八年級數(shù)學(xué)名師教案范文(19篇)

字號:

    教案是教師教學(xué)過程中必不可少的工具,它可以幫助教師合理安排教學(xué)內(nèi)容和教學(xué)步驟。編寫教案前,教師需要充分了解教學(xué)內(nèi)容和學(xué)生的學(xué)習(xí)情況。教案范例中展示了教學(xué)目標(biāo)的明確、教學(xué)步驟的合理和評價方式的科學(xué)等特點。
    八年級數(shù)學(xué)名師教案篇一
    1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
    2.了解開方與乘方互為逆運算,會用平方運算求某些非負(fù)數(shù)的算術(shù)平方根。
    算術(shù)平方根的概念。
    根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
    這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
    1、提出問題:(書p68頁的問題)
    你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)
    這個問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
    一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
    也就是,在等式=a (x0)中,規(guī)定x = .
    2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
    3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
    建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如表示25的算術(shù)平方根。
    4、例1求下列各數(shù)的算術(shù)平方根:
    (1)100;(2)1;(3) ;(4)0.0001
    p69練習(xí)1、2
    怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
    方法1:課本中的方法,略;
    方法2:
    可還有其他方法,鼓勵學(xué)生探究。
    問題:這個大正方形的邊長應(yīng)該是多少呢?
    大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
    建議學(xué)生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
    1、這節(jié)課學(xué)習(xí)了什么呢?
    2、算術(shù)平方根的具體意義是怎么樣的?
    3、怎樣求一個正數(shù)的算術(shù)平方根
    p75習(xí)題13.1活動第1、2、3題
    八年級數(shù)學(xué)名師教案篇二
    《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容。縱觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
    (一)知識目標(biāo):
    1、要求學(xué)生掌握正方形的概念及性質(zhì);
    2、能正確運用正方形的性質(zhì)進(jìn)行簡單的計算、推理、論證;
    (二)能力目標(biāo):
    1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
    2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
    (三)情感目標(biāo):
    1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實際的良好學(xué)風(fēng);
    2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
    該段學(xué)生具有一定的獨立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
    針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學(xué)方法。
    通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
    本節(jié)課重點是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。
    第一環(huán)節(jié):相關(guān)知識回顧。
    以提問的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
    第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
    1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
    2、正方形的性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
    4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
    第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實質(zhì)是來源于生活并要服務(wù)于生活。
    5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實自己,達(dá)到理想中的完美。
    6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。
    八年級數(shù)學(xué)名師教案篇三
    本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
    本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
    本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點撥、引導(dǎo),促進(jìn)學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人.具體說明如下:
    學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié).最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.
    線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.
    八年級數(shù)學(xué)名師教案篇四
    教學(xué)目標(biāo):
    〔知識與技能〕。
    1.探索作出軸對稱圖形的對稱軸的方法.掌握軸對稱圖形對稱軸的作法.
    2.在探索的過程中,培養(yǎng)學(xué)生分析、歸納的能力.
    〔過程與方法〕。
    2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。
    〔情感、態(tài)度與價值觀〕。
    1、體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強克服困難的勇氣和信心;2、會應(yīng)用數(shù)學(xué)知識解決一些簡單的實際問題,增強應(yīng)用意識。
    教學(xué)重點:
    軸對稱圖形對稱軸的作法.
    教學(xué)難點:
    探索軸對稱圖形對稱軸的作法.
    教具準(zhǔn)備:圓規(guī)、三角尺。
    教學(xué)過程。
    一.提出問題,引入新課。
    2.軸對稱圖形性質(zhì).如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對稱點所連線段的垂直平分線.軸對稱圖形的對稱軸,是任何一對對稱點所連線段的垂直平分線.
    3.找到一對對應(yīng)點,作出連結(jié)它們的線段的垂直平分線,就可以得到這兩個圖形的對稱軸了.
    4.問題:如何作出線段的垂直平分線?
    二.導(dǎo)入新課。
    1.要作出線段的垂直平分線,根據(jù)垂直平分線的判定定理,到線段兩端點距離相等的點在這條線段的垂直平分線上,又由兩點確定一條直線這個公理,那么必須找到兩個到線段兩端點距離相等的點,這樣才能確定已知線段的垂直平分線.
