課時尤為重要。因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感。這樣他們才會更有興趣的學習下去。
1、質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3、生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4、初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
1、教學案例、教學設計、教學實錄、教學敘事的區(qū)別:是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結果。
2、教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4、教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
初三數(shù)學二次函數(shù)教案篇七
1.教學案例、教學設計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
初三數(shù)學二次函數(shù)教案篇八
1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質的過程,獲得利用圖象研究函數(shù)性質的經(jīng)驗。
2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質,初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。
3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(開口方向、對稱軸、頂點坐標)。
教學重點:二次函數(shù)y=ax2的圖象的作法和性質。
教學難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系。
教學方法:自主探索,數(shù)形結合。
利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質的真正理解。
一、認知準備:
1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?
2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)。
你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質嗎?本節(jié)課我們一起探索。
二、新授:
(一)動手實踐:作二次函數(shù)y=x2和y=-x2的圖象。
(同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)。
(二)對照黑板圖象議一議:(先由學生獨立思考,再小組交流)。
1.你能描述該圖象的形狀嗎?
2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?
3.當x0時,隨著x的增大,y如何變化?當x0時呢?
4.當x取什么值時,y值最???最小值是什么?你是如何知道的?
5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。
(三)學生交流:
1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)。
2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?
3.教師出示同一直角坐標系中的兩個函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:
(1)二次函數(shù)y=x2和y=-x2的圖象關于哪條直線對稱?
(2)兩個圖象關于哪個點對稱?
(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?
(四)動手做一做:
1.作出函數(shù)y=2x2和y=-2x2的圖象。
(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學生黑板完成)。
2.對照黑板圖象,數(shù)形結合,研討性質:
(1)你能說出二次函數(shù)y=2x2具有哪些性質嗎?
(2)你能說出二次函數(shù)y=-2x2具有哪些性質嗎?
(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質嗎?
(學生分小組活動,交流各自的發(fā)現(xiàn))。
3.師生歸納總結二次函數(shù)y=ax2的圖象及性質:
(2)性質。
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(x0),y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。
4.應用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質。
(2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點和不同點?
三、小結:
通過本節(jié)課學習,你有哪些收獲?(學生小結)。
1.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。
2.知道二次函數(shù)y=ax2的性質:
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(x0=,y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。
初三數(shù)學二次函數(shù)教案篇九
二次函數(shù)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,在初中的學習中已經(jīng)給出了二次函數(shù)的圖象及性質,學生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質,只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質的方法進行的,基于這種情況,我認為本節(jié)課的作用是讓學生借助于熟悉的函數(shù)來進一步學習研究函數(shù)的更一般的方法,即:利用解析式分析性質來推斷函數(shù)圖象。它可以進一步深化學生對函數(shù)概念與性質的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質與圖象。因此,本節(jié)課的內(nèi)容十分重要。
2、教學的重點和難點。
教學重點:使學生掌握二次函數(shù)的概念、性質和圖象;從函數(shù)的性質推斷圖象的方法。
教學難點:掌握從函數(shù)的性質推斷圖象的方法。
按照新課標指出三維目標,根據(jù)任教班級學生的實際情況,本節(jié)課我確定的教學目標是:
1、知識與技能:掌握二次函數(shù)的性質與圖象,能夠借助于具體的二次函數(shù),理解和掌握從函數(shù)的性質推斷圖象的方研究法。
2、過程與方法:通過老師的引導、點撥,讓學生在分組合作、積極探索的氛圍中,掌握從函數(shù)解析式、性質出發(fā)去認識函數(shù)圖象的高度理解和研究函數(shù)的方法。
3、情感、態(tài)度、價值觀:讓學生感受數(shù)學思想方法之美、體會數(shù)學思想方法之重要;培養(yǎng)學生主動學習、合作交流的意識等。
遵循“教師的主導作用和學生的主體地位相統(tǒng)一的教學規(guī)律”,從教師的角色突出體現(xiàn)教師是設計者、組織者、引導者、合作者,經(jīng)過教師對教材的分析理解,在教師的組織引導和師生互動過程中以問題為載體實施整個教學過程;在學生這方面,通過自主探索、合作交流、歸納方法等一系列活動為主線,感受知識的形成過程,拓展和完善自己的認知結構,進而體現(xiàn)出教學過程中教師與學生的雙主體作用。
根據(jù)新課標的理念,我把整個的教學過程分為六個階段,即:創(chuàng)設情景、提出問題。
師生互動、探究新知。
獨立探究,鞏固方法。
強化訓練,加深理解。
小結歸納,拓展深化。
布置作業(yè),提高升華。
的圖象。目的是充分暴露學生在作圖時不能很好的結合函數(shù)的性質而出現(xiàn)的錯誤或偏差問題,突出本節(jié)課的重要性。在學生總結交流的基礎上教師指出學生的錯誤并以設問的方式提出本節(jié)課的目標:如何利用函數(shù)性質的研究來推斷出較為準確的函數(shù)圖象,進而引導學生進入師生互動、探究新知階段。
在這個階段,我引用課本所給的例題1請同學們以學習小組為單位嘗試完成并作出總結發(fā)言。目的是:讓學生充分參與,在合作探究中讓學生最大限度地突破目標或暴露出在嘗試研究過程中出現(xiàn)的分析障礙,即不能很好的把握函數(shù)的性質對圖象的影響,不能把抽象的性質與直觀的圖象融會貫通,這樣便于教師在與學生互動的過程中準確把握難點,各個擊破,最終形成知識的遷移。在學生探討后,教師選小組代表做總結發(fā)言,其他小組作出補充,教師引導從逐步完善函數(shù)性質的分析。其中,學生對于對稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析闡述等可能存在困難。這時教師可以利用對解析式的分析結合多媒體演示引導學生得到分析的思路和解決的方法,在師生互動的過程中把函數(shù)的性質完善。之后進入環(huán)節(jié)3:再次讓學生利用二次函數(shù)的性質推斷出二次函數(shù)的圖象,強化用二次函數(shù)的性質推斷圖象的關鍵。進而突破教學難點。讓學生真正實現(xiàn)知識的遷移,完成整個探究過程,形成較為完整的新的認知體系。當然,在這個過程中可能會有學生提出圖象為什么是曲線而不是直線等問題,為了消除學生的疑惑,進入第4個環(huán)節(jié):教師要簡單說明這是研究函數(shù)要考慮的一個重要的性質,是函數(shù)的凹凸性,后面我們將要給大家介紹,同學們可以閱讀課本第110頁的探索與研究。這樣也給學生留下一個思考與探索的空間,培養(yǎng)學生課外閱讀、自主研究的能力,增強學生學習數(shù)學的積極性。
