總結是回顧過去、規(guī)劃未來的關鍵環(huán)節(jié)。如何培養(yǎng)學習興趣和習慣,提高學習效果?接下來,我們一起來看看以下小編為大家整理的幾篇總結范文,給你一些寫作上的靈感。
平行四邊形的判定教學設計篇一
平行四邊形在實際生活和工作中具有廣泛的應用,因此它的判定是本章的重點內容。性質和判定的學習是一個互逆的過程,性質是判定學習的基礎。平行四邊形的判定一節(jié)按照課本分為兩個課時,前三個判定和定義判定為第一課時,第一課時主要探討平行四邊形的判定的四種方法,在探討時由一個實際問題——玻璃片的問題引出四個判定方法的猜想,然后引導學生進行推理證明驗證,從邊、角、平分線三點來分別探討,在課堂上我要求學生將每種判定的數學語言和符號語言都按照格式書寫出來,這樣有利于他們數學習慣的培養(yǎng)。在教學過程中,引導學生通過動手實踐、猜想、論證的過程得出結論和方法,同時安排同學上臺進行講解、板書等方法,有利于鍛煉學生的綜合能力。
收獲:通過玻璃片的實例引導同學探索、研究得出平行四邊形的判定方法,學生對四個判定的掌握比較好,通過練習鞏固,學生對判定方法的運用也比較熟練,而且由于要求學生對每一個判定都進行了口頭表達過程和符號語言的書寫練習,因此提高了學生的推理論證的能力和書寫能力,在訓練過程中大部分的學生都能說出或寫出比較完整的證明過程。
不足:首先,由于學生不熟悉,課件不充分等原因,造成在教學過程中時間過于緊張,使得在教學中的部分環(huán)節(jié)沒能得以體現(xiàn),比如:學生的板演等,這對課堂教學的效果造成了一定的影響。另外幾何證明題一直是學生的一個弱點,這在今后的學習中是一個需要改變和提高部分。在今后的教學中一定會努力學習,積極探索,完善自己的教學模式和方法,爭取更好的成績。
平行四邊形的判定教學設計篇二
經歷探索平行四邊形判別條件的過程,培養(yǎng)學生操作、觀察和說理能力;掌握兩組對邊分別相等的四邊形是平行四邊形這一判別條件。
二、教材分析。
本節(jié)課是在學生學習了平行四邊形的兩個判定定理之后即將學習的第三個判定定理——兩組對邊分別相等的四邊形是平行四邊形。
三、教學重難點。
四、教學準備。
兩根長40厘米和兩根長30厘米的木條。
五、教學設計。
首先復習近平行四邊形的定義,然后通過學生活動發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗證。最后依靠課本所設計的“做一做”,“議一議”以及“隨堂練習”加深對平行四邊形判定定理的理解。
六、教學過程。
1、復習近平行四邊形的定義。(旨在為證明一個四邊形是平行四邊形做鋪墊)。
2、小組活動。
用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進行交流。
(通過小組活動,學生親自動手操作,得出結論——當兩組對邊相等時,四邊形是平行四邊形;對邊不相等時,所圍成的四邊形不是平行四邊形)。
3、課本91頁的“做一做”
(其目的是鞏固和應用“兩組對邊相等的四邊形是平行四邊形”的判定定理。)。
4、“議一議”
問題1、一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎?說說你的想法。
(先鼓勵學生自主探索,再分組討論,最后全班交流得出正確結論)。
問題2、要判別一個四邊形是平行四邊形,你有哪些方法?
5、通過課本的“隨堂練習”,使學生對平行四邊形的判別條件加以應用和鞏固。
平行四邊形的判定教學設計篇三
本節(jié)課充分利用小組合作學習,在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西為核心問題。從課前小練變到典型例題,還是比較合理的。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。用典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
多題一法,從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
總之,嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有自己的思想和獨創(chuàng)。
平行四邊形的判定教學設計篇四
根據平行四邊形的定義:在同一個二維平面內,由兩組互相平行的對邊組成的閉合圖形叫平行四邊形。
長方形和正方形都具有平行四邊形的特征,長方形是四個角都是直角的特殊平行四邊形,正方形是四個角都是直角,四條邊長相等的特殊平行四邊形。
長方形:長方形也叫矩形,是有一個角是直角的平行四邊形,也可以定義為四個角都是直角的平行四邊形。
判定方法。
1、對角線相等的菱形是正方形。
2、有一個角為直角的菱形是正方形。
3、對角線互相垂直的矩形是正方形。
4、一組鄰邊相等的矩形是正方形。
5、一組鄰邊相等且有一個角是直角的`平行四邊形是正方形。
6、對角線互相垂直且相等的平行四邊形是正方形。
7、對角線相等且互相垂直平分的四邊形是正方形。
8、一組鄰邊相等,有三個角是直角的四邊形是正方形。
9、既是菱形又是矩形的四邊形是正方形。
平行四邊形的判定教學設計篇五
【原創(chuàng)】沒有最好,力求更好――《平行四邊形判定》課后反思。
昨天下午,我上了一節(jié)數學電教課《平行四邊形的判定》第一課時,本節(jié)課在引入的環(huán)節(jié)上,我采用復習引入的方式。首先復習了平行四邊形的定義和性質,喚起學生對已有知識的回憶,接著通過探究逆命題的真假直接引出本節(jié)課的學習內容和任務。同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。
一、本節(jié)課對教材內容進行了重組和編排。
教材中平行四邊形的判定的第一課時學習的判定定理是:兩組對邊分別相等的四邊形是平行四邊形,對角線互相平分的四邊形是平行四邊形。因為平行四邊形的性質是從邊、角、對角線三個方面研究的,所以,我將判定方法也從這三個方面入手,將教材內容進行調整,本節(jié)課從邊進行研究判定方法。
二、充分利用小組合作學習。
在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的`,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上。學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
三、本節(jié)課題量不算太大,但做到了幾點:
(1)一題多變。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西---核心問題。本課的核心問題就是,平行四邊形的判定方法的選擇。自認為從課前小練變到典型例題,還是比較合理的。因為,前面的練習其實就是為例題做了一定鋪墊,學生可以建立起知識聯(lián)系,尋求解題突破口。但從典型例題變到能力訓練題,并不理想,沒有緊扣“平行四邊形的判定”而變。
(2)一題多解。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。本課中,典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
(3)多題一法。
本課從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
四、在對課案的反復打磨期間,自己也收獲頗豐。
嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有意識地進一步嘗試和運用,真正使學生能力得以培養(yǎng),技能逐步形成,數學素質得到提高。
教學永遠是一門遺憾的藝術,吹盡黃沙始現(xiàn)金。讓我們以“沒有最好,力求更好”來不斷改進我們的教學,實現(xiàn)真正意義上的與時俱進。
平行四邊形的判定教學設計篇六
平行四邊形的判定是新人教版八年級數學下冊第十八章第一節(jié)第二部分內容,是在學習關于平行四邊形的性質的基礎上進一步探究學習的,這一部分內容主要探究平行四邊形的四條判定以及判斷和性質的綜合運用,培養(yǎng)學生的探究精神、創(chuàng)新精神和應用意識,也為后期學習特殊的平行四邊形探索方法和奠定基礎。
在教學時我主要采用了以下方法:
1、實驗操作法。為了探索平行四邊形的判定方法,我引導學生從實驗入手,通過親自動手操作,在操作中從感官上獲取認識。
2、引導發(fā)現(xiàn)法。在學生實驗的過程中,及時引導,細致觀察,探索并發(fā)現(xiàn)判定一個四邊形為平行四邊形的條件,猜測平行四邊形的判定方法,為歸納平行四邊形的判定方法的可行性提供先決條件。
3、探究討論法。在猜測得出平行四邊形的判定方法后,引導學生在小組內充分進行討論,從不同角度驗證方法的正確性,進而歸納出平行四邊形的判定方法。