    [例]如圖(1),點a和點b關(guān)于某條直線成軸對稱,你能作出這條直線嗎?
    已知:線段ab[如圖(1)].
    求作:線段ab的垂直平分線.
    作法:如圖(2)。
    (1).分別以點a、b為圓心,以大于。
    (2).作直線cd.
    直線cd就是線段ab的垂直平分線.
    2.[例]圖中的五角星有幾條對稱軸?作出這些對稱軸.
    作法:
    1.找出五角星的一對對應(yīng)點a和a′,
    連結(jié)aa′.
    2.作出線段aa′的垂直平分線l.
    則l就是這個五角星的一條對稱軸.
    用同樣的方法,可以找出五條對稱軸,所以五角星有五條對稱軸.
    三.隨堂練習(xí)。
    (一)課本35練習(xí)1、2、3。
    如圖,與圖形a成軸對稱的是哪個圖形?畫出它們的對稱軸.
    1ab的長為半徑作弧,兩弧相交于c和d兩點;2。
    答案:與a成軸對稱的是圖形d(或b).
    四.課時小結(jié)。
    方法:找出軸對稱圖形的任意一對對應(yīng)點,連結(jié)這對對應(yīng)點,?作出連線的垂直平分線,該垂直平分線就是這個軸對稱圖形的一條對稱軸.
    五.課后作業(yè)。
    八年級數(shù)學(xué)名師教案篇五
    1.理解分式的基本性質(zhì).
    2.會用分式的基本性質(zhì)將分式變形.
    二、重點、難點。
    1.重點:理解分式的基本性質(zhì).
    2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.
    3.認(rèn)知難點與突破方法。
    教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
    三、例、習(xí)題的意圖分析。
    1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
    2.p9的例3、例4地目的是進(jìn)一步運用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
    教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。
    3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
    “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
    四、課堂引入。
    1.請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
    2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
    3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
    五、例題講解。
    p7例2.填空:
    [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
    p11例3.約分:
    [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.
    p11例4.通分:
    [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
    (補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    [分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.
    解:=,=,=,=,=。
    六、隨堂練習(xí)。
    1.填空:
    (1)=(2)=。
    (3)=(4)=。
    2.約分:
    3.通分:
    (1)和(2)和。
    (3)和(4)和。
    4.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    七、課后練習(xí)。
    1.判斷下列約分是否正確:
    (1)=(2)=。
    (3)=0。
    2.通分:
    (1)和(2)和。
    3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.
    八、答案:
    六、1.(1)2x(2)4b(3)bn+n(4)x+y。
    2.(1)(2)(3)(4)-2(x-y)2。
    3.通分:
    (1)=,=。
    (2)=,=。
    (3)==。
    (4)==。
    八年級數(shù)學(xué)名師教案篇六
    教學(xué)目標(biāo):
    1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。
    2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
    3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。
    重點與難點:
    重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計。
    難點:分析典型圖案的設(shè)計意圖。
    疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖。
    教具學(xué)具準(zhǔn)備:
    提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
    教學(xué)過程設(shè)計:
    1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)。
    明確在欣賞了圖案后,簡單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。
    2、課本。
    1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
    評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。
    評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
    (二)課內(nèi)練習(xí)。
    (1)以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。
    (2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。
    (三)議一議。
    生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進(jìn)行交流。
    (四)課時小結(jié)。
    本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。
    通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)。
    進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。
    八年級數(shù)學(xué)名師教案篇七
    1、了解方差的定義和計算公式。
    2、理解方差概念產(chǎn)生和形成過程。
    3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。
    重點:掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
    難點:理解方差公式。
    (一)知識詳解:
    方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。
    給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。
    (二)自主檢測小練習(xí):
    1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
    2、甲、乙兩組數(shù)據(jù)如下:
    甲組:1091181213107;
    乙組:7891011121112。
    分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。
    引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
    甲:9.10.10.13.7.13.10.8.11.8;
    乙:8.13.12.11.10.12.7.7.10.10;
    問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?