在以上環(huán)節(jié)完成后,進入第5個環(huán)節(jié):讓學生對利用解析式分析性質然后推斷函數(shù)圖象的研究過程進行梳理并加以提煉、抽象、概括,得出研究函數(shù)的具體操作過程,使問題得以升華,拓寬學生的思維,將新知識內(nèi)化到自己的認知結構中去。最終尋求到解決問題的方法。
教學的最終目標應該落實到每一個學生個體的內(nèi)化與發(fā)展,由此讓引導學生進入獨立探究,鞏固方法的階段。例2在題目的設置上變換二次函數(shù)的開口方向,目的是一方面使學生加深對知識的理解,完善知識結構,另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。學生在例1的基礎上將會目標明確地進行函數(shù)性質的研究,然后推斷出比較準確的函數(shù)圖象,使新知得到有效鞏固。
通過前面三個階段的學習,學生應該基本掌握了本節(jié)課的相關知識。但對二次函數(shù)中系數(shù)a、b、c的對二次函數(shù)的影響還有待提高,為此我把課本中的例3進行改編,引導學生進入強化訓練,加深理解階段。一方面可以解決學生對奇偶性的質疑,另一方面也可以把學生對二次函數(shù)的認識提到新的高度。
第五個階段:小結歸納,拓展深化。為了讓學生能夠站在更高的角度認識二次函數(shù)和掌握函數(shù)的一般研究方法,教師引導學生從兩個方面總結。在你對函數(shù)圖象與性質的關系有怎樣的理解方面教師要引導、拓展,明確今天所學習的方法實際上是研究函數(shù)性質圖象的一般方法,對于一些陌生的或較為復雜的函數(shù)只要借助于適當?shù)姆椒ǖ玫较嚓P的性質就可以推斷出函數(shù)的圖象,從而把學生的認知水平定格在一個新的高度去理解和認識函數(shù)問題。
最后一個階段是布置作業(yè),提高升華,作業(yè)的設置是分層落實。鞏固題讓學生復習解題思路,準確應用,以便舉一反三。探究題通過對教材例題的改編,供學有余力的學生自主探索,提高他們分析問題、解決問題的能力。
以上六個階段環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調(diào)控下,學生通過動手操作,動眼觀察,動腦思考,親身經(jīng)歷了知識的形成和發(fā)展過程,并得以遷移內(nèi)化。而最終的探究作業(yè)又將激發(fā)學生興趣,帶領學生進入對二次函數(shù)更進一步的思考和研究之中,從而達到知識在課堂以外的延伸??傊@節(jié)課是本著“授之以漁”而非“授之以魚”的理念來設計的。
初三數(shù)學二次函數(shù)教案篇十
今天我說課的課題是二次函數(shù)圖像及其性質。下面我將從以下幾個方面進行闡述:
首先,我對本節(jié)教材進行簡要分析。
本節(jié)內(nèi)容是人民教育出版的九年級數(shù)學課程標準實驗教科書《數(shù)學》第二冊第二十七章第二節(jié)第三課時,屬于數(shù)與代數(shù)領域的知識。在此之前,學生已學習了二次函數(shù)的概念和二次函數(shù)的圖像及其性質。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質的相關知識的復習總結和綜合運用,是后續(xù)研究二次函數(shù)圖像的變換的基礎。二次函數(shù)在初中函數(shù)的教學中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎。
本節(jié)課中的教學重點是梳理所學過的二次函數(shù)及其性質的相關內(nèi)容,建構符合學生認知結構的知識體系,教學難點是運用數(shù)形結合的思想,選用恰當?shù)臄?shù)學關系式解決二次函數(shù)的問題,以及把實際問題轉化成二次函數(shù)問題并利用二次函數(shù)的性質來解決。
基于以上對教材的認識,根據(jù)數(shù)學課程標準,考慮到學生已有的認知結構與心理特征,制定如下的教學目標。
【知識與技能】:
了解二次函數(shù)解析式的二種表示方法,會用配方法轉化二次函數(shù)的表示形式;
會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質;
會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸以及拋物線與坐標軸的交點坐標。
【過程與方法】:
3、數(shù)學的思想方法去觀察、研究和解決實際問題,體驗數(shù)學建模的思想。培養(yǎng)學生運用二次函數(shù)圖像及其性質的相關知識解決數(shù)學綜合題和實際問題的能力。
【情感與態(tài)度目標】:
在數(shù)學教學中滲透美的教育,讓學生感受二次函數(shù)圖像的對稱之美,激發(fā)學生的學習興趣。運用二次函數(shù)解決實際問題,使學生進一步認識到數(shù)學源于生活,用于生活的辯證觀點。
為突出重點、突破難點、抓住關鍵,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談設計思路。
教法選擇與教學手段:基于本節(jié)課的特點是復習總結所學過的知識及其綜合運用,應著重采用復習與總結的教學方法與手段,即利用任務驅動進行復習總結,構建二次函數(shù)圖像及其性質的綜合化、網(wǎng)絡化、結構化。通過提問思考、歸納總結、綜合運用等形式對二次函數(shù)圖像及其性質的相關知識和基本解題方法進行有針對性的、系統(tǒng)性的、綜合性的教學。復習課例題教學的模式為學生思考,教師分析,解題小結三個環(huán)節(jié)。
學法指導:讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
最后,我來具體談一談本節(jié)課的教學過程。
(一)由任務導引相關回憶。
為對二次函數(shù)圖像及其性質的相關知識進行重構做準備。通過兩題練習回憶復習二次函數(shù)圖像及其性質的相關知識。第一題用配方法把二次函數(shù)的一般式化為頂點式的形式,并指出開口方向,對稱軸和頂點坐標,引導學生復習回憶,了解二次函數(shù)解析式的二種表示方法,掌握用配方法轉化二次函數(shù)的表示形式,會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸。第二題用描點法畫出二次函數(shù)的圖象,并說出為何值時隨增大而增大,為何值時,隨增大而減小,引導學生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質。
運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質的相關知識進行梳理,由以上練習引導學生回憶、理解二次函數(shù)圖像及其性質的相關知識,并形成相關的知識結構體系。通過知識回顧幫助學生梳理有關知識點,二次函數(shù)的定義、解析式的形式、圖像畫法、圖像及其性質。
通過對二次函數(shù)圖像及其性質的相關知識的復習,讓學生運用相關概念、性質進行解題,采用學生思考,教師分析,解題小結三個環(huán)節(jié)構成的練習題講解模式,鞏固求解二次函數(shù)圖像及其性質的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質的應用。第五題及第六題是運用二次函數(shù)圖像及其性質的相關知識解決實際問題,領悟數(shù)形結合的思想方法,發(fā)展學生的化歸遷移的數(shù)學思維,培養(yǎng)學生的轉化能力。
(四)反思概括,方法總結。
總結本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質的相關知識和基本解題方法,領悟數(shù)形結合的數(shù)學思想方法,學會用化歸思想,解決實際問題。培養(yǎng)學生由題及法,由法及類的數(shù)學總結歸納方法。
(五)作業(yè)。
課后通過練習來鞏固本節(jié)課所復習的知識點、重點和難點,強化教學目標。
各位老師,以上所說只是我預設的一種方案,但課堂上是千變?nèi)f化的,會隨著學生和教師的靈性發(fā)揮而隨機生成的,預設效果如何,最終還有待于課堂教學實踐的檢驗。
本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
初三數(shù)學二次函數(shù)教案篇十一
1.質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
初三數(shù)學二次函數(shù)教案篇十二
本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學生已學習了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質的學習,是后續(xù)研究二次函數(shù)圖像的變換的基礎。二次函數(shù)在初中函數(shù)的教學中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎。
本節(jié)課中的教學重點利用描點法畫出二次函數(shù)的圖像,建構符合學生認知結構的知識體系,教學難點是運用數(shù)形結合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點坐標。基于以上對教材的認識,根據(jù)數(shù)學課程標準,考慮到學生已有的認知結構與心理特征,制定如下的教學目標。
【知識與能力】:
會用描點法畫出函數(shù)y=ax2的圖象。
知道拋物線的有關概念。
會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸以及拋物線與坐標軸的交點坐標。
【過程與方法】:
1、通過二次函數(shù)的教學進一步體會研究函數(shù)的一般方法,加深對于數(shù)形結合思想的認識。
2.綜合運用所學知識、方法去解決數(shù)學問題,培養(yǎng)學生提出、分析、解決、歸納問題的數(shù)學能力,改善學生的數(shù)學思維品質。
【情感與態(tài)度目標】:
在數(shù)學教學中滲透美的教育,讓學生感受二次函數(shù)圖像的對2。
稱之美,激發(fā)學生的學習興趣。認識到數(shù)學源于生活,用于生活的辯證觀點。
教法選擇與教學手段:基于本節(jié)課的特點是學習新知及其綜合運用,應著重采用復習與總結的教學方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復習入手,通過提問思考、歸納總結、綜合運用等形式對二次函數(shù)圖像及其性質進行有針對性的、系統(tǒng)性的教學。教學的模式為學生思考,討論,教師分析,演示、師生共同總結歸納。
