教案的編寫需要根據(jù)學生的具體情況和教學目標,靈活選擇合適的教學策略。在編寫教案時,要合理選擇教學方法和手段,以激發(fā)學生的學習積極性和創(chuàng)造力。教案的實施過程中,要密切關注學生的學習情況,及時調(diào)整教學策略。
絕對值與相反數(shù)教案篇一
2.使學生能求出已知數(shù)的相反數(shù)。
3.使學生能根據(jù)相反數(shù)的意思進行化簡。
【學習過程】。
【情景創(chuàng)設】。
回憶上節(jié)課的情境,小明從學校出發(fā)沿東西大街走了0.5千米,在數(shù)軸上表示出他的位置。點a,點b即是小明到達的位置。
觀察a,b兩點位置及共到原點的距離,你有什么發(fā)現(xiàn)嗎?
絕對值與相反數(shù)教案篇二
表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。
1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)2.在組長的組織下進行討論、交流。(約5分鐘)3、小組分任務展示。(約25分鐘)4、達標檢測。(約5分鐘)5、總結(約5分鐘)。
(一)、溫故知新:。
(二)小組合作交流,探究新知。
1、觀察下圖,回答問題:(五組完成)。
大象距原點多遠?兩只小狗分別距原點多遠?
歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.
4的絕對值記作,它表示在上與的距離,所以|4|=。
2、做一做:
(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2(2)、求下列各組數(shù)的絕對值:(一組完成)。
(1)4,-4;(2)0.8,-0.8;。
從上面的結果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)。
(1)|+2|=,
你能從中發(fā)現(xiàn)什么規(guī)律?
小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)。
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。
5:做一做:(三組完成)。
1、(1)在數(shù)軸上表示下列各數(shù),并比較它們的大?。?BR> -3,-1。
(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。
(3)你發(fā)現(xiàn)了什么?
2、比較下列每組數(shù)的大小。
(1)-1和–5;(五組完成)(2)?
(3)-8和-3(七組完成)。
5和-2.7(六組完成)6五、達標檢測:
1:填空:
|+15|=()|–4|=()。
|0|=()|4|=()2:判斷(1)、絕對值最小的數(shù)是0。()(2)、一個數(shù)的絕對值一定是正數(shù)。()(3)、一個數(shù)的絕對值不可能是負數(shù)。()。
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。
1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值.
2.絕對值的性質(zhì):正數(shù)的絕對值是它本身;。
負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
3、會利用絕對值比較兩個負數(shù)的大小:兩個負數(shù)比較大小,絕對值大的反而小.
p50頁,知識技能第1,2題.
絕對值與相反數(shù)教案篇三
在教學過程中,結合學生實際情況給枯燥的數(shù)學概念賦予生活的意味,貼近學生生活,使學生不再被動地接受知識,可以有自己獨到的見解,學生也可以大膽說出心中的想法。
2、激勵學生去發(fā)現(xiàn)問題、解決問題。
《新課程標準》明確地把“形成解決問題的一些基本策略”作為一個重要的課程目標。為此數(shù)學教學中設置一些具有挑戰(zhàn)性的問題情境,激發(fā)學生進行思考,提出具有一定跨度的問題串引導學生進行自主探索,用“試一試,你能行”、“請與同學交流你的想法”等語言鼓勵學生進行交流,使學生在探索的過程中進一步理解。
3、面向每一個學生,使每個人都獲得成功。
課堂教學中,我們投入一“石”,激起了學生學習的“千層浪”,使得課堂變成了學生思維操練的場所。教師引導學生去尋找和發(fā)現(xiàn),自己只是一個組織者和參與者,和學生一起共同探索。學生真正成為學習的主任,學生不僅積極地參與每一個教學環(huán)節(jié),情緒高昂,切身感受了學習的快樂,品嘗了學生求知、參與、成功、交流和自尊的需要。我鼓勵學生“你學會多少就匯報多少…..”這充分調(diào)動了學生學習的積極性、主動性,大大引發(fā)了學生潛在的創(chuàng)造動因,創(chuàng)設了有利于個性發(fā)展的情境,因而引出了不同的學習結果,激發(fā)了學生學習的興趣,提高了課堂效率。
將本文的word文檔下載到電腦,方便收藏和打印。
絕對值與相反數(shù)教案篇四
1、化簡:
2、若一個數(shù)的相反數(shù)是2,則這個數(shù)是_____,若一個數(shù)的相反數(shù)是-3,則這個數(shù)是___,若一個數(shù)的相反數(shù)是它本身,則這個數(shù)是______.