    (2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。
    歸納:方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
    (一)例題講解:
    金志強1013161412。
    提示:先求平均數(shù),然后使用公式計算方差。
    (二)小試身手。
    1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
    甲:7.8.6.8.6.5.9.10.7.4。
    乙:9.5.7.8.7.6.8.6.7.7。
    經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
    1、求下列數(shù)據(jù)的眾數(shù):
    (1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
    方差公式:
    提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。
    每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
    1、小爽和小兵在10次百米跑步練習(xí)中的成績?nèi)缦卤硭荆?單位:秒)。
    如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?
    必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊對應(yīng)部分習(xí)題。
    寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
    八年級數(shù)學(xué)名師教案篇八
    1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
    2、會求一組數(shù)據(jù)的極差.
    1、重點:會求一組數(shù)據(jù)的極差.
    2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點、
    從表中你能得到哪些信息?
    比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、
    這是不是說,兩個時段的氣溫情況沒有什么差異呢?
    根據(jù)兩段時間的氣溫情況可繪成的折線圖、
    觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、
    本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。
    問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識、問題3答案并不唯一,合理即可。
    八年級數(shù)學(xué)名師教案篇九
    《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具?!苯處熯\用現(xiàn)代多媒體信息技術(shù)對教學(xué)活動進(jìn)行創(chuàng)造性設(shè)計,發(fā)揮計算機輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
    本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點,為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
    本班經(jīng)歷了一年多課改實踐,學(xué)生對運用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運用《幾何畫板》這一工具進(jìn)行簡單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識于實踐的過程。
    本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實驗室,以研究電動門的機械原理為切入點,從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動地探究新知識的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
    1、初步理解特殊四邊形性質(zhì);
    2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
    1、了解特殊四邊形性質(zhì)的形成過程;
    2、初步了解探究新知識的一些方法;
    1、了解特殊四邊形在日常生活中的應(yīng)用;
    2、學(xué)生在觀察、歸納、類比及實驗教學(xué)活動中,體會成功后的喜悅;
    3、初步具有感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
    教學(xué)環(huán)境:
    多媒體計算機網(wǎng)絡(luò)教室。
    教學(xué)課型:
    試驗探究式。
    教學(xué)重點:
    特殊四邊形性質(zhì)。
    教學(xué)難點:
    特殊四邊形性質(zhì)的發(fā)現(xiàn)。
    一、設(shè)置情景,提出問題。
    提出問題:
    1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?
    2、在開(關(guān))門過程中這些四邊形是如何變化的?
    3、你還發(fā)現(xiàn)了什么?
    解決問題:
    學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
    當(dāng)我們學(xué)習(xí)完本節(jié)知識后,其他問題就容易解決了。
    (意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)。
    二、整體了解,形成系統(tǒng)。
    本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
    提出問題:
    1、本章主要研究哪些特殊四邊形?
    2、從哪幾方面研究這些特殊四邊形?
    解決問題:
    學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導(dǎo)。
    1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
    3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
    (意圖:學(xué)生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)。
    三、個體研究、總結(jié)性質(zhì)。
    1、平行四邊形性質(zhì)。
    提出問題:
    在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
    解決問題:
    教師引導(dǎo)學(xué)生拖動b點(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
    在圖形變化過程中,
    (1)對邊相等;
    (2)對角相等;
    (3)通過ao=co、bo=do,可得對角線互相平分;
    (4)通過鄰角互補,可得對邊平行;
    (5)內(nèi)外角和都等于360度;
    (6)鄰角互補;
    ……。
    指導(dǎo)學(xué)生填表:
    平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
    菱形性質(zhì)。
    梯形性質(zhì)等腰梯形性質(zhì)。
    直角梯形性質(zhì)。
    (既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
    按照平行四邊形性質(zhì)的探索思路,分別研究:
    2、矩形性質(zhì);
    3、菱形性質(zhì);
    4、正方形性質(zhì);
    5、梯形性質(zhì);
    6、等腰梯形性質(zhì);
    7、直角梯形的性質(zhì)。
    (意圖:學(xué)生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學(xué)生體驗到科學(xué)探索的樂趣。)。
    教師總結(jié):
    (意圖:掌握畫箭頭的方法,使學(xué)生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達(dá),又節(jié)省時間。)。
    四、聯(lián)系生活,解決問題。
    解決問題:
    學(xué)生操作電腦,觀察圖形、分組討論,教師個別指導(dǎo)。
    學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
    四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。
    (意圖:使學(xué)生體會到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)。
    五、小結(jié)。
    1.研究問題從整體到局部的方法;
    2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
    六、作業(yè)。
    1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
    2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。
    針對教學(xué)內(nèi)容、學(xué)生特點及設(shè)計方案,預(yù)計下列學(xué)習(xí)效果:
    利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學(xué)生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
    在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識規(guī)律及探究新知識的一般方法,初步形成感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
    由于個體差異,針對教學(xué)目標(biāo)難以達(dá)到的個別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對話交流及時指導(dǎo),使教學(xué)目標(biāo)得以實現(xiàn)。
    八年級數(shù)學(xué)名師教案篇十
    教學(xué)目標(biāo):
    〔知識與技能〕。
    1.在生活實例中認(rèn)識軸對稱圖.