利用白板的動態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進行分析比較和歸納。
學法指導:讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
最后,我來具體談一談本節(jié)課的教學過程。
(一)為對二次函數(shù)圖像及其性質的相關知識進行重構做準備。通過回憶復習一次函數(shù)和反比例函數(shù)圖像及其性質等相關知識引入新課。利用描點法畫出二次函數(shù)的圖象,總結規(guī)律,會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸。說出a為何值時y隨x增大而增大(增大而減?。?,引導學生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質。運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質的相關知識進行梳理,領悟數(shù)形結合的思想方法,發(fā)展學生的化歸遷移的數(shù)學思維,培養(yǎng)學生的轉化能力。
(二)通過對二次函數(shù)圖像及其性質的學習,采用學生思考,教師分析,解題小結三個環(huán)節(jié)構成的練習題講解模式,鞏固二次函數(shù)圖像及其性質的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質的應用。
(三)反思概括,方法總結。
總結本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質的相關知識和基本解題方法,領悟數(shù)形結合的數(shù)學思想方法,學會用化歸思想,解決實際問題。培養(yǎng)學生由題及法,由法及類的數(shù)學總結歸納方法。
(四)作業(yè)。
課后通過練習來鞏固本節(jié)課所復習的知識點、重點和難點,強化教學目標。
各位老師,以上所說只是我預設的一種方案,但課堂上是千變?nèi)f化的,會隨著學生和教師的靈性發(fā)揮而隨機生成的,預設效果如何,最終還有待于課堂教學實踐的檢驗。本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
初三數(shù)學二次函數(shù)教案篇十三
教學目標:
知識與技能。
1、初步掌握函數(shù)概念,能判斷兩個變量間的關系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
過程與方法。
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
教學重點:
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
教學難點:
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
教學過程設計:
一、創(chuàng)設問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
初三數(shù)學二次函數(shù)教案篇十四
讓學生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關系式。
:各種隱含條件的挖掘。
:引導發(fā)現(xiàn)法。
(一)診斷補償,情景引入:
(先讓學生復習,然后提問,并做進一步診斷)。
(二)問題導航,探究釋疑:
(三)精講提煉,揭示本質:
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設它的函數(shù)關系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關系式。
解由題意,得點b的坐標為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標代入,得所以因此,函數(shù)關系式是。
例2、根據(jù)下列條件,分別求出對應的二次函數(shù)的關系式。
(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設函數(shù)關系式為的形式;(2)根據(jù)已知拋物線的頂點坐標,可設函數(shù)關系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標,可設函數(shù)關系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(3,-2),可設函數(shù)關系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設二此函數(shù)的關系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設二此函數(shù)的關系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據(jù)前面的分析,本題已轉化為與(2)相同的題型請同學們自己完成。
(四)題組訓練,拓展遷移:
1、根據(jù)下列條件,分別求出對應的二次函數(shù)的關系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關系式設成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關系式可設如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數(shù)關系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
初三數(shù)學二次函數(shù)教案篇十五
(二)能力訓練要求。
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、
3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、
(三)情感與價值觀要求。
2、具有初步的創(chuàng)新精神和實踐能力、
初三數(shù)學二次函數(shù)教案篇十六
1、教材的地位和作用。
這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數(shù)形結合的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎,是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
(1)知識與技能:使學生理解二次函數(shù)的.概念,掌握根據(jù)實際問題列出二次函數(shù)關系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.
4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。
1、從創(chuàng)設情境入手,通過知識再現(xiàn),孕伏教學過程。
2、從學生活動出發(fā),通過以舊引新,順勢教學過程。
3、利用探索、研究手段,通過思維深入,領悟教學過程。
(一)復習提問。
1.什么叫函數(shù)?我們之前學過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
函數(shù)是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關系。(電腦演示)。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
【設計意圖】通過具體事例,讓學生列出關系式,啟發(fā)學生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課。
以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關于x的二次多項式(關于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
初三數(shù)學二次函數(shù)教案篇十七
在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎。那老師應該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。
一、重視每一堂復習課數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
三、教師在設計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
四、激發(fā)興趣,提高質量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
1.質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
1.教學案例、教學設計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
初三數(shù)學二次函數(shù)教案篇十八
(8)y=x4+2x2+1(可指出y是關于x2的二次函數(shù))。
【設計意圖】理論學習完二次函數(shù)的概念后,讓學生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應用到實踐操作中。
(四)鞏固練習。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關。
于x的函數(shù)關系式。
【設計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關系式子;。
【設計意圖】簡單的實際問題,學生會很容易列出函數(shù)關系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。
(1)分別寫出c關于r;v關于r的函數(shù)關系式;。
【設計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯(lián)系起來。
4.籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關系式,并指出自變量的取值范圍.
