高中數(shù)學(xué)冪函數(shù)教案(實用22篇)

字號:

    教案是教師在備課階段編寫的一種教學(xué)設(shè)計文稿,用于指導(dǎo)教學(xué)實施。教案的編寫要注意時效性,及時適應(yīng)教學(xué)的要求和變化。下面是一些教案的案例分析,希望能為大家解決實際教學(xué)中的問題。
    高中數(shù)學(xué)冪函數(shù)教案篇一
    地位及重要性。
    函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi),函數(shù)的單調(diào)性是函數(shù)的一個重要性質(zhì),也是在研究函數(shù)時經(jīng)常要注意的一個性質(zhì),并且在比較幾個數(shù)的大小、對函數(shù)的定性分析以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用。通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對函數(shù)的本質(zhì)認識。也為今后研究具體函數(shù)的性質(zhì)作了充分準備,起到承上啟下的作用。
    教學(xué)目標。
    (1)了解能用文字語言和符號語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;。
    (2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;。
    (4)培養(yǎng)學(xué)生嚴密的邏輯思維能力、用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì);同時讓學(xué)生體驗數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點看問題。
    教學(xué)重難點。
    重點是對函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解,
    二.說教法。
    根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,我嘗試運用“問題解決”與“多媒體輔助教學(xué)”的.模式。力圖通過提出問題、思考問題、解決問題的過程,讓學(xué)生主動參與以達到對知識的“發(fā)現(xiàn)”與接受,進而完成對知識的內(nèi)化,使書本知識成為自己知識;同時也培養(yǎng)學(xué)生的探索精神。
    三.說學(xué)法。
    在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個過程學(xué)生學(xué)生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學(xué)生體驗到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴謹?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣。
    四.說過程。
    通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點撥、啟發(fā)、引導(dǎo)為教師職責(zé)。
    設(shè)置問題情景。
    [引例]學(xué)校準備建造一個矩形花壇,面積設(shè)計為16平方米。由于周圍環(huán)境的限制,其中一邊的長度長不能超過10米,短不能少于4米。記花壇受限制的一邊長為x米,半周長為y米。
    寫出y與x的函數(shù)表達式;。
    (用多媒體出示問題,并讓學(xué)生思考)。
    高中數(shù)學(xué)冪函數(shù)教案篇二
    三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
    同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
    中心記上數(shù)字1,連結(jié)頂點三角形;向下三角平方和,倒數(shù)關(guān)系是對角,頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負化正后大化小,變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
    計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。
    逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
    萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
    1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
    三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
    利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
    山西鐵路工程建設(shè)監(jiān)理有限公司。
    劉榮申。
    高中數(shù)學(xué)冪函數(shù)教案篇三
    數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
    二、重視每一個學(xué)生。
    三、做好課外與學(xué)生的溝通。
    四、要多了解學(xué)生。
    你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
    高中數(shù)學(xué)冪函數(shù)教案篇四
    教學(xué)目標:
    通過實例,理解冪函數(shù)的概念;能區(qū)分指數(shù)函數(shù)與冪函數(shù);會用待定系數(shù)法求冪函數(shù)的解析式。
    教學(xué)重難點:
    重點從五個具體冪函數(shù)中認識冪函數(shù)的一些特征。
    難點指數(shù)函數(shù)與冪函數(shù)的區(qū)別和冪函數(shù)解析式的求解。
    教學(xué)方法與手段:
    1、采用師生互動的方式,在教師的引導(dǎo)下,學(xué)生通過思考、交流、討論,理解冪函數(shù)的定義,體驗自主探索、合作交流的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的積極性與主動性。
    2、利用投影儀及計算機輔助教學(xué)。
    教學(xué)過程:
    函數(shù)的完美追求:對于式子,
    如果一定,n隨的變化而變化,我們建立了指數(shù)函數(shù);
    如果一定,隨n的變化而變化,我們建立了對數(shù)函數(shù)。
    設(shè)想:如果一定,n隨的變化而變化,是不是也應(yīng)該確定一個函數(shù)呢?