4、練習法。采用講練結合的方式讓學生不僅學會探究,更要能夠靈活運用,增強應用意識。
5、加強了變式訓練。通過一題多變、一題多證、多題同證等變式訓練,既鞏固了學生對知識的靈活運用,也訓練和發(fā)展學生的邏輯思維。
反思自己的教學,還是獲得了一些成功之處:
1、培養(yǎng)了學生的動手能力。通過多媒體、生活問題、實驗教具等方式呈現(xiàn)問題情境,給學生足夠時間親自動腦、動手、動口參與教學,與老師共同探究判別方法,感悟知識的發(fā)生、發(fā)展過程。
2、訓練了學生的思維能力。引導學生從不同角度、不同方面進行相互討論、彼此交流,是他們的思維能力的得到了極大的發(fā)展和提升。
3、培養(yǎng)學的探究精神和創(chuàng)新精神。通過多層次、多角度例題及練習變式,培養(yǎng)學生思維的廣闊性和深刻性,提升探究能力、開拓創(chuàng)新精神。
4、增強應用意識。通過對實際生活中的一些實例和問題進行探究解決,使學生進一步認識到數學應用于生活的重要性,增強學生的數學應用意識。
當然,在教學中也還存在許多不足:
1、對教學設計與時間地分配還不夠合理,還要做更好的思考,以增強對時間控制地敏感度,更好地分配好每一環(huán)節(jié)所花的時間。
2、課教學的節(jié)奏把握還不到位,需要在以后的教學中,爭取讓更多的學生消化好課堂新知,理解好知識點與例題。
3、學生的主體作用彰顯不夠,在課堂上要放心地讓學生去嘗試錯誤,多些讓學生自主思考,充分發(fā)揮學生的主體作用。
4、對學生的學習與練習的方法指導還不足,應該多些方法性的引導。
總之,在以后的教學中要充分激發(fā)學生學習數學的興趣,讓學生積極參與、討論,導中有練、有思、有研,改進教師先講知識,然后再進行強化訓練的`做法,使講、練、思、研融合在一起,讓學生充分體驗數學學習的樂趣,積累數學活動經驗,體會數學推理的意義,讓學生在做中學,逐步形成創(chuàng)新意識。
平行四邊形的判定教學設計篇七
本節(jié)課是平行四邊形判定的第二節(jié)課,上一節(jié)課已經學習了判定方法1和判定方法2,再結合平行四邊形的定義,同學們已經掌握了3種平行四邊形的判定方法。本節(jié)課在上節(jié)課的基礎上,學習平行四邊形的判定方法3,使同學們會運用這些方法進行幾何的推理證明,并且通過本節(jié)課的`學習,繼續(xù)培養(yǎng)學生的分析問題、尋找最佳解題途徑的能力。
本節(jié)課的知識點不難,教材內容也較少,但學生靈活運用判定定理去解決相關問題并不容易,基于此,在本設計中加強了一題多解和尋找最佳解題方法的訓練教學,豐富了課堂活動。
平行四邊形的判定教學設計篇八
《平行四邊形的判定》是學生學習平行四邊形的重要知識。一共分為4個課時。在學習平行四邊形的判定,同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。在設計教學的.亮點是充分利用小組合作學習、一題多變、一題多解、多題一法。
充分利用小組合作學習,在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西為核心問題。從課前小練變到典型例題,還是比較合理的。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。用典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
多題一法,從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
總之,嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有自己的思想和獨創(chuàng)。
平行四邊形的判定教學設計篇九
本節(jié)課充分利用小組合作學習,在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西為核心問題。從課前小練變到典型例題,還是比較合理的。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。用典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
多題一法,從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
總之,嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有自己的思想和獨創(chuàng)。
將本文的word文檔下載到電腦,方便收藏和打印。
平行四邊形的判定教學設計篇十
通過平行四邊形的性質,理解并探索并掌握平行四邊形的判定條件,并能根據條件判定平行四邊形。
【過程與方法】
經歷平行四邊形判別條件的探索過程,逐步掌握平行四邊形判定的基本方法;在與他人交流的過程中,能合理清晰地表達自己的思維過程。
【情感態(tài)度與價值觀】
主動參與探索的活動中,發(fā)展合情推理意識、主動探究的習慣,激發(fā)學習數學的熱情和興趣。
【重點】平行四邊形的判定方法。
【難點】平行四邊形判定方法的應用。
(一)導入新課
出示下圖:學生觀察下圖,并提出下列問題。
(二)生成新知
通過前面的學習,我們知道,平行四邊形的對邊相等,對角相等,對角線互相平分。那么反過來,對邊相等或對角線互相平分的四邊形是不是平行四邊形呢?下面我們就來驗證一下。
提問1:你能寫出兩個實驗中的已知條件和求證條件嗎?
提問2:根據你寫的已知條件,你能得到求證的條件嗎?
提問3:通過上面的兩個問題,最后你得到什么結論呢?
引導學生總結歸納出結論:
兩組對邊分別相等的四邊形為平行四邊形;
兩組對角線分別相等的四邊形為平行四邊形;
對角線互相平分的四邊形是平行四邊形。
出示例題,通過對角線互相平分的四邊形的平行四邊形的是平行四邊形為例,講解并驗證:
如圖所示,在四邊形abcd中,ac,bd相交于點o,且oa=oc,ob=od。求證:四邊形abcd是平行四邊形。
引導學生總結歸納出具體解題步驟:
(三)應用新知
1.在平行四邊形abcd中,ac、bd相交于點o。
(2)若ac=10cm,bd=8cm,那么當ao=________cm,do=________cm時,四邊形abcd為平行四邊形。
(四)小結作業(yè)
小結:通過這節(jié)課的學習,你有什么收獲?你對今天的學習還有什么疑問嗎?
平行四邊形的判定教學設計篇十一
3、在操作、觀察、比較中,滲透轉化的思想方法。
4、在探究活動中,體驗到成功的快樂。
推導平行四邊形面積公式,并能夠運用平行四邊形面積公式解決簡單的實際問題。
課件平行四邊形硬紙片剪刀透明方格紙。
一、情境激趣:
生:平行四邊形的面積。師:這節(jié)課我們就來研究平行四邊形的面積。(板書課題)。
二、實驗探究:
1、猜想。
那么大家猜一猜平行四邊形的面積可能與什么有關?(可能與邊有關)只與它邊的長度有關?大家看老師手中這個平行四邊形,(演示)還可能與什么有關?(高)那么平行四邊形的面積究竟與它的底和高有怎樣的關系?下面就讓我們一起來研究。
2、實驗。
1)獨立自主探究:
生:我用數格子的方法。
師:數格子時,不足一格的按一格算,把得到的數據填在表格里。
師:還有什么方法?
生:我用剪一剪、拼一拼的方法。
師:用剪拼方法上的同學請讀一下操作提示。(一生讀)下面你們就用自己喜歡的方法試一試。
2)小組內交流:
師:通過數格子或者剪拼的方法,哪位同學有收獲了?把你的想法在小組內交流,小組長組織好。一會要向全班同學匯報你們小組的方法。
3)學生匯報:
第一個小組:(1)數格子(把表格帶到前面說)。
(2)剪拼。
師:你們成功的把平行四邊形轉化成了長方形,這一長方形與原來的平行四邊形有什么關系?(生:長方形的長等于平行四邊形的底、寬等于平行四邊形的高)你們小組轉化的清楚,介紹的明白真了不起)。
是這樣嗎?師課件演示解說強調平移。
(多么巧妙的剪拼,我發(fā)現(xiàn)你們的思維很靈活啊。)(我只能說兩個字了:“佩服!”)。
師:還有其他的方法嗎?其他幾個小組同學,通過動手操作你們得到了什么結論。一起說(師板書:平行四邊形的面積=底*高)。
四、運用公式解決。
師:現(xiàn)在我們來算一下鋪這塊平行四邊形草坪要用多少錢?
(生口算)。
五、拓展練習。
底15厘米,高11厘米。
(不僅準確計算出了結果,速度還很快,真不錯。)。
2、開放題:這是一張全國地圖,有一個省的地形很像平行四邊形,山西省。山西南北大約590千米,東西大約310千米,你能估計一下它的土地面積嗎?(東西能否再平些)。
(能在實際問題的解決中恰當運用公式,了不起)。
3、學校要建一個面積是12平方米的平行四邊形花壇,請你幫學校設計一下,(要求底、高均為整米數)1)可以有幾種方案?2)哪種方案更合理?(你們能從不同角度考慮,為學校選擇更合理的方案,老師非常感謝大家)。
六、全課小結:
師:這節(jié)課,你是怎么學習的?你有哪些收獲?