【設計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠跳一跳,夠得到。
(五)拓展延伸。
1.已知二次函數(shù)y=ax2+bx+c,當x=0時,y=0;x=1時,y=2;x=-1時,y=1.求a、b、c,并寫出函數(shù)解析式.
【設計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學做個鋪墊。
2.確定下列函數(shù)中k的值。
【設計意圖】此題著重復習二次函數(shù)的`特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.
(六)小結思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。
(七)作業(yè)布置:
必做題:
2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關系,并注明自變量的取值范圍。
選做題:
2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象。
【設計意圖】作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。
以實現(xiàn)教學目標為前提。
以現(xiàn)代教育理論為依據(jù)。
以現(xiàn)代信息技術為手段。
貫穿一個原則以學生為主體的原則。
突出一個特色充分鼓勵表揚的特色。
滲透一個意識應用數(shù)學的意識。
初三數(shù)學二次函數(shù)教案篇十九
在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。在函數(shù)的教學中,應突出“類比”的思想和“數(shù)形結合”的思想。
2.注重“數(shù)學結合”的教學。
數(shù)形結合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關系和空間形式的科學。而數(shù)形結合就是通過數(shù)與形之間的對應和轉化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
(1)讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。
(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
(3)注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。
目標。
1、理解直線y=kx+b與y=kx之間的位置關系;。
2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質.
過程與方法目標。
2、通過一次函數(shù)的圖象總結函數(shù)的性質,體驗數(shù)形結合法的應用,培養(yǎng)推理及抽象思維能力。
2、在探究一次函數(shù)的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
一次函數(shù)的圖象和性質。
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質及對性質的理解。
初三數(shù)學二次函數(shù)教案篇二十
1、教材所處的地位:
2、教學目的要求:
(2)讓學生學習了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關系;
(3)知道實際問題中存在的二次函數(shù)關系中,多自變量的取值范圍的要求。
(4)把數(shù)學問題和實際問題相聯(lián)系,使學生初步體會數(shù)學與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。
3、教學重點和難點。
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點:
重點:
(2)能夠表示簡單變量之間的二次函數(shù)關系.。
難點:
具體的分析、確定實際問題中函數(shù)關系式。
下面,為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:
1、教法研究。
教學中教師應當暴露概念的再創(chuàng)造過程,鼓勵學生不但要動口、動腦,而且要動手,學生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗、猜想,產(chǎn)生對結論的感知,這不僅讓學生對所學內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質得以提高,充分地調(diào)動學生學習的熱情,讓學生學會主動學習,學會研究問題的方法,培養(yǎng)學生的能力。本節(jié)課的設計堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。
2、學法研究。
初中學生的思維方式往往還是比較具象的,要讓他們在問題的探究過程中充分體驗問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進行交流甚至爭論,這樣既可以加深學生對問題的理解又可以讓學生體驗獲得學習的快樂。
3、教學方式。
(1)由于本節(jié)課的內(nèi)容是學生在學習了《一次函數(shù)》和《正比例函數(shù)》的基礎上的加深,所以可以利用學生已有的知識在問題一、二中放手讓學生先去探究探究兩個問題中的變量之間的關系,在得到具體的關系式后,再引導學生觀察關系式都有著什么樣的特點,可以和多項式中的二次三項式或一元二次方程比較認識,并最終得出二次函數(shù)的一般式及二次項系數(shù)的取值為什么不為零的道理。
(2)要特別提醒學生注意:二次函數(shù)是解決實際生活生產(chǎn)的一個很有效的模板,因而對二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實際中加以綜合討論和認定。
(3)可以多讓學生解決實際生活中的一些具有二次函數(shù)關系的實例來加深和提高學生對這一關系模型的理解。
這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。
1、溫故知新—揭示課題。
由回顧所學過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會認識那一種函數(shù)呢?再由例子打籃球投籃時籃球運動的軌跡如何?何時達到最高點?引入二次函數(shù)。
2、自我嘗試、合作探究—探求新知。
通過學生自己獨立解決運用函數(shù)知識表述變量間關系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學生間互動,集群體力量,共破難關,來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。
3、小試身手—循序漸進。
本組題目是對新學的直接應用,目的在于使學生能辨認二次函數(shù),準確指出a、b、c,并應用其定義求字母系數(shù)的值,能應用二次函數(shù)準確表示具體問題中的變量間關系。本組題目的解決以學生快速解答為主,重點對第2題分析解決方法。這一環(huán)節(jié)主要由學生處理解決,以檢查學生的掌握程度。
4、課堂回眸—歸納提高。
本課小結從內(nèi)容、應用、數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識是有很大的促進的。方法以學生暢談收獲為主。
5、課堂檢測—測評反饋。
共有6個題目,由學生獨自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學生或獨自或同組交流均可。教師多以巡視為主,注意掌握學生對本節(jié)的掌握情況。
6、作業(yè)布置。
作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎訓練為必做題,全員均做;綜合應用為選做題,可供學有余力的學生能力提升用。
通過引入實例,豐富學生認識,理解新知識的意義,進而擺脫其原型,從而進行更深層次的研究,這種“數(shù)學化”的方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對于學生的終身發(fā)展也有一定的作用。
初三數(shù)學二次函數(shù)教案篇一
1.質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
初三數(shù)學二次函數(shù)教案篇二
二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
三、教師在設計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
四、激發(fā)興趣,提高質量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
初三數(shù)學二次函數(shù)教案篇三
1.從具體函數(shù)的圖象中認識二次函數(shù)的基本性質,了解二次函數(shù)與二次方程的相互關系.
2.探索二次函數(shù)的變化規(guī)律,掌握函數(shù)的最大值(或最小值)及函數(shù)的增減性的概念.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
3.通過具體實例,讓學生經(jīng)歷概念的形成過程,使學生體會到函數(shù)能夠反映實際事物的變化規(guī)律,體驗數(shù)學來源于生活,服務于生活的辯證觀點.
教學重點。
二次函數(shù)的最大值,最小值及增減性的理解和求法.
教學難點。
二次函數(shù)的性質的應用.