    創(chuàng)設(shè)情境。
    請大家看以下問題:
    思考:以上問題中的函數(shù)有什么共同特征?
    引導(dǎo)學(xué)生分析歸納概括得出:(1)都是以自變量x為底數(shù);(2)指數(shù)為常數(shù);(3)自變量x前的系數(shù)為1;(4)只有一項。上述問題中涉及的函數(shù),都是形如的函數(shù)。
    探究新知。
    一、冪函數(shù)的定義。
    一般地,形如的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
    中前面的系數(shù)是1,后面沒有其它項。
    小試牛刀。
    (1),
    思考:冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?
    高中數(shù)學(xué)冪函數(shù)教案篇五
    引入課題1.觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:
    yx1-11-1yx1-11-1yx1-11-1。
    1隨x的增大,y的值有什么變化?2能否看出函數(shù)的最大、最小值?
    2.畫出下列函數(shù)的圖象,觀察其變化規(guī)律:
    f(x)=x1從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.
    yx1-11-1。
    2.f(x)=-2x+11從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的`值隨著________.
    1在區(qū)間____________上,f(x)的值隨著x的增大而________.
    2在區(qū)間____________上,f(x)的值隨著x的增大而________.
    高中數(shù)學(xué)冪函數(shù)教案篇六
    一、教材分析:
    《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標準試驗教科書《數(shù)學(xué)》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學(xué)生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
    本節(jié)教學(xué)時間安排1課時。
    二、教學(xué)目標:
    知識技能:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
    2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    數(shù)學(xué)思考:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
    2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
    3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
    解決問題:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴謹性以及數(shù)學(xué)結(jié)論的確定性。
    2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。
    情感態(tài)度:
    1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會學(xué)習(xí)數(shù)學(xué)的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
    2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
    三、教學(xué)重點、難點:
    教學(xué)重點:
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學(xué)難點:
    1.探索方程與函數(shù)之間關(guān)系的過程。
    2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
    四、教學(xué)方法:啟發(fā)引導(dǎo)合作交流。
    五:教具、學(xué)具:課件。
    六、教學(xué)過程:
    [活動1]檢查預(yù)習(xí)引出課題。
    預(yù)習(xí)作業(yè):
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
    師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
    教師重點關(guān)注:學(xué)生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
    [活動2]創(chuàng)設(shè)情境探究新知。
    問題。
    1.課本p94問題.
    3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
    師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
    教師重點關(guān)注:
    1.學(xué)生能否把實際問題準確地轉(zhuǎn)化為數(shù)學(xué)問題;。
    2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。
    3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
    設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。
    [活動3]例題學(xué)習(xí)鞏固提高。
    問題。
    例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
    師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。
    教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準確,估算方法是否得當(dāng)。
    設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
    [活動4]練習(xí)反饋鞏固新知。
    高中數(shù)學(xué)冪函數(shù)教案篇七
    《考試說明》和《考綱》是每位考生必須熟悉的最權(quán)威最準確的高考信息,通過研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個問題。