    2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。
    〔過程與方法〕。
    2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。
    〔情感、態(tài)度與價值觀〕。
    辯證唯物主義觀點。
    教學(xué)重點:.
    理解軸對稱的概念。
    教學(xué)難點。
    能夠識別軸對稱圖形并找出它的對稱軸.
    教具準(zhǔn)備:三角尺。
    教學(xué)過程。
    一.創(chuàng)設(shè)情境,引入新課。
    1.舉實例說明對稱的重要性和生活充滿著對稱。
    2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
    3.軸對稱是對稱中重要的一種,讓我們一起走進(jìn)軸對稱世界,探索它的秘密吧!
    二.導(dǎo)入新課。
    1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
    強調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對稱的例子.
    練習(xí):從學(xué)生生活周圍的事物中來找一些具有對稱特征的例子.
    3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線(成軸)?對稱.
    4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。
    刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?
    歸納小結(jié):由此我們進(jìn)一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.
    5.練習(xí):你能找出它們的對稱軸嗎?分小組討論.
    思考:大家想一想,你發(fā)現(xiàn)了什么?
    小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對稱點.
    三.隨堂練習(xí)。
    1、課本60練習(xí)1、2。
    四.課時小結(jié)。
    分了軸對稱圖形和兩個圖形成軸對稱.
    五.課后作業(yè)。
    習(xí)題13.1.1、2、6題.
    六.教后記。
    八年級數(shù)學(xué)名師教案篇十一
    教學(xué)。
    目標(biāo)(含重點、難點)及。
    設(shè)置依據(jù)教學(xué)目標(biāo)。
    1、了解多面體、直棱柱的有關(guān)概念.2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。
    3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
    教學(xué)重點與難點。
    教學(xué)過程。
    內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。
    一、創(chuàng)設(shè)情景,引入新課。
    析:學(xué)生很容易回答出更多的答案。
    師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點概念:
    2.合作交流。
    師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
    學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
    學(xué)生活動:分小組討論。
    說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實例。(找出區(qū)別)。
    師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側(cè)棱互相平行且相等。
    4.學(xué)以至用。
    出示例題。(先請學(xué)生單獨考慮,再作講解)。
    析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(xí)(學(xué)生練習(xí))。
    完成“課內(nèi)練習(xí)”
    三、小結(jié)回顧,反思提高。
    師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?