3、的絕對值的相反數(shù)是_______,0.7的相反數(shù)的絕對值是_______.
4、絕對值最小的數(shù)是____,絕對值不小于3的整數(shù)有個,分別是.
【課堂重點】。
1、完成教材23頁填空.
2、觀察教材上填空的結果思考:一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?與同學交流.
正數(shù)的絕對值是_______;負數(shù)的絕對值是_______;零的絕對值是_______.
3、學習教材23頁例5,完成教材24頁“練一練”第一題.思考:
4、想一想:兩個數(shù)比較大小,絕對值大的那個一定大嗎?
結論:
5、學習教材23頁例6,完成教材24頁“練一練’第二題.
6、練習:
|0|=_______;|-1|=_______;|2|=_______;。
+|-1.5|=_______;-|-2|=_______;。
+(-5)=_______;―(-4)=_______;-(+5)=_______.
(2)若|x|=x,則x_______0;。
若|x|=-x,則x_______0.
(3)絕對值等于5的數(shù)是______.
(4)絕對值小于5的負整數(shù)是______.
(5)絕對值不大于5而又不小于2的整數(shù)是______.
(6)絕對值不大于5.3而又不小于2的整數(shù)是______.
(7)已知ab0,-a_____-b.
7、這節(jié)課主要學習了什么?你有什么收獲?
【課后鞏固】。
1、用“”“=”或“”號填空。
+|-5|___-|-4|;-(+5)___-[-|-5|]。
2、|x|=3,則x=_____;|-x|=|-2|,則x=______.
3、相反數(shù)大于-2而又小于3的整數(shù)有__________;-(+7)的相反數(shù)是________.
4、比-3大且比4小的整數(shù)有_______個,分別是__________.
5、絕對值大于1且不大于4的負整數(shù)有__________個,分別為__________.
6、若分別求x,y的值.
絕對值與相反數(shù)教案篇五
2.會求已知數(shù)的相反數(shù)和絕對值.
4.經(jīng)歷將實際問題數(shù)學化的過程,感受數(shù)學與生活的關系.
【教學過程設計建議(第一課時)】。
1.情境創(chuàng)設。
走了3km,你能在數(shù)軸上表示出小明昨天到達的位置嗎?
2.探索活動。
“議一議”的活動,應引導學生從利用“形(數(shù)軸)”比較有理數(shù)大小轉化為用“數(shù)(絕對值)”來比較.
(2)用相同的方法歸納出兩個負數(shù)的大小與這兩個負數(shù)的絕對值的大小關系;
(3)在經(jīng)歷了(1)、(2)之后,引導學生歸納,得出用絕對值比較有理數(shù)大小的方法.
3.例題教學。
例2的第(1)小題是兩個正數(shù)的大小比較;第(2)小題是兩個負數(shù)的大小比較,在比較一3與一6的大小時,可讓學生再次觀察溫度計上的刻度,借助“一6℃比一3℃冷”的生活經(jīng)驗,認識兩個負數(shù)的大小與這兩個負數(shù)的絕對值的大小關系.
【教學過程設計建議(第二課時)】。
1.情境創(chuàng)設。
數(shù)軸上點a在原點的左邊,點b在原點的右邊,并且點a與點b到原點的距離相同.根據(jù)小明、小麗的觀察發(fā)現(xiàn),討論5與一5的關系.如:
小明、小麗的觀察結論正確嗎?
你能說得比小明、小麗更完整一些嗎?