    命題通常注意試題背景,強調(diào)數(shù)學(xué)思想,注重數(shù)學(xué)應(yīng)用;試題強調(diào)問題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問題思考;強化主干知識;關(guān)注知識點的銜接,考察創(chuàng)新意識。
    《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強對新題型的練習(xí),揭示問題的本質(zhì),創(chuàng)造性地解決問題。
    2.多維審視知識結(jié)構(gòu)。
    高考數(shù)學(xué)試題一直注重對思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準確地把握概念,在理解的基礎(chǔ)上加強記憶;加強對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質(zhì);體會數(shù)學(xué)思想和解題的方法。
    3.把答案蓋住看例題。
    參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的`訓(xùn)練,自己的思維空間擴展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。
    4.研究每題都考什么。
    數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習(xí)慣。
    與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內(nèi)涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側(cè)面去檢驗自己的知識,即一題多變。習(xí)題的價值不在于做對、做會,而在于你明白了這道題想考你什么。
    5.答題少費時多辦事。
    解題上要抓好三個字:數(shù),式,形;閱讀、審題和表述上要實現(xiàn)數(shù)學(xué)的三種語言自如轉(zhuǎn)化(文字語言、符號語言、圖形語言)。要重視和加強選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會優(yōu)化解題過程,追求解題質(zhì)量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數(shù)形結(jié)合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點”即可。
    6.錯一次反思一次。
    每次考試或多或少會發(fā)生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現(xiàn)。
    因此平時要注意把錯題記下來,做錯題筆記包括三個方面:
    (1)記下錯誤是什么,最好用紅筆劃出。
    (2)錯誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個環(huán)節(jié)來分析。
    (3)錯誤糾正方法及注意事項。根據(jù)錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在高考時發(fā)生錯誤的概率就會大大減少。
    7.分析試卷總結(jié)經(jīng)驗。
    每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進行分類。
    (1)遺憾之錯。就是分明會做,反而做錯了的題。
    (2)似非之錯。記憶不準確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴密不完整等等。
    (3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應(yīng)用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。
    8.優(yōu)秀是一種習(xí)慣。
    柏拉圖說:“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。
    高中數(shù)學(xué)冪函數(shù)教案篇八
    1、先做簡單題,后做難題。
    2、遇到較難的大題,把所有跟該題有關(guān)的知識點都寫出來,要知道數(shù)學(xué)講究步驟分。
    3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學(xué)好)。
    一、整體把握、抓大放小。
    拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應(yīng)該分配的時間。對于能夠很快做出來的.題目,一定要拿到應(yīng)得的分數(shù)。
    二、確定每部分的答題時間。
    1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應(yīng)該盡量減少時間,或者放棄,等以后學(xué)習(xí)進階了再嘗試著做。
    2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時能用較少的時間做出來。
    三、碰到難題時。
    1、你可以先用“直覺”最快的找到解題思路;。
    2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
    3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
    4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
    四、卷面整潔、字跡清楚、注意小節(jié)。
    做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
    高中數(shù)學(xué)冪函數(shù)教案篇九
    教學(xué)任務(wù)分析:
    (1)理解冪函數(shù)的概念,會畫五種常見冪函數(shù)的圖像;
    (2)結(jié)合冪函數(shù)的圖像,理解冪函數(shù)圖像的變化情況和性質(zhì);
    (3)通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。
    教學(xué)重點:
    常見冪函數(shù)的的概念、圖像和性質(zhì)。
    教學(xué)難點:
    冪函數(shù)的單調(diào)性及比較兩個冪值的大小。
    教具準備:
    多媒體課件、投影儀、打印好的作業(yè)。
    教學(xué)情景設(shè)計。
    問題。
    問題2:如果正方形的邊長為x,那么正方形面積y=?
    問題3:如果正方體的棱長為x,那么正方體體積y=。
    問題4:如果正方形場地的面積為x,那么正方形的邊長?y=?