(我是用數方格的方法、我用平移這種方法把平行四邊形轉化成長方形再與平行四邊形進行比較得出平行四邊形的面積的師演示)你們很了不起,能想辦法把平行四邊形轉化成我們以前學過的長方形來研究它的面積。我們這節(jié)課使用的這種方法,以后在學習其它圖形面積時還會用到。今天的家庭作業(yè)是以《平行四邊形的面積》為題寫一篇數學日記,寫清平行四邊形的面積的推導過程,可以畫、也可以剪貼。
課后反思。
課堂教學是一個動態(tài)生成的過程。因此,在教學時,我把關注的焦點放在學生身上,關注學生的情感體驗,關注學生的自主建構,更關注學生真實的學習過程。從而適時地激發(fā)學生的情感,點燃學生的智慧,發(fā)揮學生的創(chuàng)造性。主要體現(xiàn)在以下幾個方面:
1、適時滲透、領悟思想方法。
數學教學的價值目標取向不僅僅局限于讓學生獲得基本的數學知識和技能,更重要的是在數學教學活動中,經歷問題解決的過程,了解數學學習的價值,增強數學的應用意識,獲得數學的基本思想方法。我覺得,這節(jié)課學習的轉化的數學思想方法將永遠銘刻在學生頭腦中,將在學生今后的學習中發(fā)揮更大的作用。
2、適時引導、主動建構知識。
學生學習數學知識的過程是主動建構的過程。因此,在教學中,我讓學生象科學家一樣經歷大膽猜想、動手驗證、得出結論的過程。先讓學生根據已有的知識經驗進行猜想:平行四邊形的面積可能與什么有關?然后,給學生足夠的探究時間和空間,“數”、“剪拼”都是學生的智慧,“數的過程”、“剪拼的過程”都是學生的思維過程。最后,讓學生同伴互助去探究、去發(fā)現(xiàn)、去總結,給每個學生參與數學活動的機會,真正的實現(xiàn)了自主學習。
3、適時點撥、有效進行指導。
探究學習是把學生的“學”作為實施教學的基本點,而教師的“導”是實現(xiàn)學生“學”的根本保證。因此,在教學中我適時地對學生進行點撥、指導,做到“放得開、收得住”。如在自主探究過程中我發(fā)現(xiàn),有的學生把平行四邊形剪開后無法拼成長方形。于是,我進行了個別指導。引導學生思考:為什么只有沿高剪開才能拼成長方形?通過指導,使學生明白沿平行四邊形的高剪開,是將平行四邊形轉化成長方形的關鍵。
課例點評。
這節(jié)課教師在教學時以圖形內在聯(lián)系為線索,以轉化這條數學思想方法為主線,在操作、觀察、比較活動中,通過孕伏、理解、強化的過程,讓學生在獲得知識的同時,領悟轉化的數學思想方法。具體表現(xiàn)在以下幾點:
1、在情境中蘊含知識,孕伏思想方法。
這節(jié)課情境的創(chuàng)設一方面緊緊地圍繞所要探索的數學知識,另一方面又充分體現(xiàn)了知識之間的內在聯(lián)系。創(chuàng)設了江濱公園鋪草坪的情境圖,分別呈現(xiàn)了一個長方形和一個平行四邊形的草坪,并提供每平方米草坪的價格,引導學生根據信息提出問題。這一情境中既有長方形面積的計算,又有平行四邊形面積的計算,把這些知識都融入一個具體的生活情境中,既喚起了學生已有的知識經驗,又暗含了平行四邊形的面積與長方形的面積有關。
2、在探究中體驗知識,理解思想方法。
這節(jié)課沿著“提出猜想思考驗證方法實踐驗證”這個過程進行。一是獨立探究。讓每個學生根據自己的體驗,用自己的思維方式進行探究,并且提出了活動要求。一方面啟發(fā)學生設法把所研究的圖形轉化為已經會計算面積的圖形,滲透“轉化”的思想方法;另一方面引導學生去探究所研究的圖形與轉化后的圖形各部分之間有什么聯(lián)系,從而找到平行四邊形面積的計算方法。二是合作探究。在學生獨立探究的基礎上,讓學生在小組內進行交流。通過交流,學生知道,任何形狀的平行四邊形都可以轉化成長方形,這樣,他們對圖形變換的認識不再是個案的體會,而是對圖形本質聯(lián)系的體驗。
3、在反思中提煉知識,強化思想方法。
教師在教學中注重引導學生對轉化過程進行反思。第一次是在學生匯報交流之后,教師用課件呈現(xiàn)圖形轉化的過程引導學生進行反思,重點是理解轉化的思想方法;第二次是課即將結束時,教師引導學生總結這節(jié)課學習內容時再次回放圖形轉化的過程,重點是強化轉化的思想方法。并引導學生:“在今后學習其它平面圖形的面積時,還要用到這種方法。”這樣為學生以后學習三角形、梯形面積的計算進行了思想方法的延伸。
總之,這節(jié)課教學時有兩條主線,一條是數學基礎知識,另一條是數學思想方法,并且把領悟數學思想方法作為數學教學的要務,把掌握數學思想方法作為學生數學學習的最高境界。
平行四邊形的判定教學設計篇十二
平行四邊形的判定是新人教版八年級數學下冊第十八章第一節(jié)第二部分內容,是在學習了平行四邊形的性質的基礎上進一步探究學習的,這一部分內容主要探究平行四邊形的四條判定以及判斷和性質的綜合運用,培養(yǎng)學生的探究精神、創(chuàng)新精神和應用意識,也為后期學習特殊的平行四邊形探索方法和奠定基礎。
1、實驗操作法。為了探索平行四邊形的判定方法,我引導學生從實驗入手,通過親自動手操作,在操作中從感官上獲取認識。
2、引導發(fā)現(xiàn)法。在學生實驗的過程中,及時引導,細致觀察,探索并發(fā)現(xiàn)判定一個四邊形為平行四邊形的條件,猜測平行四邊形的判定方法,為歸納平行四邊形的判定方法的可行性提供先決條件。
3、探究討論法。在猜測得出平行四邊形的判定方法后,引導學生在小組內充分進行討論,從不同角度驗證方法的正確性,進而歸納出平行四邊形的判定方法。
4、練習法。采用講練結合的方式讓學生不僅學會探究,更要能夠靈活運用,增強應用意識。
5、加強了變式訓練。通過一題多變、一題多證、多題同證等變式訓練,既鞏固了學生對知識的靈活運用,也訓練和發(fā)展學生的邏輯思維。
1、培養(yǎng)了學生的動手能力。通過多媒體、生活問題、實驗教具等方式呈現(xiàn)問題情境,給學生足夠時間親自動腦、動手、動口參與教學,與老師共同探究判別方法,感悟知識的發(fā)生、發(fā)展過程。
2、訓練了學生的思維能力。引導學生從不同角度、不同方面進行相互討論、彼此交流,是他們的思維能力的得到了極大的發(fā)展和提升。
3、培養(yǎng)學的探究精神和創(chuàng)新精神。通過多層次、多角度例題及練習變式,培養(yǎng)學生思維的廣闊性和深刻性,提升探究能力、開拓創(chuàng)新精神。
4、增強應用意識。通過對實際生活中的一些實例和問題進行探究解決,使學生進一步認識到數學應用于生活的重要性,增強學生的數學應用意識。
1、對教學設計與時間地分配還不夠合理,還要做更好的思考,以增強對時間控制地敏感度,更好地分配好每一環(huán)節(jié)所花的時間。
2、課教學的節(jié)奏把握還不到位,需要在以后的教學中,爭取讓更多的學生消化好課堂新知,理解好知識點與例題。
3、學生的主體作用彰顯不夠,在課堂上要放心地讓學生去嘗試錯誤,多些讓學生自主思考,充分發(fā)揮學生的主體作用。
4、對學生的學習與練習的方法指導還不足,應該多些方法性的引導。
總之,在以后的教學中要充分激發(fā)學生學習數學的興趣,讓學生積極參與、討論,導中有練、有思、有研,改進教師先講知識,然后再進行強化訓練的做法,使講、練、思、研融合在一起,讓學生充分體驗數學學習的樂趣,積累數學活動經驗,體會數學推理的意義,讓學生在做中學,逐步形成創(chuàng)新意識。
平行四邊形的判定教學設計篇十三
【原創(chuàng)】沒有最好,力求更好――《平行四邊形判定》課后反思。
昨天下午,我上了一節(jié)數學電教課《平行四邊形的判定》第一課時,本節(jié)課在引入的環(huán)節(jié)上,我采用復習引入的方式。首先復習了平行四邊形的定義和性質,喚起學生對已有知識的回憶,接著通過探究逆命題的真假直接引出本節(jié)課的學習內容和任務。同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。
一、本節(jié)課對教材內容進行了重組和編排。
教材中平行四邊形的判定的第一課時學習的判定定理是:兩組對邊分別相等的四邊形是平行四邊形,對角線互相平分的四邊形是平行四邊形。因為平行四邊形的性質是從邊、角、對角線三個方面研究的,所以,我將判定方法也從這三個方面入手,將教材內容進行調整,本節(jié)課從邊進行研究判定方法。
二、充分利用小組合作學習。
在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的`,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上。學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
三、本節(jié)課題量不算太大,但做到了幾點:
(1)一題多變。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西---核心問題。本課的核心問題就是,平行四邊形的判定方法的選擇。自認為從課前小練變到典型例題,還是比較合理的。因為,前面的練習其實就是為例題做了一定鋪墊,學生可以建立起知識聯(lián)系,尋求解題突破口。但從典型例題變到能力訓練題,并不理想,沒有緊扣“平行四邊形的判定”而變。