此外,還可以設計一些距離相同但方向相反的實際問題,引入互為相反數(shù)的概念.
2.探索活動。
(1)給出相反數(shù)的描述性定義后,要讓學生大量舉例以鞏固概念.
(2)圍繞“只有符號不同”展開討論,讓學生充。
分發(fā)表看法.搞清它的意義是判斷兩個數(shù)是否互為相反數(shù)的需要,要及時肯定學生中的較好的解釋,如:
“兩個數(shù)的符號不同,絕對值相等.”
“除0以外,絕對值相等的數(shù)有兩個,一個是正數(shù),一個是負數(shù),它們僅僅是符號不同.”
“寫已知數(shù)的相反數(shù),只要在這個數(shù)的前面添一個負號.”
“有理數(shù)由符號和絕對值兩部分組成,如果改變有理數(shù)的符號,那么數(shù)軸上表示有理數(shù)的點就從原點的一側變到另一側.”
(3)通過“議一議”,歸納出一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)的關系.需要注意的是,在寫一個數(shù)的絕對值時,要緊扣課本第27頁上的結論,要求學生首先關注對該數(shù)的判斷:是正數(shù)還是?負數(shù);然后再選擇法則:正數(shù)該如何,負數(shù)該如何,0該如何;最后給出結果.否則今后極易發(fā)生這樣的錯誤:|a|=a,|-a|=a.
3.例題教學。
例4的解答中標注的理由,例5的卡通人旁白,
都只是為了強調(diào)本節(jié)課的重要結論和相反數(shù)的定義,滲透“推理要有依據(jù)”,學生作業(yè)和考試時不作要求.
上一篇:相反數(shù)與絕對值練習。
下一篇:沒有了。
絕對值與相反數(shù)教案篇六
教學目標:
1.知道一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系;。
2.會利用絕對值比較兩個有理數(shù)大小;。
3.在具體進行兩個負數(shù)的大小比較中,培養(yǎng)推理論證能力,體會數(shù)形結合與轉化的思想方法.
教學重點:
知道一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系;會利用絕對值比較兩個有理數(shù)大小.
教學難點:
會利用絕對值比較兩個有理數(shù)大小.
教學過程:
一、議一議:
1.根據(jù)絕對值與相反數(shù)的意義填空:
(1)|2.3|=,=,|6|=;。
(3)|0|=______,0的相反數(shù)是______.
2.(1)任意說出一個負數(shù),并說出它的絕對值、它的相反數(shù).
(2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?
3.(1)2與3哪個大?這兩個數(shù)的絕對值哪個大?
(2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?
(3)任意寫出兩個負數(shù),并說出這兩個負數(shù)哪個大?他們的絕對值哪個大?
(4)兩個有理數(shù)的大小與這兩個數(shù)的'絕對值的大小有什么關系?
二、展示交流。
活動一、探究一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)之間的關系。
小組討論:
1.一個數(shù)的絕對值一定與這個數(shù)本身相等嗎?
2.一個數(shù)的絕對值一定與它的相反數(shù)相等嗎?
3.舉例說明一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?
活動二、探究兩個有理數(shù)的大小與這兩個數(shù)的絕對值的大小有什么關系。
議一議:
1.數(shù)軸上的點的大小是如何排列的?
2.兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?
3.比較下列兩個數(shù)的大小。
(1)與;(2)-3.5與-4.6;。
(3)-|-與-(-2).
三、課堂反饋。
1.-2的符號是______,絕對值是______;3.5的符號是______,絕對值是______.
3.符號是-,絕對值是4.3的數(shù)是______.
5.計算:(1)|-+|-=;(2)|-3|-|-2.5|=.
6.比較下面有理數(shù)的大小并且說明理由.
(1)-0.7與-1.7;(2)-與-0.273;。
(3)+(-5)與-(-3).
7.用將各數(shù)從小到大排列起來:(直接寫出結論,不必說明理由)。
-4,+(-),-(-1.5),0,|-3|。
四、課堂作業(yè):
課本p29習題2.4第5,7題。
絕對值與相反數(shù)教案篇七
1、略2、+3千米,-2千米3、3,5,8;4、2,±2.