    問題5:如果某人x秒內(nèi)騎車行進1千米,那么他騎車的平均速度y=(千米/秒)引導(dǎo)學(xué)生探索發(fā)現(xiàn):
    引導(dǎo)學(xué)生歸納結(jié)論。
    (1)?指數(shù)為常數(shù)。
    1、即(是)。
    2、(不是)。
    3、(不是)。
    定義域。
    值域。
    高中數(shù)學(xué)冪函數(shù)教案篇十
    教材分析:
    冪函數(shù)作為一類重要的函數(shù)模型,是學(xué)生在系統(tǒng)地學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。?冪函數(shù)模型在生活中是比較常見的,學(xué)習(xí)時結(jié)合生活中的具體實例來引出常見的冪函數(shù)?.組織學(xué)生畫出他們的圖象,根據(jù)圖象觀察、總結(jié)這幾個常見冪函數(shù)的性質(zhì)。對于冪函數(shù),只需重點掌握?這五個函數(shù)的圖象和性質(zhì)。學(xué)習(xí)中學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學(xué)生對兩類不同函數(shù)的表達式進行辨析。學(xué)生已經(jīng)有了學(xué)習(xí)冪函數(shù)和對象函數(shù)的學(xué)習(xí)經(jīng)歷,這為學(xué)習(xí)冪函數(shù)做好了方法上的準備。因此,學(xué)習(xí)過程中,引入冪函數(shù)的概念之后,嘗試放手讓學(xué)生自己進行合作探究學(xué)習(xí)。
    課時分配1課時。
    教學(xué)目標。
    重點:從五個具體的冪函數(shù)中認識的概念和性質(zhì)。
    難點:從冪函數(shù)的圖象中概括其性質(zhì),據(jù)冪函數(shù)的單調(diào)性比較兩個同指數(shù)的指數(shù)式的大小。
    知識點:冪函數(shù)的定義、五個冪函數(shù)圖象特征。
    能力點:通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行簡單的應(yīng)用。
    自主探究點:通過作圖歸納總結(jié)冪函數(shù)的相關(guān)性質(zhì)。
    考試點:了解冪函數(shù)的概念,
    結(jié)合函數(shù)的圖象了解它們的變化情況。
    易錯易混點:學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆。
    拓展點:通過指數(shù)函數(shù)的圖象性質(zhì)研究冪函數(shù)指數(shù)的變化。
    教具準備:多媒體輔助教學(xué)。
    課堂模式:導(dǎo)學(xué)案。
    一、引入新課。
    (一)回顧引入。
    【師生互動】師:數(shù)學(xué)的內(nèi)在美常常讓我感動,下面我們共同來欣賞運算的完美性,
    思考:由8、2、3、這四個數(shù),運用數(shù)學(xué)符號可組成哪些等式?
    生:探討,交流。
    師生共同分析:
    師:我們知道對于等式。
    1.如果一定,隨著的變化而變化,我們建立了指數(shù)函數(shù)。
    2.如果一定,隨著的變化而變化,我們建立了對數(shù)函數(shù)。
    設(shè)想:如果一定,隨著的變化而變化,是不是也可以確定一個函數(shù)呢?
    【設(shè)計說明】使學(xué)生回憶所學(xué)兩個基本初等函數(shù),為所要學(xué)習(xí)的冪函數(shù)作鋪墊。
    (二)觀察下列對象:
    問題(1):如果張紅購買了每千克1元的蔬菜千克,那么她需要付的錢數(shù)=元,
    問題(2):如果正方形的邊長為,那么正方形的面是=。
    問題3):如果正方體的邊長為,那么正方體的體積是=。
    問題(4):如果正方形場地面積為,那么正方形的邊長=。
    問題(5):如果某人s內(nèi)騎車行進了1km,那么他騎車的平均速度=。
    【師生互動】師:(1)它們的對應(yīng)法則分別是什么?
    (2)以上問題中的函數(shù)有什么共同特征?