(2)一題多解。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。本課中,典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
(3)多題一法。
本課從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
四、在對課案的反復打磨期間,自己也收獲頗豐。
嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有意識地進一步嘗試和運用,真正使學生能力得以培養(yǎng),技能逐步形成,數學素質得到提高。
教學永遠是一門遺憾的藝術,吹盡黃沙始現(xiàn)金。讓我們以“沒有最好,力求更好”來不斷改進我們的教學,實現(xiàn)真正意義上的與時俱進。
將本文的word文檔下載到電腦,方便收藏和打印。
平行四邊形的判定教學設計篇十四
(第一課時)。
一、素質教育目標。
(一)知識教學點。
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用.。
2.使學生理解判定定理與性質定理的區(qū)別與聯(lián)系.。
3.會根據簡單的條件畫出平行四邊形,并說明畫圖的依據是哪幾個定理.。
(二)能力訓練點。
1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.。
(三)德育滲透點。
通過一題多解激發(fā)學生的學習興趣.。
(四)美育滲透點。
通過學習,體會幾何證明的方法美.。
二、學法引導。
構造逆命題,分析探索證明,啟發(fā)講解.。
三、重點?難點?疑點及解決辦法。
2.教學難點:綜合應用判定定理和性質定理.。
四、課時安排。
2課時。
五、教具學具準備。
投影儀,投影膠片,常用畫圖工具。
六、師生互動活動設計。
復習引入,構造逆命題,畫圖分析,討論證法,鞏固應用.。
七、教學步驟。
【復習提問】。
1.平行四邊形有什么性質?學生回答教師板書。
2.將以上性質定理分別用命題的形式敘述出來.。
【引入新課】。
用投影儀打出上述命題的逆命題.。
那么其它逆命題是否正確呢?如果正確就可得到另外的判定方法(寫出命題).。
【講解新課】。
平行四邊形的判定教學設計篇十五
經歷探索平行四邊形判別條件的過程,培養(yǎng)學生操作、觀察和說理能力;掌握兩組對邊分別相等的四邊形是平行四邊形這一判別條件。
本節(jié)課是在學生學習了平行四邊形的兩個判定定理之后即將學習的第三個判定定理——兩組對邊分別相等的四邊形是平行四邊形。
重點:
探索并掌握平行四邊形的判別條件。
難點:
對平行四邊形判別條件的理解及說理的基本方法的掌握。
兩根長40厘米 和兩根長30厘米的木條
首先復習平行四邊形的定義,然后通過學生活動發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗證。最后依靠課本所設計的“做一做” ,“議一議” 以及“隨堂練習”加深對平行四邊形判定定理的理解。
1、復習平行四邊形的定義。(旨在為證明一個四邊形是平行四邊形做鋪墊)
2、小組活動
用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進行交流。 (通過小組活動,學生親自動手操作,得出結論——當兩組對邊相等時,四邊形是平行四邊形;對邊不相等時,所圍成的四邊形不是平行四邊形)。 平行四邊形的判定定理——兩組對邊相等的四邊形是平行四邊形。
3、課本91頁的“做一做” (其目的是鞏固和應用“兩組對邊相等的四邊形是平行四邊形”的判定定理。)
4、“議一議”
問題1、一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎?說說你的想法。 (先鼓勵學生自主探索,再分組討論,最后全班交流得出正確結論)
問題2、要判別一個四邊形是平行四邊形,你有哪些方法?
5、通過課本的“隨堂練習”,使學生對平行四邊形的判別條件加以應用和鞏固
平行四邊形的判定教學設計篇十六
本節(jié)課是平行四邊形判定的第二節(jié)課,上一節(jié)課已經學習了判定方法1和判定方法2,再結合平行四邊形的定義,同學們已經掌握了3種平行四邊形的判定方法。本節(jié)課在上節(jié)課的基礎上,平行四邊形的判定方法3的學習,使同學們會運用這些方法進行幾何的推理證明,并且通過本節(jié)課的學習,繼續(xù)培養(yǎng)學生的分析問題、尋找最佳解題途徑的能力。
本節(jié)課的知識點不難,教材內容也較少,但學生靈活運用判定定理去解決相關問題并不容易,基于此,在本設計中加強了一題多解和尋找最佳解題方法的訓練教學,豐富了課堂活動。
由于本節(jié)已經完成了平行四邊形的教學,因此本設計中注意了平行四邊形判定方法的及時歸納,從邊、角、對角線三個角度進行盤點,思路清晰,便于存貯、提取、應用。同時通過題目訓練,讓學生了解平行四邊形知識的運用包括三個方面:一是直接運用平行四邊形的性質去解決某些問題。例如求角的度數線段的長度,證明角相等或線段相等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再用平行四邊形的性質去解決某些問題。
平行四邊形的判定教學設計篇十七
每個學生準備一個平行四邊形。
1.請同學翻書到86頁,仔細觀察,找一找圖中有哪些學過的圖形?
2.好,下面誰來說一說你找到了哪些學過的圖形?
3.請觀察這兩個花壇,哪一個大呢?假如這塊長方形花壇的長是3米,寬是2米,怎樣計算它的面積呢?根據長方形的面積=長寬(板書),得出長方形花壇的面積是6平方米,平行四邊形面積我們還沒有學過,所以不能計算出平行四邊形花壇的面積,這節(jié)課我們就學習的平行四邊形面積計算。
(一)、數方格法。
用展示臺出示方格圖。
1.這是什么圖形?(長方形)如果每個小方格代表1平方厘米,這個長方形的面積是多少?(18平方厘米)。
請同學認真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數呢?可以都按半格計算。然后指名說出數得的結果,并說一說是怎樣數的。
3.請同學看方格圖填87頁最下方的表,填完后請學生回答發(fā)現(xiàn)了什么?
小結:如果長方形的長和寬分別等于平行四邊形的底和高,則它們的面積相等。
(二)引入割補法。
以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數方格的方法來計算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計算平行四邊形面積的方法。
(三)割補法。
平行四邊形的判定教學設計篇十八
昨天下午,我上了一節(jié)數學電教課《平行四邊形的判定》第一課時,本節(jié)課在引入的環(huán)節(jié)上,我采用復習引入的方式,平行四邊形判定課后反思。首先復習了平行四邊形的定義和性質,喚起學生對已有知識的回憶,接著通過探究逆命題的真假直接引出本節(jié)課的學習內容和任務。同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。
一、本節(jié)課對教材內容進行了重組和編排。
教材中平行四邊形的判定的第一課時學習的判定定理是:兩組對邊分別相等的四邊形是平行四邊形,對角線互相平分的四邊形是平行四邊形。因為平行四邊形的性質是從邊、角、對角線三個方面研究的,所以,我將判定方法也從這三個方面入手,將教材內容進行調整,本節(jié)課從邊進行研究判定方法。
二、充分利用小組合作學習。
在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上,教學反思《平行四邊形判定課后反思》。學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
三、本節(jié)課題量不算太大,但做到了幾點:
(1)一題多變。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西——核心問題。本課的核心問題就是,平行四邊形的判定方法的選擇。自認為從課前小練變到典型例題,還是比較合理的。因為,前面的練習其實就是為例題做了一定鋪墊,學生可以建立起知識聯(lián)系,尋求解題突破口。但從典型例題變到能力訓練題,并不理想,沒有緊扣“平行四邊形的判定”而變。
(2)一題多解。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。本課中,典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
(3)多題一法。
本課從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
四、在對課案的反復打磨期間,自己也收獲頗豐。
嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有意識地進一步嘗試和運用,真正使學生能力得以培養(yǎng),技能逐步形成,數學素質得到提高。
教學永遠是一門遺憾的藝術,吹盡黃沙始現(xiàn)金。讓我們以“沒有最好,力求更好”來不斷改進我們的教學,實現(xiàn)真正意義上的與時俱進。
將本文的word文檔下載到電腦,方便收藏和打印。
平行四邊形的判定教學設計篇一
平行四邊形在實際生活和工作中具有廣泛的應用,因此它的判定是本章的重點內容。性質和判定的學習是一個互逆的過程,性質是判定學習的基礎。平行四邊形的判定一節(jié)按照課本分為兩個課時,前三個判定和定義判定為第一課時,第一課時主要探討平行四邊形的判定的四種方法,在探討時由一個實際問題——玻璃片的問題引出四個判定方法的猜想,然后引導學生進行推理證明驗證,從邊、角、平分線三點來分別探討,在課堂上我要求學生將每種判定的數學語言和符號語言都按照格式書寫出來,這樣有利于他們數學習慣的培養(yǎng)。在教學過程中,引導學生通過動手實踐、猜想、論證的過程得出結論和方法,同時安排同學上臺進行講解、板書等方法,有利于鍛煉學生的綜合能力。
收獲:通過玻璃片的實例引導同學探索、研究得出平行四邊形的判定方法,學生對四個判定的掌握比較好,通過練習鞏固,學生對判定方法的運用也比較熟練,而且由于要求學生對每一個判定都進行了口頭表達過程和符號語言的書寫練習,因此提高了學生的推理論證的能力和書寫能力,在訓練過程中大部分的學生都能說出或寫出比較完整的證明過程。
不足:首先,由于學生不熟悉,課件不充分等原因,造成在教學過程中時間過于緊張,使得在教學中的部分環(huán)節(jié)沒能得以體現(xiàn),比如:學生的板演等,這對課堂教學的效果造成了一定的影響。另外幾何證明題一直是學生的一個弱點,這在今后的學習中是一個需要改變和提高部分。在今后的教學中一定會努力學習,積極探索,完善自己的教學模式和方法,爭取更好的成績。
平行四邊形的判定教學設計篇二
經歷探索平行四邊形判別條件的過程,培養(yǎng)學生操作、觀察和說理能力;掌握兩組對邊分別相等的四邊形是平行四邊形這一判別條件。
二、教材分析。
本節(jié)課是在學生學習了平行四邊形的兩個判定定理之后即將學習的第三個判定定理——兩組對邊分別相等的四邊形是平行四邊形。
三、教學重難點。
四、教學準備。
兩根長40厘米和兩根長30厘米的木條。
五、教學設計。
首先復習近平行四邊形的定義,然后通過學生活動發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗證。最后依靠課本所設計的“做一做”,“議一議”以及“隨堂練習”加深對平行四邊形判定定理的理解。
六、教學過程。
1、復習近平行四邊形的定義。(旨在為證明一個四邊形是平行四邊形做鋪墊)。
2、小組活動。
用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進行交流。
(通過小組活動,學生親自動手操作,得出結論——當兩組對邊相等時,四邊形是平行四邊形;對邊不相等時,所圍成的四邊形不是平行四邊形)。
3、課本91頁的“做一做”
(其目的是鞏固和應用“兩組對邊相等的四邊形是平行四邊形”的判定定理。)。
4、“議一議”
問題1、一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎?說說你的想法。
(先鼓勵學生自主探索,再分組討論,最后全班交流得出正確結論)。
問題2、要判別一個四邊形是平行四邊形,你有哪些方法?
5、通過課本的“隨堂練習”,使學生對平行四邊形的判別條件加以應用和鞏固。
平行四邊形的判定教學設計篇三
本節(jié)課充分利用小組合作學習,在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西為核心問題。從課前小練變到典型例題,還是比較合理的。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。用典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
多題一法,從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
總之,嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有自己的思想和獨創(chuàng)。
平行四邊形的判定教學設計篇四
根據平行四邊形的定義:在同一個二維平面內,由兩組互相平行的對邊組成的閉合圖形叫平行四邊形。
長方形和正方形都具有平行四邊形的特征,長方形是四個角都是直角的特殊平行四邊形,正方形是四個角都是直角,四條邊長相等的特殊平行四邊形。
長方形:長方形也叫矩形,是有一個角是直角的平行四邊形,也可以定義為四個角都是直角的平行四邊形。
判定方法。
1、對角線相等的菱形是正方形。
2、有一個角為直角的菱形是正方形。
3、對角線互相垂直的矩形是正方形。
4、一組鄰邊相等的矩形是正方形。
5、一組鄰邊相等且有一個角是直角的`平行四邊形是正方形。
6、對角線互相垂直且相等的平行四邊形是正方形。
7、對角線相等且互相垂直平分的四邊形是正方形。
8、一組鄰邊相等,有三個角是直角的四邊形是正方形。
9、既是菱形又是矩形的四邊形是正方形。
平行四邊形的判定教學設計篇五
【原創(chuàng)】沒有最好,力求更好――《平行四邊形判定》課后反思。
昨天下午,我上了一節(jié)數學電教課《平行四邊形的判定》第一課時,本節(jié)課在引入的環(huán)節(jié)上,我采用復習引入的方式。首先復習了平行四邊形的定義和性質,喚起學生對已有知識的回憶,接著通過探究逆命題的真假直接引出本節(jié)課的學習內容和任務。同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。
一、本節(jié)課對教材內容進行了重組和編排。
教材中平行四邊形的判定的第一課時學習的判定定理是:兩組對邊分別相等的四邊形是平行四邊形,對角線互相平分的四邊形是平行四邊形。因為平行四邊形的性質是從邊、角、對角線三個方面研究的,所以,我將判定方法也從這三個方面入手,將教材內容進行調整,本節(jié)課從邊進行研究判定方法。
二、充分利用小組合作學習。
在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的`,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上。學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
三、本節(jié)課題量不算太大,但做到了幾點:
(1)一題多變。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西---核心問題。本課的核心問題就是,平行四邊形的判定方法的選擇。自認為從課前小練變到典型例題,還是比較合理的。因為,前面的練習其實就是為例題做了一定鋪墊,學生可以建立起知識聯(lián)系,尋求解題突破口。但從典型例題變到能力訓練題,并不理想,沒有緊扣“平行四邊形的判定”而變。
(2)一題多解。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。本課中,典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
(3)多題一法。
本課從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
四、在對課案的反復打磨期間,自己也收獲頗豐。
嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有意識地進一步嘗試和運用,真正使學生能力得以培養(yǎng),技能逐步形成,數學素質得到提高。
教學永遠是一門遺憾的藝術,吹盡黃沙始現(xiàn)金。讓我們以“沒有最好,力求更好”來不斷改進我們的教學,實現(xiàn)真正意義上的與時俱進。
平行四邊形的判定教學設計篇六
平行四邊形的判定是新人教版八年級數學下冊第十八章第一節(jié)第二部分內容,是在學習關于平行四邊形的性質的基礎上進一步探究學習的,這一部分內容主要探究平行四邊形的四條判定以及判斷和性質的綜合運用,培養(yǎng)學生的探究精神、創(chuàng)新精神和應用意識,也為后期學習特殊的平行四邊形探索方法和奠定基礎。
在教學時我主要采用了以下方法:
1、實驗操作法。為了探索平行四邊形的判定方法,我引導學生從實驗入手,通過親自動手操作,在操作中從感官上獲取認識。
2、引導發(fā)現(xiàn)法。在學生實驗的過程中,及時引導,細致觀察,探索并發(fā)現(xiàn)判定一個四邊形為平行四邊形的條件,猜測平行四邊形的判定方法,為歸納平行四邊形的判定方法的可行性提供先決條件。