    合作交流后得到:重點直棱柱的有關(guān)概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點比較難。
    板書設(shè)計。
    作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。
    八年級數(shù)學(xué)名師教案篇十二
    認(rèn)知基礎(chǔ):學(xué)生在七年級下冊第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對變量間互相依存的關(guān)系有了一定的認(rèn)識,但對于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對學(xué)生有較高的要求,學(xué)生在理解和運用時會有一定的難度。
    活動經(jīng)驗基礎(chǔ):在七年級下冊《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實例額,體會了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。
    知識與技能目標(biāo):
    (1)初步掌握函數(shù)概念,能判斷兩個變量之間的關(guān)系是否可以看作函數(shù)。
    (2)根據(jù)兩個變量之間的關(guān)系式,給定其中一個變量的值相應(yīng)的會求出另一個變量的值。
    (3)會對一個具體實例進(jìn)行概括抽象成為函數(shù)問題。
    過程與方法目標(biāo):
    (1)通過函數(shù)概念初步形成利用函數(shù)的觀點認(rèn)識現(xiàn)實世界的意識和能力。
    (2)經(jīng)歷具體實例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
    情感態(tài)度與價值觀目標(biāo):
    (1)經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    (2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
    八年級數(shù)學(xué)名師教案篇十三
    1.了解方差的定義和計算公式。
    2.理解方差概念的產(chǎn)生和形成的過程。
    3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
    1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
    2.難點:理解方差公式。
    問題農(nóng)科院計劃為某地選擇合適的甜玉米種子.選擇種子時,甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗田進(jìn)行試驗,得到各試驗田每公頃的產(chǎn)量(單位:t)如表所示。
    根據(jù)這些數(shù)據(jù)估計,農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
    來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
    意義:用來衡量一批數(shù)據(jù)的波動大小。
    在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。
    (1)研究離散程度可用。
    (2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的.波動大小。
    (3)方差主要應(yīng)用在平均數(shù)相等或接近時。
    (4)方差大波動大,方差小波動小,一般選波動小的。
    例題:在一次芭蕾舞比賽中,甲乙兩個芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
    甲163164164165165166166167。
    乙163165165166166167168168。
    哪個芭蕾舞團(tuán)的女演員的身高比較整齊?
    1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
    2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
    甲:7、8、6、8、6、5、9、10、7、4。
    乙:9、5、7、8、7、6、8、6、7、7。
    經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但s,所以確定去參加比賽。
    3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是()。
    甲:0、1、0、2、2、0、3、1、2、4。
    乙:2、3、1、2、0、2、1、1、2、1。
    分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?
    八年級數(shù)學(xué)名師教案篇十四
    1.了解方差的定義和計算公式。
    2.理解方差概念的產(chǎn)生和形成的過程。
    3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
    1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
    2.難點:理解方差公式。
    3.難點的突破方法:
    方差公式:s=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。
    (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
    (2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法??梢援嬚劬€圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
    (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
    1.教材p125的討論問題的意圖:
    (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
    (2).為引入方差概念和方差計算公式作鋪墊。
    (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
    (4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的'局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
    2.教材p154例1的設(shè)計意圖:
    (1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。
    (2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。
    除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。
    教材xxx例x在分析過程中應(yīng)抓住以下幾點:
    1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
    2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。
    3.方差怎樣去體現(xiàn)波動大?。?BR>    這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
    1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)。
    甲:9、10、11、12、7、13、10、8、12、8;。
    乙:8、13、12、11、10、12、7、7、9、11;。
    問:(1)哪種農(nóng)作物的苗長的比較高?
    (2)哪種農(nóng)作物的苗長得比較整齊?
    測試次數(shù)12345。
    段巍1314131213。
    金志強1013161412。
    參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。
    的成績比xx的成績要穩(wěn)定。
    略。
    八年級數(shù)學(xué)名師教案篇十五
    1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
    2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
    平行四邊形的判定方法及應(yīng)用。
    閱讀教材p44至p45。
    利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當(dāng)選擇手中的硬紙板條搭建一個平行四邊形嗎?
    (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
    (3)你能說出你的做法及其道理嗎?
    (5)你還能找出其他方法嗎?