    讓學(xué)生獨立思考后交流,引導(dǎo)學(xué)生概括出結(jié)論。
    生:(1)乘以1(2)求平方(3)求立方。
    (4)求算術(shù)平方根(5)求-1次方。
    師:上述的問題涉及到的函數(shù),都是形如:,其中是自變量,是常數(shù)。
    師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同。
    二、探究新知。
    組織探究。
    1.冪函數(shù)的定義。
    一般地,形如(r)的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
    如等都是冪函數(shù),冪函數(shù)與指數(shù)函數(shù),對數(shù)函數(shù)一樣,都是基本初等函數(shù)。
    【師生互動】師:1.冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導(dǎo)學(xué)生注意辨析。
    2.研究函數(shù)的圖像。
    (1)(2)(3)。
    (4)(5)。
    生:利用所學(xué)知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所作圖象,體會冪函數(shù)的變化規(guī)律。
    師:引導(dǎo)學(xué)生應(yīng)用函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性。
    師生共同分析:強調(diào)畫圖象易犯的錯誤。
    【設(shè)計意圖】(1)通過具體作圖,可使學(xué)生加深對圖象的直觀印象,記憶比較牢固;同時也提高了學(xué)生數(shù)形結(jié)合的思維能力;(2)符合學(xué)生的認知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學(xué)生學(xué)習(xí)的能動性,以學(xué)生為主體,展開課堂教學(xué)。
    【師生互動】師:引導(dǎo)學(xué)生觀察圖象,歸納概括冪函數(shù)的的性質(zhì)及圖象變化規(guī)律。
    生:觀察圖象,分組討論,探究冪函數(shù)的性質(zhì)和圖象的變化規(guī)律,并展示各自的結(jié)論進行交流評析,并填表。
    定義域值域奇偶性單調(diào)性定點。
    師生共同分析冪函數(shù)性質(zhì):
    (1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1);。
    高中數(shù)學(xué)冪函數(shù)教案篇十一
    熟練掌握三角函數(shù)式的求值。
    教學(xué)重難點。
    熟練掌握三角函數(shù)式的求值。
    教學(xué)過程。
    【知識點精講】。
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
    三角函數(shù)式的求值的類型一般可分為:。
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
    注意點:靈活角的變形和公式的變形。
    重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
    【例題選講】。
    課堂小結(jié)】。
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
    三角函數(shù)式的求值的類型一般可分為:。
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
    注意點:靈活角的變形和公式的變形。
    重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
    【作業(yè)布置】。
    p172能力提高5,6,7,8高考預(yù)測。
    高中數(shù)學(xué)冪函數(shù)教案篇十二
    (3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類的定義域.。
    2.通過概念的學(xué)習(xí),使學(xué)生在符號表示,運算等方面的能力有所提高.。
    (1)對記號有正確的理解,準確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
    (2)在求定義域中注意運算的合理性與簡潔性.。
    3.通過定義由變量觀點向映射觀點的過渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).。
    1.教材分析。
    (1)知識結(jié)構(gòu)。
    (2)重點難點分析。
    是的定義和符號的認識與使用.。
    2.教法建議。
    高中數(shù)學(xué)冪函數(shù)教案篇十三
    2.能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。
    指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
    指數(shù)函數(shù)圖象的平移變換.
    1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。
    練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標為.若a1,則當(dāng)x0時,y1;而當(dāng)x0時,y1.若00時,y1;而當(dāng)x0時,y1.
    例1解不等式:
    (1);(2);。
    (3);(4).
    小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關(guān)鍵是底數(shù)所在的范圍.
    例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
    (1);(2);(3);(4).
    小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時,向上平移,反之向下平移).
    練習(xí):
    (1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.
    (2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.
    (3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.
    (4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是.函數(shù)y=a2x-1的圖象恒過的定點的坐標是.
    小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.
    (5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
    (6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
    小結(jié):函數(shù)圖象的對稱變換規(guī)律.
    例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.
    例4求函數(shù)的最小值以及取得最小值時的x值.
    小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
    練習(xí):
    (1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
    (2)函數(shù)y=2x的值域為;。
    (4)當(dāng)x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.
    1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
    2.指數(shù)型函數(shù)的定點問題;。
    3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
    課本p55-6,7.
    (1)函數(shù)f(x)的定義域為(0,1),則函數(shù)的定義域為.