3、探究討論法。在猜測得出平行四邊形的判定方法后,引導學生在小組內充分進行討論,從不同角度驗證方法的正確性,進而歸納出平行四邊形的判定方法。
4、練習法。采用講練結合的方式讓學生不僅學會探究,更要能夠靈活運用,增強應用意識。
5、加強了變式訓練。通過一題多變、一題多證、多題同證等變式訓練,既鞏固了學生對知識的靈活運用,也訓練和發(fā)展學生的邏輯思維。
反思自己的教學,還是獲得了一些成功之處:
1、培養(yǎng)了學生的動手能力。通過多媒體、生活問題、實驗教具等方式呈現(xiàn)問題情境,給學生足夠時間親自動腦、動手、動口參與教學,與老師共同探究判別方法,感悟知識的發(fā)生、發(fā)展過程。
2、訓練了學生的思維能力。引導學生從不同角度、不同方面進行相互討論、彼此交流,是他們的思維能力的得到了極大的發(fā)展和提升。
3、培養(yǎng)學的探究精神和創(chuàng)新精神。通過多層次、多角度例題及練習變式,培養(yǎng)學生思維的廣闊性和深刻性,提升探究能力、開拓創(chuàng)新精神。
4、增強應用意識。通過對實際生活中的一些實例和問題進行探究解決,使學生進一步認識到數學應用于生活的重要性,增強學生的數學應用意識。
當然,在教學中也還存在許多不足:
1、對教學設計與時間地分配還不夠合理,還要做更好的思考,以增強對時間控制地敏感度,更好地分配好每一環(huán)節(jié)所花的時間。
2、課教學的節(jié)奏把握還不到位,需要在以后的教學中,爭取讓更多的學生消化好課堂新知,理解好知識點與例題。
3、學生的主體作用彰顯不夠,在課堂上要放心地讓學生去嘗試錯誤,多些讓學生自主思考,充分發(fā)揮學生的主體作用。
4、對學生的學習與練習的方法指導還不足,應該多些方法性的引導。
總之,在以后的教學中要充分激發(fā)學生學習數學的興趣,讓學生積極參與、討論,導中有練、有思、有研,改進教師先講知識,然后再進行強化訓練的`做法,使講、練、思、研融合在一起,讓學生充分體驗數學學習的樂趣,積累數學活動經驗,體會數學推理的意義,讓學生在做中學,逐步形成創(chuàng)新意識。
平行四邊形的判定教學設計篇七
本節(jié)課是平行四邊形判定的第二節(jié)課,上一節(jié)課已經學習了判定方法1和判定方法2,再結合平行四邊形的定義,同學們已經掌握了3種平行四邊形的判定方法。本節(jié)課在上節(jié)課的基礎上,學習平行四邊形的判定方法3,使同學們會運用這些方法進行幾何的推理證明,并且通過本節(jié)課的`學習,繼續(xù)培養(yǎng)學生的分析問題、尋找最佳解題途徑的能力。
本節(jié)課的知識點不難,教材內容也較少,但學生靈活運用判定定理去解決相關問題并不容易,基于此,在本設計中加強了一題多解和尋找最佳解題方法的訓練教學,豐富了課堂活動。
平行四邊形的判定教學設計篇八
《平行四邊形的判定》是學生學習平行四邊形的重要知識。一共分為4個課時。在學習平行四邊形的判定,同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。在設計教學的.亮點是充分利用小組合作學習、一題多變、一題多解、多題一法。
充分利用小組合作學習,在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西為核心問題。從課前小練變到典型例題,還是比較合理的。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。用典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
多題一法,從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
總之,嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有自己的思想和獨創(chuàng)。
平行四邊形的判定教學設計篇九
本節(jié)課充分利用小組合作學習,在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西為核心問題。從課前小練變到典型例題,還是比較合理的。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。用典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
多題一法,從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
總之,嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有自己的思想和獨創(chuàng)。
將本文的word文檔下載到電腦,方便收藏和打印。
平行四邊形的判定教學設計篇十
通過平行四邊形的性質,理解并探索并掌握平行四邊形的判定條件,并能根據條件判定平行四邊形。
【過程與方法】
經歷平行四邊形判別條件的探索過程,逐步掌握平行四邊形判定的基本方法;在與他人交流的過程中,能合理清晰地表達自己的思維過程。
【情感態(tài)度與價值觀】
主動參與探索的活動中,發(fā)展合情推理意識、主動探究的習慣,激發(fā)學習數學的熱情和興趣。
【重點】平行四邊形的判定方法。
【難點】平行四邊形判定方法的應用。
(一)導入新課
出示下圖:學生觀察下圖,并提出下列問題。
(二)生成新知
通過前面的學習,我們知道,平行四邊形的對邊相等,對角相等,對角線互相平分。那么反過來,對邊相等或對角線互相平分的四邊形是不是平行四邊形呢?下面我們就來驗證一下。
提問1:你能寫出兩個實驗中的已知條件和求證條件嗎?
提問2:根據你寫的已知條件,你能得到求證的條件嗎?
提問3:通過上面的兩個問題,最后你得到什么結論呢?
引導學生總結歸納出結論:
兩組對邊分別相等的四邊形為平行四邊形;
兩組對角線分別相等的四邊形為平行四邊形;
對角線互相平分的四邊形是平行四邊形。
出示例題,通過對角線互相平分的四邊形的平行四邊形的是平行四邊形為例,講解并驗證:
如圖所示,在四邊形abcd中,ac,bd相交于點o,且oa=oc,ob=od。求證:四邊形abcd是平行四邊形。
引導學生總結歸納出具體解題步驟:
(三)應用新知
1.在平行四邊形abcd中,ac、bd相交于點o。
(2)若ac=10cm,bd=8cm,那么當ao=________cm,do=________cm時,四邊形abcd為平行四邊形。
(四)小結作業(yè)
小結:通過這節(jié)課的學習,你有什么收獲?你對今天的學習還有什么疑問嗎?
平行四邊形的判定教學設計篇十一
3、在操作、觀察、比較中,滲透轉化的思想方法。
4、在探究活動中,體驗到成功的快樂。
推導平行四邊形面積公式,并能夠運用平行四邊形面積公式解決簡單的實際問題。
課件平行四邊形硬紙片剪刀透明方格紙。
一、情境激趣:
生:平行四邊形的面積。師:這節(jié)課我們就來研究平行四邊形的面積。(板書課題)。
二、實驗探究:
1、猜想。
那么大家猜一猜平行四邊形的面積可能與什么有關?(可能與邊有關)只與它邊的長度有關?大家看老師手中這個平行四邊形,(演示)還可能與什么有關?(高)那么平行四邊形的面積究竟與它的底和高有怎樣的關系?下面就讓我們一起來研究。
2、實驗。
1)獨立自主探究:
生:我用數格子的方法。
師:數格子時,不足一格的按一格算,把得到的數據填在表格里。
師:還有什么方法?
生:我用剪一剪、拼一拼的方法。
師:用剪拼方法上的同學請讀一下操作提示。(一生讀)下面你們就用自己喜歡的方法試一試。
2)小組內交流:
師:通過數格子或者剪拼的方法,哪位同學有收獲了?把你的想法在小組內交流,小組長組織好。一會要向全班同學匯報你們小組的方法。
3)學生匯報:
第一個小組:(1)數格子(把表格帶到前面說)。
(2)剪拼。
師:你們成功的把平行四邊形轉化成了長方形,這一長方形與原來的平行四邊形有什么關系?(生:長方形的長等于平行四邊形的底、寬等于平行四邊形的高)你們小組轉化的清楚,介紹的明白真了不起)。
是這樣嗎?師課件演示解說強調平移。
(多么巧妙的剪拼,我發(fā)現(xiàn)你們的思維很靈活啊。)(我只能說兩個字了:“佩服!”)。
師:還有其他的方法嗎?其他幾個小組同學,通過動手操作你們得到了什么結論。一起說(師板書:平行四邊形的面積=底*高)。
四、運用公式解決。
師:現(xiàn)在我們來算一下鋪這塊平行四邊形草坪要用多少錢?
(生口算)。
五、拓展練習。
底15厘米,高11厘米。
(不僅準確計算出了結果,速度還很快,真不錯。)。
2、開放題:這是一張全國地圖,有一個省的地形很像平行四邊形,山西省。山西南北大約590千米,東西大約310千米,你能估計一下它的土地面積嗎?(東西能否再平些)。
(能在實際問題的解決中恰當運用公式,了不起)。
3、學校要建一個面積是12平方米的平行四邊形花壇,請你幫學校設計一下,(要求底、高均為整米數)1)可以有幾種方案?2)哪種方案更合理?(你們能從不同角度考慮,為學校選擇更合理的方案,老師非常感謝大家)。
六、全課小結:
師:這節(jié)課,你是怎么學習的?你有哪些收獲?