初三數(shù)學二次函數(shù)教案篇四
老師講課認真聽講,不會的問題及時標記。在課堂上,做一個好學生,認真聽講,對于老師講的問題及時記錄,進行相應的標記,在下課的時候,及時詢問老師,早日解決問題。
一定要課前預習一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預習,預習比復習更加重要,真的很重要,關乎到課堂的思維能力的轉變,多多看看,對自己的理解有幫助。
課上要學會學習,記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學習高中數(shù)學,與老師探討學習方法,記筆記,記住講的重點。
多做一些比較普通而又常出的問題,來熟悉自己學的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進行做和學,總有一份題目適合自己做,便會更熟悉自己學的知識。
學會總結本節(jié)課的知識點,重點,做一個學會學習的人。及時總結所學的知識點,做一個學好習的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。
建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學習到知識,能夠復習到自己以前錯過的題。
與老師經(jīng)常交流學習方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學習,及時的詢問一下高中數(shù)學的學習方法,總有一個適合自己。
初三數(shù)學二次函數(shù)教案篇五
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;。
(2)分解因式的結果要以積的形式表示;。
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知。
例題學習:
p166例1、例2(略)。
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習。
1.p167練習;。
2.看誰連得準。
x2-y2(x+1)2。
9-25x2y(x-y)。
x2+2x+1(3-5x)(3+5x)。
xy-y2(x+y)(x-y)。
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a-3)=a2-9。
(2)a2-4=(a+2)(a-2)。
(3)a2-b2+1=(a+b)(a-b)+1。
(4)2πr+2πr=2π(r+r)。
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結。
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發(fā)言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數(shù)學思想的理解。
活動8:課后作業(yè)。
課本p170習題的第1、4大題。
學生自主完成。
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)。
15.4.1提公因式法例題。
1.因式分解的定義。
2.提公因式法。
初三數(shù)學二次函數(shù)教案篇六
數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
做到教師入題海,學生出題海。教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果。
興趣是學習最好的動力,在上復習課時尤為重要。因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感。這樣他們才會更有興趣的學習下去。
1、質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3、生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4、初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
1、教學案例、教學設計、教學實錄、教學敘事的區(qū)別:是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結果。
2、教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4、教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
初三數(shù)學二次函數(shù)教案篇七
1.教學案例、教學設計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
初三數(shù)學二次函數(shù)教案篇八
1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質的過程,獲得利用圖象研究函數(shù)性質的經(jīng)驗。
2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質,初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。
3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(開口方向、對稱軸、頂點坐標)。
教學重點:二次函數(shù)y=ax2的圖象的作法和性質。
教學難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系。
教學方法:自主探索,數(shù)形結合。
利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質的真正理解。
一、認知準備:
1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?
2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)。
你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質嗎?本節(jié)課我們一起探索。
二、新授:
(一)動手實踐:作二次函數(shù)y=x2和y=-x2的圖象。
(同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)。
(二)對照黑板圖象議一議:(先由學生獨立思考,再小組交流)。
1.你能描述該圖象的形狀嗎?
2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?
3.當x0時,隨著x的增大,y如何變化?當x0時呢?
4.當x取什么值時,y值最???最小值是什么?你是如何知道的?
5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。
(三)學生交流:
1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)。
2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?
3.教師出示同一直角坐標系中的兩個函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:
(1)二次函數(shù)y=x2和y=-x2的圖象關于哪條直線對稱?
(2)兩個圖象關于哪個點對稱?
(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?
(四)動手做一做:
1.作出函數(shù)y=2x2和y=-2x2的圖象。
(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學生黑板完成)。
2.對照黑板圖象,數(shù)形結合,研討性質:
(1)你能說出二次函數(shù)y=2x2具有哪些性質嗎?
(2)你能說出二次函數(shù)y=-2x2具有哪些性質嗎?
(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質嗎?
(學生分小組活動,交流各自的發(fā)現(xiàn))。
3.師生歸納總結二次函數(shù)y=ax2的圖象及性質:
(2)性質。
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(x0),y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。
4.應用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質。
(2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點和不同點?
三、小結:
通過本節(jié)課學習,你有哪些收獲?(學生小結)。
1.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。
2.知道二次函數(shù)y=ax2的性質:
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(x0=,y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。
初三數(shù)學二次函數(shù)教案篇九
二次函數(shù)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,在初中的學習中已經(jīng)給出了二次函數(shù)的圖象及性質,學生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質,只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質的方法進行的,基于這種情況,我認為本節(jié)課的作用是讓學生借助于熟悉的函數(shù)來進一步學習研究函數(shù)的更一般的方法,即:利用解析式分析性質來推斷函數(shù)圖象。它可以進一步深化學生對函數(shù)概念與性質的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質與圖象。因此,本節(jié)課的內(nèi)容十分重要。
2、教學的重點和難點。