    (2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
    高中數(shù)學(xué)冪函數(shù)教案篇十四
    對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
    右圖給出對于不同大小a所表示的函數(shù)圖形:
    可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
    (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
    (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
    (3)函數(shù)總是通過(1,0)這點。
    (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
    如圖所示為a的不同大小影響函數(shù)圖形的情況。
    可以看到:
    (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
    (3)函數(shù)圖形都是下凹的。
    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
    (5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
    (6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。
    (7)函數(shù)總是通過(0,1)這點。
    高中數(shù)學(xué)冪函數(shù)教案篇十五
    1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
    2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
    3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。
    過程與方法。
    1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
    2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
    情感與價值觀。
    1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
    1、掌握函數(shù)概念。
    2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
    3、能把實際問題抽象概括為函數(shù)問題。
    1、理解函數(shù)的概念。
    2、能把實際問題抽象概括為函數(shù)問題。
    一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
    『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
    高中數(shù)學(xué)冪函數(shù)教案篇十六
    一、教學(xué)目標:
    1、知識與技能:
    (1)結(jié)合實例,了解正整數(shù)指數(shù)函數(shù)的概念.
    (2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).
    2、過程與方法:
    (1)讓學(xué)生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.
    (2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學(xué)習(xí)作好鋪墊.
    3、情感.態(tài)度與價值觀:使學(xué)生通過學(xué)習(xí)正整數(shù)指數(shù)函數(shù)體會學(xué)習(xí)指數(shù)函數(shù)的重要意義,增強學(xué)習(xí)研究函數(shù)的積極性和自信心.
    二、教學(xué)重點:正整數(shù)指數(shù)函數(shù)的定義.教學(xué)難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.
    三、學(xué)法指導(dǎo):學(xué)生觀察、思考、探究.教學(xué)方法:探究交流,講練結(jié)合。
    四、教學(xué)過程。
    (一)新課導(dǎo)入。
    [互動過程1]:
    (2)請你用圖像表示1個細胞分裂的次數(shù)n()與得到的細胞個數(shù)y之間的關(guān)系;。
    (3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用科學(xué)計算器計算細胞分裂15次、20次得到的細胞個數(shù).
    解:
    分裂次數(shù)12345678。
    細胞個數(shù)248163264128256。
    (3)細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為,用科學(xué)計算器算得,所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.
    小結(jié):從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù).細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為.細胞個數(shù)隨著分裂次數(shù)的增多而逐漸增多.
    [互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975t,其中q0是臭氧的初始量,t是時間(年),這里設(shè)q0=1.
    (1)計算經(jīng)過20,40,60,80,1,臭氧含量q;。
    (2)用圖像表示每隔臭氧含量q的變化;。
    (3)試分析隨著時間的增加,臭氧含量q是增加還是減少.
    (2)用圖像表示每隔20年臭氧含量q的變化,它的圖像是由一些孤立的點組成.
    (3)通過計算和觀察圖形可以知道,隨著時間的增加,臭氧含量q在逐漸減少.
    小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù).臭氧含量q近似滿足關(guān)系式q=0.9975t,隨著時間的增加,臭氧含量q在逐漸減少.
    正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù)叫作正整數(shù)指數(shù)函數(shù),其中是自變量,定義域是正整數(shù)集.
    說明:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).
    (二)、例題:某地現(xiàn)有森林面積為1000,每年增長5%,經(jīng)過年,森林面積為.寫出,間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.
    分析:要得到,間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出,間的函數(shù)關(guān)系式.
    解:根據(jù)題意,經(jīng)過一年,森林面積為1000(1+5%);經(jīng)過兩年,森林面積為1000(1+5%)2;經(jīng)過三年,森林面積為1000(1+5%)3;所以與之間的函數(shù)關(guān)系式為,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).
    練習(xí):課本練習(xí)1,2。
    解:一個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%),二個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)2;,三個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)3,,n個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)n;所以n與y之間的關(guān)系為y=2000(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數(shù)為y=2000(1+2.38%)12.