(我是用數方格的方法、我用平移這種方法把平行四邊形轉化成長方形再與平行四邊形進行比較得出平行四邊形的面積的師演示)你們很了不起,能想辦法把平行四邊形轉化成我們以前學過的長方形來研究它的面積。我們這節(jié)課使用的這種方法,以后在學習其它圖形面積時還會用到。今天的家庭作業(yè)是以《平行四邊形的面積》為題寫一篇數學日記,寫清平行四邊形的面積的推導過程,可以畫、也可以剪貼。
課后反思。
課堂教學是一個動態(tài)生成的過程。因此,在教學時,我把關注的焦點放在學生身上,關注學生的情感體驗,關注學生的自主建構,更關注學生真實的學習過程。從而適時地激發(fā)學生的情感,點燃學生的智慧,發(fā)揮學生的創(chuàng)造性。主要體現(xiàn)在以下幾個方面:
1、適時滲透、領悟思想方法。
數學教學的價值目標取向不僅僅局限于讓學生獲得基本的數學知識和技能,更重要的是在數學教學活動中,經歷問題解決的過程,了解數學學習的價值,增強數學的應用意識,獲得數學的基本思想方法。我覺得,這節(jié)課學習的轉化的數學思想方法將永遠銘刻在學生頭腦中,將在學生今后的學習中發(fā)揮更大的作用。
2、適時引導、主動建構知識。
學生學習數學知識的過程是主動建構的過程。因此,在教學中,我讓學生象科學家一樣經歷大膽猜想、動手驗證、得出結論的過程。先讓學生根據已有的知識經驗進行猜想:平行四邊形的面積可能與什么有關?然后,給學生足夠的探究時間和空間,“數”、“剪拼”都是學生的智慧,“數的過程”、“剪拼的過程”都是學生的思維過程。最后,讓學生同伴互助去探究、去發(fā)現(xiàn)、去總結,給每個學生參與數學活動的機會,真正的實現(xiàn)了自主學習。
3、適時點撥、有效進行指導。
探究學習是把學生的“學”作為實施教學的基本點,而教師的“導”是實現(xiàn)學生“學”的根本保證。因此,在教學中我適時地對學生進行點撥、指導,做到“放得開、收得住”。如在自主探究過程中我發(fā)現(xiàn),有的學生把平行四邊形剪開后無法拼成長方形。于是,我進行了個別指導。引導學生思考:為什么只有沿高剪開才能拼成長方形?通過指導,使學生明白沿平行四邊形的高剪開,是將平行四邊形轉化成長方形的關鍵。
課例點評。
這節(jié)課教師在教學時以圖形內在聯(lián)系為線索,以轉化這條數學思想方法為主線,在操作、觀察、比較活動中,通過孕伏、理解、強化的過程,讓學生在獲得知識的同時,領悟轉化的數學思想方法。具體表現(xiàn)在以下幾點:
1、在情境中蘊含知識,孕伏思想方法。
這節(jié)課情境的創(chuàng)設一方面緊緊地圍繞所要探索的數學知識,另一方面又充分體現(xiàn)了知識之間的內在聯(lián)系。創(chuàng)設了江濱公園鋪草坪的情境圖,分別呈現(xiàn)了一個長方形和一個平行四邊形的草坪,并提供每平方米草坪的價格,引導學生根據信息提出問題。這一情境中既有長方形面積的計算,又有平行四邊形面積的計算,把這些知識都融入一個具體的生活情境中,既喚起了學生已有的知識經驗,又暗含了平行四邊形的面積與長方形的面積有關。
2、在探究中體驗知識,理解思想方法。
這節(jié)課沿著“提出猜想思考驗證方法實踐驗證”這個過程進行。一是獨立探究。讓每個學生根據自己的體驗,用自己的思維方式進行探究,并且提出了活動要求。一方面啟發(fā)學生設法把所研究的圖形轉化為已經會計算面積的圖形,滲透“轉化”的思想方法;另一方面引導學生去探究所研究的圖形與轉化后的圖形各部分之間有什么聯(lián)系,從而找到平行四邊形面積的計算方法。二是合作探究。在學生獨立探究的基礎上,讓學生在小組內進行交流。通過交流,學生知道,任何形狀的平行四邊形都可以轉化成長方形,這樣,他們對圖形變換的認識不再是個案的體會,而是對圖形本質聯(lián)系的體驗。
3、在反思中提煉知識,強化思想方法。
教師在教學中注重引導學生對轉化過程進行反思。第一次是在學生匯報交流之后,教師用課件呈現(xiàn)圖形轉化的過程引導學生進行反思,重點是理解轉化的思想方法;第二次是課即將結束時,教師引導學生總結這節(jié)課學習內容時再次回放圖形轉化的過程,重點是強化轉化的思想方法。并引導學生:“在今后學習其它平面圖形的面積時,還要用到這種方法。”這樣為學生以后學習三角形、梯形面積的計算進行了思想方法的延伸。
總之,這節(jié)課教學時有兩條主線,一條是數學基礎知識,另一條是數學思想方法,并且把領悟數學思想方法作為數學教學的要務,把掌握數學思想方法作為學生數學學習的最高境界。
平行四邊形的判定教學設計篇十二
平行四邊形的判定是新人教版八年級數學下冊第十八章第一節(jié)第二部分內容,是在學習了平行四邊形的性質的基礎上進一步探究學習的,這一部分內容主要探究平行四邊形的四條判定以及判斷和性質的綜合運用,培養(yǎng)學生的探究精神、創(chuàng)新精神和應用意識,也為后期學習特殊的平行四邊形探索方法和奠定基礎。
1、實驗操作法。為了探索平行四邊形的判定方法,我引導學生從實驗入手,通過親自動手操作,在操作中從感官上獲取認識。
2、引導發(fā)現(xiàn)法。在學生實驗的過程中,及時引導,細致觀察,探索并發(fā)現(xiàn)判定一個四邊形為平行四邊形的條件,猜測平行四邊形的判定方法,為歸納平行四邊形的判定方法的可行性提供先決條件。
3、探究討論法。在猜測得出平行四邊形的判定方法后,引導學生在小組內充分進行討論,從不同角度驗證方法的正確性,進而歸納出平行四邊形的判定方法。
4、練習法。采用講練結合的方式讓學生不僅學會探究,更要能夠靈活運用,增強應用意識。
5、加強了變式訓練。通過一題多變、一題多證、多題同證等變式訓練,既鞏固了學生對知識的靈活運用,也訓練和發(fā)展學生的邏輯思維。
1、培養(yǎng)了學生的動手能力。通過多媒體、生活問題、實驗教具等方式呈現(xiàn)問題情境,給學生足夠時間親自動腦、動手、動口參與教學,與老師共同探究判別方法,感悟知識的發(fā)生、發(fā)展過程。
2、訓練了學生的思維能力。引導學生從不同角度、不同方面進行相互討論、彼此交流,是他們的思維能力的得到了極大的發(fā)展和提升。
3、培養(yǎng)學的探究精神和創(chuàng)新精神。通過多層次、多角度例題及練習變式,培養(yǎng)學生思維的廣闊性和深刻性,提升探究能力、開拓創(chuàng)新精神。
4、增強應用意識。通過對實際生活中的一些實例和問題進行探究解決,使學生進一步認識到數學應用于生活的重要性,增強學生的數學應用意識。
1、對教學設計與時間地分配還不夠合理,還要做更好的思考,以增強對時間控制地敏感度,更好地分配好每一環(huán)節(jié)所花的時間。
2、課教學的節(jié)奏把握還不到位,需要在以后的教學中,爭取讓更多的學生消化好課堂新知,理解好知識點與例題。
3、學生的主體作用彰顯不夠,在課堂上要放心地讓學生去嘗試錯誤,多些讓學生自主思考,充分發(fā)揮學生的主體作用。
4、對學生的學習與練習的方法指導還不足,應該多些方法性的引導。
總之,在以后的教學中要充分激發(fā)學生學習數學的興趣,讓學生積極參與、討論,導中有練、有思、有研,改進教師先講知識,然后再進行強化訓練的做法,使講、練、思、研融合在一起,讓學生充分體驗數學學習的樂趣,積累數學活動經驗,體會數學推理的意義,讓學生在做中學,逐步形成創(chuàng)新意識。
平行四邊形的判定教學設計篇十三
【原創(chuàng)】沒有最好,力求更好――《平行四邊形判定》課后反思。
昨天下午,我上了一節(jié)數學電教課《平行四邊形的判定》第一課時,本節(jié)課在引入的環(huán)節(jié)上,我采用復習引入的方式。首先復習了平行四邊形的定義和性質,喚起學生對已有知識的回憶,接著通過探究逆命題的真假直接引出本節(jié)課的學習內容和任務。同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。
一、本節(jié)課對教材內容進行了重組和編排。
教材中平行四邊形的判定的第一課時學習的判定定理是:兩組對邊分別相等的四邊形是平行四邊形,對角線互相平分的四邊形是平行四邊形。因為平行四邊形的性質是從邊、角、對角線三個方面研究的,所以,我將判定方法也從這三個方面入手,將教材內容進行調整,本節(jié)課從邊進行研究判定方法。
二、充分利用小組合作學習。
在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的`,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上。學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
三、本節(jié)課題量不算太大,但做到了幾點:
(1)一題多變。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西---核心問題。本課的核心問題就是,平行四邊形的判定方法的選擇。自認為從課前小練變到典型例題,還是比較合理的。因為,前面的練習其實就是為例題做了一定鋪墊,學生可以建立起知識聯(lián)系,尋求解題突破口。但從典型例題變到能力訓練題,并不理想,沒有緊扣“平行四邊形的判定”而變。
(2)一題多解。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。本課中,典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
(3)多題一法。