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
    八年級數(shù)學(xué)名師教案篇十六
    (一)、知識與技能:
    (1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
    (2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。
    (二)、過程與方法:
    (1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
    (2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
    (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。
    (三)、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。
    二、教學(xué)重點和難點。
    重點:因式分解的概念及提公因式法。
    難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
    三、教學(xué)過程。
    教學(xué)環(huán)節(jié):
    活動1:復(fù)習(xí)引入。
    看誰算得快:用簡便方法計算:
    (1)7/9×13-7/9×6+7/9×2=;
    (2)-2.67×132+25×2.67+7×2.67=;
    (3)992–1=。
    設(shè)計意圖:
    注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
    活動2:導(dǎo)入課題。
    p165的探究(略);
    2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
    設(shè)計意圖:
    引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
    活動3:探究新知。
    看誰算得準(zhǔn):
    計算下列式子:
    (1)3x(x-1)=;
    (2)(a+b+c)=;
    (3)(+4)(-4)=;
    (4)(-3)2=;
    (5)a(a+1)(a-1)=;
    根據(jù)上面的算式填空:
    (1)a+b+c=;
    (2)3x2-3x=;
    (3)2-16=;
    (4)a3-a=;
    (5)2-6+9=。
    在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
    活動4:歸納、得出新知。
    比較以下兩種運算的聯(lián)系與區(qū)別:
    a(a+1)(a-1)=a3-a。
    a3-a=a(a+1)(a-1)。
    在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
    八年級數(shù)學(xué)名師教案篇十七
    學(xué)會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。
    去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、
    解分式方程的一般步驟。
    1、什么叫分式方程?
    2、解分式方程的基本思想:
    分式方程整式方程。
    3、解方程(學(xué)生板演)。
    1、由上述學(xué)生的板演歸納出解分式方程的一般步驟。
    (1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;
    (2)解這個整式方程;
    2、范例講解。
    (學(xué)生嘗試練習(xí)后,教師講評)。
    例1:解方程例2:解方程例3:解方程講評時強調(diào):
    1、怎樣確定最簡公分母?(先將各分母因式分解)。
    2、解分式方程的步驟、
    鞏固練習(xí):p1471t,2t、
    課堂小結(jié):解分式方程的一般步驟。
    布置作業(yè):見作業(yè)本。
    八年級數(shù)學(xué)名師教案篇十八
    調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
    例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
    從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
    例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進(jìn)行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。
    將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
    一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
    例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
    解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
    又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
    解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
    所以這組數(shù)據(jù)的眾數(shù)是2和3。
    【規(guī)律方法小結(jié)】。
    (1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
    (2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。
    (3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
    (4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。
    探究交流。
    1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
    解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當(dāng)這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
    總結(jié):
    (1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
    (2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
    (3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
    (4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
    課堂檢測。
    基本概念題。
    1、填空題。
    (1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
    (4)為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里,對進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
    基礎(chǔ)知識應(yīng)用題。
    2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
    (1)計算這10個班次乘車人數(shù)的平均數(shù);
    (2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
    八年級數(shù)學(xué)名師教案篇十九
    一、教學(xué)目的:
    1、掌握菱形概念,知道菱形與平行四邊形的關(guān)系;
    3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力;
    4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想;
    二、重點、難點。
    1、教學(xué)重點:菱形的性質(zhì)1、2;
    2、教學(xué)難點:菱形的性質(zhì)及菱形知識的綜合應(yīng)用;
    三、例題的意圖分析。
    四、課堂引入。
    1、(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
    《18、2、2菱形》課時練習(xí)含答案;
    5、在同一平面內(nèi),用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。
    a、矩形b、菱形c、正方形d、梯形。
    答案:b。
    知識點:等邊三角形的性質(zhì);菱形的判定。
    解析:
    分析:此題主要考查了等邊三角形的性質(zhì),菱形的定義、
    6、用兩個邊長為a的等邊三角形紙片拼成的四邊形是()。
    a、等腰梯形b、正方形c、矩形d、菱形。
    答案:d。
    知識點:等邊三角形的性質(zhì);菱形的判定。
    解析:
    分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、
    《菱形的性質(zhì)與判定》練習(xí)題。
    一選擇題:
    1、下列四邊形中不一定為菱形的是()。
    a、對角線相等的平行四邊形b、每條對角線平分一組對角的四邊形。
    c、對角線互相垂直的平行四邊形d、用兩個全等的等邊三角形拼成的四邊形。
    2、下列說法中正確的是()。
    a、四邊相等的四邊形是菱形。
    b、一組對邊相等,另一組對邊平行的四邊形是菱形。
    c、對角線互相垂直的四邊形是菱形。
    d、對角線互相平分的四邊形是菱形。
    3、若順次連接四邊形abcd各邊的中點所得四邊形是菱形,則四邊形abcd一定是()。
    a、菱形b、對角線互相垂直的四邊形c、矩形d、對角線相等的四邊形。