    (三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù)。
    高中數(shù)學(xué)冪函數(shù)教案篇十七
    指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實數(shù)集合為定義域,則只有使得如圖所示為a的不同大小影響函數(shù)圖形的情況。
    可以看到:
    (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
    (3)函數(shù)圖形都是下凹的。
    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
    (5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
    (6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。
    (7)函數(shù)總是通過(0,1)這點。
    高中數(shù)學(xué)冪函數(shù)教案篇十八
    對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
    右圖給出對于不同大小a所表示的函數(shù)圖形:
    可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
    (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
    (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
    (3)函數(shù)總是通過(1,0)這點。
    (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
    高中數(shù)學(xué)冪函數(shù)教案篇十九
    一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
    高中數(shù)學(xué)冪函數(shù)教案篇二十
    一、教學(xué)目標:
    知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實際應(yīng)用函數(shù)的能力。
    過程與方法:通過觀察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問題的能力。
    情感態(tài)度與價值觀:在指數(shù)函數(shù)的學(xué)習(xí)過程中,體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。
    二、教學(xué)重點、難點:
    教學(xué)難點:對底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。
    三、教學(xué)過程:
    (一)創(chuàng)設(shè)情景。
    學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=2x。
    問題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過一年剩留的質(zhì)量約是原來的84%。求出這種物質(zhì)的剩留量隨時間(單位:年)變化的函數(shù)關(guān)系。設(shè)最初的質(zhì)量為1,時間變量用x表示,剩留量用y表示。
    學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=0.84x。
    引導(dǎo)學(xué)生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
    問題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會出現(xiàn)什么情況?
    (1)若a0會有什么問題?
    x1則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)2(2)若a=0會有什么問題?(對于x0,a無意義)。
    (3)若a=1又會怎么樣?(1x無論x取何值,它總是1,對它沒有研究的必要。)。
    師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。
    1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大?。?BR>    設(shè)計意圖:這是指數(shù)函數(shù)性質(zhì)的簡單應(yīng)用,使學(xué)生在解題過程中加深對指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。
    (五)課堂小結(jié)。
    (六)布置作業(yè)。
    高中數(shù)學(xué)冪函數(shù)教案篇二十一
    1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.
    2.通過反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問題,解決問題的能力及抽象概括的能力.
    3.通過反函數(shù)的學(xué)習(xí),幫助學(xué)生樹立辨證唯物主義的世界觀.
    重點是反函數(shù)概念的形成與認識.
    難點是掌握求反函數(shù)的方法.
    投影儀。
    自主學(xué)習(xí)與啟發(fā)結(jié)合法。
    一.揭示課題。
    今天我們將學(xué)習(xí)函數(shù)中一個重要的概念----反函數(shù).
    (一)反函數(shù)的概念(板書)。
    二.講解新課。
    教師首先提出這樣一個問題:在函數(shù)中,如果把當(dāng)作因變量,把當(dāng)作自變量,能否構(gòu)成一個函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內(nèi)的任一值,按照法則都有唯一的與之相對應(yīng).(還可以讓學(xué)生畫出函數(shù)的圖象,從形的角度解釋“任一對唯一”)。
    學(xué)生很快會意識到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請舉出例子.在教師啟發(fā)下學(xué)生可以舉出象這樣的函數(shù),若將當(dāng)自變量,當(dāng)作因變量,在允許取值范圍內(nèi)一個可能對兩個(可畫圖輔助說明,當(dāng)時,對應(yīng)),不能構(gòu)成函數(shù),說明此函數(shù)沒有反函數(shù).
    通過剛才的例子,了解了什么是反函數(shù),把對的反函數(shù)的研究過程一般化,概括起來就可以得到反函數(shù)的定義,但這個數(shù)學(xué)的抽象概括,要求比較高,因此我們一起閱讀書上相關(guān)的內(nèi)容.
    1.反函數(shù)的定義:(板書)(用投影儀打出反函數(shù)的定義)。
    為了幫助學(xué)生理解,還可以把定義中的換成某個具體簡單的函數(shù)如解釋每一步驟,如得,再判斷它是個函數(shù),最后改寫為.給出定義后,再對概念作點深入研究.