本課從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
四、在對課案的反復打磨期間,自己也收獲頗豐。
嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有意識地進一步嘗試和運用,真正使學生能力得以培養(yǎng),技能逐步形成,數學素質得到提高。
教學永遠是一門遺憾的藝術,吹盡黃沙始現(xiàn)金。讓我們以“沒有最好,力求更好”來不斷改進我們的教學,實現(xiàn)真正意義上的與時俱進。
將本文的word文檔下載到電腦,方便收藏和打印。
平行四邊形的判定教學設計篇十四
(第一課時)。
一、素質教育目標。
(一)知識教學點。
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用.。
2.使學生理解判定定理與性質定理的區(qū)別與聯(lián)系.。
3.會根據簡單的條件畫出平行四邊形,并說明畫圖的依據是哪幾個定理.。
(二)能力訓練點。
1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.。
(三)德育滲透點。
通過一題多解激發(fā)學生的學習興趣.。
(四)美育滲透點。
通過學習,體會幾何證明的方法美.。
二、學法引導。
構造逆命題,分析探索證明,啟發(fā)講解.。
三、重點?難點?疑點及解決辦法。
2.教學難點:綜合應用判定定理和性質定理.。
四、課時安排。
2課時。
五、教具學具準備。
投影儀,投影膠片,常用畫圖工具。
六、師生互動活動設計。
復習引入,構造逆命題,畫圖分析,討論證法,鞏固應用.。
七、教學步驟。
【復習提問】。
1.平行四邊形有什么性質?學生回答教師板書。
2.將以上性質定理分別用命題的形式敘述出來.。
【引入新課】。
用投影儀打出上述命題的逆命題.。
那么其它逆命題是否正確呢?如果正確就可得到另外的判定方法(寫出命題).。
【講解新課】。
平行四邊形的判定教學設計篇十五
經歷探索平行四邊形判別條件的過程,培養(yǎng)學生操作、觀察和說理能力;掌握兩組對邊分別相等的四邊形是平行四邊形這一判別條件。
本節(jié)課是在學生學習了平行四邊形的兩個判定定理之后即將學習的第三個判定定理——兩組對邊分別相等的四邊形是平行四邊形。
重點:
探索并掌握平行四邊形的判別條件。
難點:
對平行四邊形判別條件的理解及說理的基本方法的掌握。
兩根長40厘米 和兩根長30厘米的木條
首先復習平行四邊形的定義,然后通過學生活動發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗證。最后依靠課本所設計的“做一做” ,“議一議” 以及“隨堂練習”加深對平行四邊形判定定理的理解。
1、復習平行四邊形的定義。(旨在為證明一個四邊形是平行四邊形做鋪墊)
2、小組活動
用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進行交流。 (通過小組活動,學生親自動手操作,得出結論——當兩組對邊相等時,四邊形是平行四邊形;對邊不相等時,所圍成的四邊形不是平行四邊形)。 平行四邊形的判定定理——兩組對邊相等的四邊形是平行四邊形。
3、課本91頁的“做一做” (其目的是鞏固和應用“兩組對邊相等的四邊形是平行四邊形”的判定定理。)
4、“議一議”
問題1、一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎?說說你的想法。 (先鼓勵學生自主探索,再分組討論,最后全班交流得出正確結論)
問題2、要判別一個四邊形是平行四邊形,你有哪些方法?
5、通過課本的“隨堂練習”,使學生對平行四邊形的判別條件加以應用和鞏固
平行四邊形的判定教學設計篇十六
本節(jié)課是平行四邊形判定的第二節(jié)課,上一節(jié)課已經學習了判定方法1和判定方法2,再結合平行四邊形的定義,同學們已經掌握了3種平行四邊形的判定方法。本節(jié)課在上節(jié)課的基礎上,平行四邊形的判定方法3的學習,使同學們會運用這些方法進行幾何的推理證明,并且通過本節(jié)課的學習,繼續(xù)培養(yǎng)學生的分析問題、尋找最佳解題途徑的能力。
本節(jié)課的知識點不難,教材內容也較少,但學生靈活運用判定定理去解決相關問題并不容易,基于此,在本設計中加強了一題多解和尋找最佳解題方法的訓練教學,豐富了課堂活動。
由于本節(jié)已經完成了平行四邊形的教學,因此本設計中注意了平行四邊形判定方法的及時歸納,從邊、角、對角線三個角度進行盤點,思路清晰,便于存貯、提取、應用。同時通過題目訓練,讓學生了解平行四邊形知識的運用包括三個方面:一是直接運用平行四邊形的性質去解決某些問題。例如求角的度數線段的長度,證明角相等或線段相等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再用平行四邊形的性質去解決某些問題。
平行四邊形的判定教學設計篇十七
每個學生準備一個平行四邊形。
1.請同學翻書到86頁,仔細觀察,找一找圖中有哪些學過的圖形?
2.好,下面誰來說一說你找到了哪些學過的圖形?
3.請觀察這兩個花壇,哪一個大呢?假如這塊長方形花壇的長是3米,寬是2米,怎樣計算它的面積呢?根據長方形的面積=長寬(板書),得出長方形花壇的面積是6平方米,平行四邊形面積我們還沒有學過,所以不能計算出平行四邊形花壇的面積,這節(jié)課我們就學習的平行四邊形面積計算。
(一)、數方格法。
用展示臺出示方格圖。
1.這是什么圖形?(長方形)如果每個小方格代表1平方厘米,這個長方形的面積是多少?(18平方厘米)。
請同學認真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數呢?可以都按半格計算。然后指名說出數得的結果,并說一說是怎樣數的。
3.請同學看方格圖填87頁最下方的表,填完后請學生回答發(fā)現(xiàn)了什么?
小結:如果長方形的長和寬分別等于平行四邊形的底和高,則它們的面積相等。
(二)引入割補法。
以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數方格的方法來計算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計算平行四邊形面積的方法。
(三)割補法。
平行四邊形的判定教學設計篇十八
昨天下午,我上了一節(jié)數學電教課《平行四邊形的判定》第一課時,本節(jié)課在引入的環(huán)節(jié)上,我采用復習引入的方式,平行四邊形判定課后反思。首先復習了平行四邊形的定義和性質,喚起學生對已有知識的回憶,接著通過探究逆命題的真假直接引出本節(jié)課的學習內容和任務。同時,讓學生初步感受平行四邊形的性質與判定的區(qū)別與聯(lián)系,為平行四邊形的性質和判定的綜合運用作了鋪墊。
一、本節(jié)課對教材內容進行了重組和編排。
教材中平行四邊形的判定的第一課時學習的判定定理是:兩組對邊分別相等的四邊形是平行四邊形,對角線互相平分的四邊形是平行四邊形。因為平行四邊形的性質是從邊、角、對角線三個方面研究的,所以,我將判定方法也從這三個方面入手,將教材內容進行調整,本節(jié)課從邊進行研究判定方法。
二、充分利用小組合作學習。
在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥。判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手。在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上,教學反思《平行四邊形判定課后反思》。學生在不同題目的對比中,在一題不同證法的對比中,能力真正得到提高。
三、本節(jié)課題量不算太大,但做到了幾點:
(1)一題多變。
一題多變,有利于學生抓住問題的本質或者說是核心,從變化的題目中抓住不變的東西——核心問題。本課的核心問題就是,平行四邊形的判定方法的選擇。自認為從課前小練變到典型例題,還是比較合理的。因為,前面的練習其實就是為例題做了一定鋪墊,學生可以建立起知識聯(lián)系,尋求解題突破口。但從典型例題變到能力訓練題,并不理想,沒有緊扣“平行四邊形的判定”而變。
(2)一題多解。
一題多解,有利于培養(yǎng)學生思維的發(fā)散性,對學生提升解題能力頗有幫助,而且能夠讓學生順利建立起知識結構,起到事半功倍的效果。本課中,典型例題覆蓋了幾乎所有判定方法,使學生各種方法進行了合理分析,既可以牢固記住這些方法,又可以進行對比,理清他們的聯(lián)系和區(qū)別,同時提升解題能力,避免了“題海戰(zhàn)術”。
(3)多題一法。
本課從課前小練到例題再到練習題,雖然題目各不相同,但解法卻都是相通的:即根據條件,選擇一種判定方法進行判定。這有利于學生“悟”出解題的思路,找到數學的樂趣。
四、在對課案的反復打磨期間,自己也收獲頗豐。
嘗試了生活數學、問題探究模式等教學方式和理念在自己課堂上的運用,并充分意識到多媒體教學的輔助手段對于增進學生學習興趣、提高課堂效率起到的積極推進作用。在以后的日常教學中,要有意識地進一步嘗試和運用,真正使學生能力得以培養(yǎng),技能逐步形成,數學素質得到提高。
教學永遠是一門遺憾的藝術,吹盡黃沙始現(xiàn)金。讓我們以“沒有最好,力求更好”來不斷改進我們的教學,實現(xiàn)真正意義上的與時俱進。
將本文的word文檔下載到電腦,方便收藏和打印。