教學重點:使學生掌握二次函數(shù)的概念、性質和圖象;從函數(shù)的性質推斷圖象的方法。
教學難點:掌握從函數(shù)的性質推斷圖象的方法。
按照新課標指出三維目標,根據(jù)任教班級學生的實際情況,本節(jié)課我確定的教學目標是:
1、知識與技能:掌握二次函數(shù)的性質與圖象,能夠借助于具體的二次函數(shù),理解和掌握從函數(shù)的性質推斷圖象的方研究法。
2、過程與方法:通過老師的引導、點撥,讓學生在分組合作、積極探索的氛圍中,掌握從函數(shù)解析式、性質出發(fā)去認識函數(shù)圖象的高度理解和研究函數(shù)的方法。
3、情感、態(tài)度、價值觀:讓學生感受數(shù)學思想方法之美、體會數(shù)學思想方法之重要;培養(yǎng)學生主動學習、合作交流的意識等。
遵循“教師的主導作用和學生的主體地位相統(tǒng)一的教學規(guī)律”,從教師的角色突出體現(xiàn)教師是設計者、組織者、引導者、合作者,經(jīng)過教師對教材的分析理解,在教師的組織引導和師生互動過程中以問題為載體實施整個教學過程;在學生這方面,通過自主探索、合作交流、歸納方法等一系列活動為主線,感受知識的形成過程,拓展和完善自己的認知結構,進而體現(xiàn)出教學過程中教師與學生的雙主體作用。
根據(jù)新課標的理念,我把整個的教學過程分為六個階段,即:創(chuàng)設情景、提出問題。
師生互動、探究新知。
獨立探究,鞏固方法。
強化訓練,加深理解。
小結歸納,拓展深化。
布置作業(yè),提高升華。
的圖象。目的是充分暴露學生在作圖時不能很好的結合函數(shù)的性質而出現(xiàn)的錯誤或偏差問題,突出本節(jié)課的重要性。在學生總結交流的基礎上教師指出學生的錯誤并以設問的方式提出本節(jié)課的目標:如何利用函數(shù)性質的研究來推斷出較為準確的函數(shù)圖象,進而引導學生進入師生互動、探究新知階段。
在這個階段,我引用課本所給的例題1請同學們以學習小組為單位嘗試完成并作出總結發(fā)言。目的是:讓學生充分參與,在合作探究中讓學生最大限度地突破目標或暴露出在嘗試研究過程中出現(xiàn)的分析障礙,即不能很好的把握函數(shù)的性質對圖象的影響,不能把抽象的性質與直觀的圖象融會貫通,這樣便于教師在與學生互動的過程中準確把握難點,各個擊破,最終形成知識的遷移。在學生探討后,教師選小組代表做總結發(fā)言,其他小組作出補充,教師引導從逐步完善函數(shù)性質的分析。其中,學生對于對稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析闡述等可能存在困難。這時教師可以利用對解析式的分析結合多媒體演示引導學生得到分析的思路和解決的方法,在師生互動的過程中把函數(shù)的性質完善。之后進入環(huán)節(jié)3:再次讓學生利用二次函數(shù)的性質推斷出二次函數(shù)的圖象,強化用二次函數(shù)的性質推斷圖象的關鍵。進而突破教學難點。讓學生真正實現(xiàn)知識的遷移,完成整個探究過程,形成較為完整的新的認知體系。當然,在這個過程中可能會有學生提出圖象為什么是曲線而不是直線等問題,為了消除學生的疑惑,進入第4個環(huán)節(jié):教師要簡單說明這是研究函數(shù)要考慮的一個重要的性質,是函數(shù)的凹凸性,后面我們將要給大家介紹,同學們可以閱讀課本第110頁的探索與研究。這樣也給學生留下一個思考與探索的空間,培養(yǎng)學生課外閱讀、自主研究的能力,增強學生學習數(shù)學的積極性。
在以上環(huán)節(jié)完成后,進入第5個環(huán)節(jié):讓學生對利用解析式分析性質然后推斷函數(shù)圖象的研究過程進行梳理并加以提煉、抽象、概括,得出研究函數(shù)的具體操作過程,使問題得以升華,拓寬學生的思維,將新知識內(nèi)化到自己的認知結構中去。最終尋求到解決問題的方法。
教學的最終目標應該落實到每一個學生個體的內(nèi)化與發(fā)展,由此讓引導學生進入獨立探究,鞏固方法的階段。例2在題目的設置上變換二次函數(shù)的開口方向,目的是一方面使學生加深對知識的理解,完善知識結構,另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。學生在例1的基礎上將會目標明確地進行函數(shù)性質的研究,然后推斷出比較準確的函數(shù)圖象,使新知得到有效鞏固。
通過前面三個階段的學習,學生應該基本掌握了本節(jié)課的相關知識。但對二次函數(shù)中系數(shù)a、b、c的對二次函數(shù)的影響還有待提高,為此我把課本中的例3進行改編,引導學生進入強化訓練,加深理解階段。一方面可以解決學生對奇偶性的質疑,另一方面也可以把學生對二次函數(shù)的認識提到新的高度。
第五個階段:小結歸納,拓展深化。為了讓學生能夠站在更高的角度認識二次函數(shù)和掌握函數(shù)的一般研究方法,教師引導學生從兩個方面總結。在你對函數(shù)圖象與性質的關系有怎樣的理解方面教師要引導、拓展,明確今天所學習的方法實際上是研究函數(shù)性質圖象的一般方法,對于一些陌生的或較為復雜的函數(shù)只要借助于適當?shù)姆椒ǖ玫较嚓P的性質就可以推斷出函數(shù)的圖象,從而把學生的認知水平定格在一個新的高度去理解和認識函數(shù)問題。
最后一個階段是布置作業(yè),提高升華,作業(yè)的設置是分層落實。鞏固題讓學生復習解題思路,準確應用,以便舉一反三。探究題通過對教材例題的改編,供學有余力的學生自主探索,提高他們分析問題、解決問題的能力。
以上六個階段環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調(diào)控下,學生通過動手操作,動眼觀察,動腦思考,親身經(jīng)歷了知識的形成和發(fā)展過程,并得以遷移內(nèi)化。而最終的探究作業(yè)又將激發(fā)學生興趣,帶領學生進入對二次函數(shù)更進一步的思考和研究之中,從而達到知識在課堂以外的延伸??傊@節(jié)課是本著“授之以漁”而非“授之以魚”的理念來設計的。
初三數(shù)學二次函數(shù)教案篇十
今天我說課的課題是二次函數(shù)圖像及其性質。下面我將從以下幾個方面進行闡述:
首先,我對本節(jié)教材進行簡要分析。
本節(jié)內(nèi)容是人民教育出版的九年級數(shù)學課程標準實驗教科書《數(shù)學》第二冊第二十七章第二節(jié)第三課時,屬于數(shù)與代數(shù)領域的知識。在此之前,學生已學習了二次函數(shù)的概念和二次函數(shù)的圖像及其性質。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質的相關知識的復習總結和綜合運用,是后續(xù)研究二次函數(shù)圖像的變換的基礎。二次函數(shù)在初中函數(shù)的教學中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎。
本節(jié)課中的教學重點是梳理所學過的二次函數(shù)及其性質的相關內(nèi)容,建構符合學生認知結構的知識體系,教學難點是運用數(shù)形結合的思想,選用恰當?shù)臄?shù)學關系式解決二次函數(shù)的問題,以及把實際問題轉化成二次函數(shù)問題并利用二次函數(shù)的性質來解決。
基于以上對教材的認識,根據(jù)數(shù)學課程標準,考慮到學生已有的認知結構與心理特征,制定如下的教學目標。
【知識與技能】:
了解二次函數(shù)解析式的二種表示方法,會用配方法轉化二次函數(shù)的表示形式;
會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質;
會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸以及拋物線與坐標軸的交點坐標。
【過程與方法】:
3、數(shù)學的思想方法去觀察、研究和解決實際問題,體驗數(shù)學建模的思想。培養(yǎng)學生運用二次函數(shù)圖像及其性質的相關知識解決數(shù)學綜合題和實際問題的能力。
【情感與態(tài)度目標】:
在數(shù)學教學中滲透美的教育,讓學生感受二次函數(shù)圖像的對稱之美,激發(fā)學生的學習興趣。運用二次函數(shù)解決實際問題,使學生進一步認識到數(shù)學源于生活,用于生活的辯證觀點。
為突出重點、突破難點、抓住關鍵,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談設計思路。
教法選擇與教學手段:基于本節(jié)課的特點是復習總結所學過的知識及其綜合運用,應著重采用復習與總結的教學方法與手段,即利用任務驅動進行復習總結,構建二次函數(shù)圖像及其性質的綜合化、網(wǎng)絡化、結構化。通過提問思考、歸納總結、綜合運用等形式對二次函數(shù)圖像及其性質的相關知識和基本解題方法進行有針對性的、系統(tǒng)性的、綜合性的教學。復習課例題教學的模式為學生思考,教師分析,解題小結三個環(huán)節(jié)。
學法指導:讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
最后,我來具體談一談本節(jié)課的教學過程。
(一)由任務導引相關回憶。
為對二次函數(shù)圖像及其性質的相關知識進行重構做準備。通過兩題練習回憶復習二次函數(shù)圖像及其性質的相關知識。第一題用配方法把二次函數(shù)的一般式化為頂點式的形式,并指出開口方向,對稱軸和頂點坐標,引導學生復習回憶,了解二次函數(shù)解析式的二種表示方法,掌握用配方法轉化二次函數(shù)的表示形式,會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸。第二題用描點法畫出二次函數(shù)的圖象,并說出為何值時隨增大而增大,為何值時,隨增大而減小,引導學生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質。
運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質的相關知識進行梳理,由以上練習引導學生回憶、理解二次函數(shù)圖像及其性質的相關知識,并形成相關的知識結構體系。通過知識回顧幫助學生梳理有關知識點,二次函數(shù)的定義、解析式的形式、圖像畫法、圖像及其性質。