    2.對概念得理解(板書)。
    教師先提出問題:反函數(shù)的“反”字應(yīng)當(dāng)是相對原來給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來說)。
    學(xué)生很容易先想到對應(yīng)法則是“反”過來的,把與的位置換位了,教師再追問它們的互換還會帶來什么變化?啟發(fā)學(xué)生找出另兩個要素之間的關(guān)系.最后得出結(jié)論:的定義域和值域分別由的值域和定義域決定的.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡記為“三定”.
    (1)“三定”(板書)。
    最后教師進一步明確“反”實際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.
    (2)“三反”(板書)。
    此時教師可把問題再次引向深入,提出:如果一個函數(shù)存在反函數(shù),應(yīng)怎樣求這個反函數(shù)呢?下面我給出兩個函數(shù),請同學(xué)們根據(jù)自己對概念的理解來求一下它們的反函數(shù).
    例1.求的反函數(shù).(板書)。
    (由學(xué)生說求解過程,有錯或不規(guī)范之處,暫時不追究,待例2解完之后再一起講評)。
    解:由得,所求反函數(shù)為.(板書)。
    例2.求,的反函數(shù).(板書)。
    解:由得,又得,。
    故所求反函數(shù)為.(板書)。
    求完后教師請同學(xué)們作評價,學(xué)生之間可以討論,充分暴露表述中得問題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見,指出例2中問題,結(jié)果應(yīng)為,.
    教師可先明知故問,與,有什么不同?讓學(xué)生明確指出兩個函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問從何而來呢?讓學(xué)生能從三定和三反中找出理由,是從原來函數(shù)的值域而來.
    在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過程.
    解:由得,又得,。
    又的值域是,。
    故所求反函數(shù)為,.
    (可能有的學(xué)生會提出例1中為什么不求原來函數(shù)的值域的問題,此時不妨讓學(xué)生去具體算一算,會發(fā)現(xiàn)原來函數(shù)的值域域求出的函數(shù)解析式中所求定義域時一致的,所以使得最后結(jié)果沒有出錯.但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過程要求大家一定先求原來函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時讓學(xué)生調(diào)整例的表述,將過程補充完整)。
    最后讓學(xué)生一起概括求反函數(shù)的步驟.
    3.求反函數(shù)的步驟(板書)。
    (1)反解:。
    (2)互換。
    (3)改寫:。
    對以上環(huán)節(jié)教師可稍作解釋,然后提出再通過下面的練習(xí)來檢驗是否真正理解了.
    三.鞏固練習(xí)。
    練習(xí):求下列函數(shù)的反函數(shù).
    (1)(2).(由兩名學(xué)生上黑板寫)。
    解答過程略.
    教師可針對學(xué)生解答中出現(xiàn)的問題,進行講評.(如正負的選取,值域的計算,符號的使用)。
    四.小結(jié)。
    1.對反函數(shù)概念的認識:。
    2.求反函數(shù)的基本步驟:。
    五.作業(yè)。
    課本第68頁習(xí)題2.4第1題中4,6,8,第2題.
    六.板書設(shè)計。
    2.4反函數(shù)例1.練習(xí).
    一.反函數(shù)的概念(1)(2)。
    1.定義。
    2.對概念的理解例2.
    (1)三定(2)三反。
    3.求反函數(shù)的步驟。
    (1)反解(2)互換(3)改寫。
    高中數(shù)學(xué)冪函數(shù)教案篇二十二
    在函數(shù)教學(xué)中,我們不僅要在教會函數(shù)知識上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學(xué)思想方法的高度進行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
    2.注重“數(shù)學(xué)結(jié)合”的教學(xué)。
    數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
    (1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。
    (2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
    (3)注意讓學(xué)生體會研究具體函數(shù)圖象規(guī)律的方法。
    目標。
    1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
    2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
    3、掌握一次函數(shù)的性質(zhì).
    過程與方法目標。
    2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
    2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    一次函數(shù)的圖象和性質(zhì)。
    由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。