通過對二次函數(shù)圖像及其性質的相關知識的復習,讓學生運用相關概念、性質進行解題,采用學生思考,教師分析,解題小結三個環(huán)節(jié)構成的練習題講解模式,鞏固求解二次函數(shù)圖像及其性質的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質的應用。第五題及第六題是運用二次函數(shù)圖像及其性質的相關知識解決實際問題,領悟數(shù)形結合的思想方法,發(fā)展學生的化歸遷移的數(shù)學思維,培養(yǎng)學生的轉化能力。
(四)反思概括,方法總結。
總結本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質的相關知識和基本解題方法,領悟數(shù)形結合的數(shù)學思想方法,學會用化歸思想,解決實際問題。培養(yǎng)學生由題及法,由法及類的數(shù)學總結歸納方法。
(五)作業(yè)。
課后通過練習來鞏固本節(jié)課所復習的知識點、重點和難點,強化教學目標。
各位老師,以上所說只是我預設的一種方案,但課堂上是千變?nèi)f化的,會隨著學生和教師的靈性發(fā)揮而隨機生成的,預設效果如何,最終還有待于課堂教學實踐的檢驗。
本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
初三數(shù)學二次函數(shù)教案篇十一
1.質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
初三數(shù)學二次函數(shù)教案篇十二
本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學生已學習了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質的學習,是后續(xù)研究二次函數(shù)圖像的變換的基礎。二次函數(shù)在初中函數(shù)的教學中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎。
本節(jié)課中的教學重點利用描點法畫出二次函數(shù)的圖像,建構符合學生認知結構的知識體系,教學難點是運用數(shù)形結合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點坐標。基于以上對教材的認識,根據(jù)數(shù)學課程標準,考慮到學生已有的認知結構與心理特征,制定如下的教學目標。
【知識與能力】:
會用描點法畫出函數(shù)y=ax2的圖象。
知道拋物線的有關概念。
會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸以及拋物線與坐標軸的交點坐標。
【過程與方法】:
1、通過二次函數(shù)的教學進一步體會研究函數(shù)的一般方法,加深對于數(shù)形結合思想的認識。
2.綜合運用所學知識、方法去解決數(shù)學問題,培養(yǎng)學生提出、分析、解決、歸納問題的數(shù)學能力,改善學生的數(shù)學思維品質。
【情感與態(tài)度目標】:
在數(shù)學教學中滲透美的教育,讓學生感受二次函數(shù)圖像的對2。
稱之美,激發(fā)學生的學習興趣。認識到數(shù)學源于生活,用于生活的辯證觀點。
教法選擇與教學手段:基于本節(jié)課的特點是學習新知及其綜合運用,應著重采用復習與總結的教學方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復習入手,通過提問思考、歸納總結、綜合運用等形式對二次函數(shù)圖像及其性質進行有針對性的、系統(tǒng)性的教學。教學的模式為學生思考,討論,教師分析,演示、師生共同總結歸納。
利用白板的動態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進行分析比較和歸納。
學法指導:讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
最后,我來具體談一談本節(jié)課的教學過程。
(一)為對二次函數(shù)圖像及其性質的相關知識進行重構做準備。通過回憶復習一次函數(shù)和反比例函數(shù)圖像及其性質等相關知識引入新課。利用描點法畫出二次函數(shù)的圖象,總結規(guī)律,會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸。說出a為何值時y隨x增大而增大(增大而減?。?,引導學生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質。運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質的相關知識進行梳理,領悟數(shù)形結合的思想方法,發(fā)展學生的化歸遷移的數(shù)學思維,培養(yǎng)學生的轉化能力。
(二)通過對二次函數(shù)圖像及其性質的學習,采用學生思考,教師分析,解題小結三個環(huán)節(jié)構成的練習題講解模式,鞏固二次函數(shù)圖像及其性質的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質的應用。
(三)反思概括,方法總結。
總結本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質的相關知識和基本解題方法,領悟數(shù)形結合的數(shù)學思想方法,學會用化歸思想,解決實際問題。培養(yǎng)學生由題及法,由法及類的數(shù)學總結歸納方法。
(四)作業(yè)。
課后通過練習來鞏固本節(jié)課所復習的知識點、重點和難點,強化教學目標。
各位老師,以上所說只是我預設的一種方案,但課堂上是千變?nèi)f化的,會隨著學生和教師的靈性發(fā)揮而隨機生成的,預設效果如何,最終還有待于課堂教學實踐的檢驗。本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
初三數(shù)學二次函數(shù)教案篇十三
教學目標:
知識與技能。
1、初步掌握函數(shù)概念,能判斷兩個變量間的關系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
過程與方法。
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
教學重點:
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
教學難點:
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
教學過程設計:
一、創(chuàng)設問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
初三數(shù)學二次函數(shù)教案篇十四
讓學生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關系式。
:各種隱含條件的挖掘。
:引導發(fā)現(xiàn)法。
(一)診斷補償,情景引入:
(先讓學生復習,然后提問,并做進一步診斷)。
(二)問題導航,探究釋疑:
(三)精講提煉,揭示本質:
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設它的函數(shù)關系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關系式。
解由題意,得點b的坐標為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標代入,得所以因此,函數(shù)關系式是。
例2、根據(jù)下列條件,分別求出對應的二次函數(shù)的關系式。
(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設函數(shù)關系式為的形式;(2)根據(jù)已知拋物線的頂點坐標,可設函數(shù)關系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標,可設函數(shù)關系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(3,-2),可設函數(shù)關系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設二此函數(shù)的關系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設二此函數(shù)的關系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據(jù)前面的分析,本題已轉化為與(2)相同的題型請同學們自己完成。
(四)題組訓練,拓展遷移:
1、根據(jù)下列條件,分別求出對應的二次函數(shù)的關系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關系式設成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關系式可設如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數(shù)關系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
初三數(shù)學二次函數(shù)教案篇十五
(二)能力訓練要求。
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、
3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、
(三)情感與價值觀要求。
2、具有初步的創(chuàng)新精神和實踐能力、
初三數(shù)學二次函數(shù)教案篇十六
1、教材的地位和作用。
這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數(shù)形結合的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎,是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
(1)知識與技能:使學生理解二次函數(shù)的.概念,掌握根據(jù)實際問題列出二次函數(shù)關系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.
4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。
1、從創(chuàng)設情境入手,通過知識再現(xiàn),孕伏教學過程。
2、從學生活動出發(fā),通過以舊引新,順勢教學過程。
3、利用探索、研究手段,通過思維深入,領悟教學過程。
(一)復習提問。
1.什么叫函數(shù)?我們之前學過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
函數(shù)是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關系。(電腦演示)。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
【設計意圖】通過具體事例,讓學生列出關系式,啟發(fā)學生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課。
以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關于x的二次多項式(關于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
初三數(shù)學二次函數(shù)教案篇十七
在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎。那老師應該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。
一、重視每一堂復習課數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
三、教師在設計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
四、激發(fā)興趣,提高質量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
1.質疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質,用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
1.教學案例、教學設計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
初三數(shù)學二次函數(shù)教案篇十八
(8)y=x4+2x2+1(可指出y是關于x2的二次函數(shù))。
【設計意圖】理論學習完二次函數(shù)的概念后,讓學生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應用到實踐操作中。
(四)鞏固練習。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關。
于x的函數(shù)關系式。
【設計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關系式子;。
【設計意圖】簡單的實際問題,學生會很容易列出函數(shù)關系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。
(1)分別寫出c關于r;v關于r的函數(shù)關系式;。
【設計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯(lián)系起來。
4.籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關系式,并指出自變量的取值范圍.
【設計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠跳一跳,夠得到。
(五)拓展延伸。
1.已知二次函數(shù)y=ax2+bx+c,當x=0時,y=0;x=1時,y=2;x=-1時,y=1.求a、b、c,并寫出函數(shù)解析式.
【設計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學做個鋪墊。
2.確定下列函數(shù)中k的值。
【設計意圖】此題著重復習二次函數(shù)的`特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.
(六)小結思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。
(七)作業(yè)布置:
必做題:
2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關系,并注明自變量的取值范圍。
選做題:
2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象。
【設計意圖】作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。
以實現(xiàn)教學目標為前提。
以現(xiàn)代教育理論為依據(jù)。
以現(xiàn)代信息技術為手段。
貫穿一個原則以學生為主體的原則。
突出一個特色充分鼓勵表揚的特色。
滲透一個意識應用數(shù)學的意識。
初三數(shù)學二次函數(shù)教案篇十九
在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。在函數(shù)的教學中,應突出“類比”的思想和“數(shù)形結合”的思想。
2.注重“數(shù)學結合”的教學。
數(shù)形結合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關系和空間形式的科學。而數(shù)形結合就是通過數(shù)與形之間的對應和轉化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
(1)讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。
(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
(3)注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。
目標。
1、理解直線y=kx+b與y=kx之間的位置關系;。
2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質.
過程與方法目標。
2、通過一次函數(shù)的圖象總結函數(shù)的性質,體驗數(shù)形結合法的應用,培養(yǎng)推理及抽象思維能力。
2、在探究一次函數(shù)的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
一次函數(shù)的圖象和性質。
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質及對性質的理解。
初三數(shù)學二次函數(shù)教案篇二十
1、教材所處的地位:
2、教學目的要求:
(2)讓學生學習了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關系;
(3)知道實際問題中存在的二次函數(shù)關系中,多自變量的取值范圍的要求。
(4)把數(shù)學問題和實際問題相聯(lián)系,使學生初步體會數(shù)學與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。
3、教學重點和難點。
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點:
重點:
(2)能夠表示簡單變量之間的二次函數(shù)關系.。
難點:
具體的分析、確定實際問題中函數(shù)關系式。
下面,為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:
1、教法研究。
教學中教師應當暴露概念的再創(chuàng)造過程,鼓勵學生不但要動口、動腦,而且要動手,學生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗、猜想,產(chǎn)生對結論的感知,這不僅讓學生對所學內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質得以提高,充分地調(diào)動學生學習的熱情,讓學生學會主動學習,學會研究問題的方法,培養(yǎng)學生的能力。本節(jié)課的設計堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。
2、學法研究。
初中學生的思維方式往往還是比較具象的,要讓他們在問題的探究過程中充分體驗問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進行交流甚至爭論,這樣既可以加深學生對問題的理解又可以讓學生體驗獲得學習的快樂。
3、教學方式。
(1)由于本節(jié)課的內(nèi)容是學生在學習了《一次函數(shù)》和《正比例函數(shù)》的基礎上的加深,所以可以利用學生已有的知識在問題一、二中放手讓學生先去探究探究兩個問題中的變量之間的關系,在得到具體的關系式后,再引導學生觀察關系式都有著什么樣的特點,可以和多項式中的二次三項式或一元二次方程比較認識,并最終得出二次函數(shù)的一般式及二次項系數(shù)的取值為什么不為零的道理。
(2)要特別提醒學生注意:二次函數(shù)是解決實際生活生產(chǎn)的一個很有效的模板,因而對二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實際中加以綜合討論和認定。
(3)可以多讓學生解決實際生活中的一些具有二次函數(shù)關系的實例來加深和提高學生對這一關系模型的理解。
這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。
1、溫故知新—揭示課題。
由回顧所學過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會認識那一種函數(shù)呢?再由例子打籃球投籃時籃球運動的軌跡如何?何時達到最高點?引入二次函數(shù)。
2、自我嘗試、合作探究—探求新知。
通過學生自己獨立解決運用函數(shù)知識表述變量間關系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學生間互動,集群體力量,共破難關,來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。
3、小試身手—循序漸進。
本組題目是對新學的直接應用,目的在于使學生能辨認二次函數(shù),準確指出a、b、c,并應用其定義求字母系數(shù)的值,能應用二次函數(shù)準確表示具體問題中的變量間關系。本組題目的解決以學生快速解答為主,重點對第2題分析解決方法。這一環(huán)節(jié)主要由學生處理解決,以檢查學生的掌握程度。
4、課堂回眸—歸納提高。
本課小結從內(nèi)容、應用、數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識是有很大的促進的。方法以學生暢談收獲為主。
5、課堂檢測—測評反饋。
共有6個題目,由學生獨自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學生或獨自或同組交流均可。教師多以巡視為主,注意掌握學生對本節(jié)的掌握情況。
6、作業(yè)布置。
作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎訓練為必做題,全員均做;綜合應用為選做題,可供學有余力的學生能力提升用。
通過引入實例,豐富學生認識,理解新知識的意義,進而擺脫其原型,從而進行更深層次的研究,這種“數(shù)學化”的方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對于學生的終身發(fā)展也有一定的作用。