【課堂重點】。
5、(1)非負(2)06、3。
7、第5個最標準,第6個誤差最小,第7個誤差最大.
【課后鞏固】。
2、(1)18.6(2)7.49(3)-(4)3、8.
絕對值與相反數(shù)教案篇八
本節(jié)課我首先復習相反數(shù)的知識,從一對相反數(shù)在數(shù)軸上的位置,自然引出它們距離原點相等。接著舉例:出租車從車站出發(fā),向南行了10千米,又從車站出發(fā)向北行了5千米。如果用正負數(shù)表示兩次運行的情況,需要先規(guī)定一個正方向,假設向北為正,則分別是-10千米和+5千米。可是要想知道這兩次運行中,出租車一共用了多少油,與方向還有關系嗎?該與什么有關呢?面對這些問題,學生紛紛說出,只與從出發(fā)點到目的地的距離有關。
我及時給予鼓勵,并在黑板上板書“距離”二字。
(1)3到原點的距離是3個單位長度。
(2)-3到原點的距離是3個單位長度。
這時,我問學生,“這句話文字太多,想不想簡化一下?”
學生齊答“想”!
“好,那么用三個字就可以代替這句話?!庇械膶W生已經(jīng)小聲說出了,是“絕對值”。
于是板書課題――絕對值。
接下來又問,“寫這三個字也有點麻煩,想不想再簡化一下?”
“想”,我看到學生已經(jīng)笑了,好像這是很好玩的事,越來越簡單了。于是我又及時給出符號“||”的寫法。
到此時,學生已經(jīng)明白“絕對值”就是“一個數(shù)到原點的距離”。學生自己總結出來了。
為了講清絕對值的意義,我設計了循序漸進的幾個例子。
(1)|-5|=(2)|7|=(3)|-1/3|=(4)|0|=。
當學生說出以上四個式子的結果后,又出示了第五個(5)|a|=。
很多學生沒有思考馬上就答出“等于a"。
針對學生的回答,我問“上節(jié)課,在學習相反數(shù)的時候,我告訴大家,字母可以表示哪些數(shù)?”
學生立即回答,“任意有理數(shù)”。那么這里的a也應該是任意有理數(shù)。
在此基礎上,我引導學生得出|a|的.三種情況。尤其當a0時,|a|=-a,讓學生明白,字母a中包含著一個看不見的“-”號。-a實際上是a的相反數(shù),也是一個正數(shù)。
就這樣,在我的預謀中,學生自然的明白了絕對值的意義,并學會了化簡絕對值的符號,也理解了非負數(shù)的含義。
再次面對初一的新生,我覺得很多非常熟悉的知識,可以用不同的說法讓學生理解,而且,教師一定要思路清晰。整個新知識的處理,要一氣呵成,讓學生在環(huán)環(huán)相扣的緊張狀態(tài)中,形成知識系統(tǒng),直到講完新課.
當所有的內(nèi)容已經(jīng)胸有成竹的時候,再來教給學生,竟然可以深入淺出,四兩拔千斤,尤其當你啟發(fā)點撥的到位,學生水到渠成的自己得出你想要講解的新課時,心里會有一種成就感,當然學生在不知不覺中自己掌握了新知識的主要內(nèi)容,他們也不會覺得難以接受。
絕對值與相反數(shù)教案篇九
一、學習與導學目標:
情感態(tài)度:通過創(chuàng)設情境,初步感悟?qū)W習絕對值的必要性,促進責任心的形成。
二、學程與導程活動:
a、創(chuàng)設情境(幻燈片或掛圖)。
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題……。
2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
b、學習概念:
1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)。
2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;。
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;。
(3)︱0︱=。(幻燈片)。
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導學生得出:(幻燈片)。
性質(zhì):一個正數(shù)的絕對值是它本身;。
如果用字母a表示有理數(shù),上述性質(zhì)可表述為:
當a是正數(shù)時,︱a︱=a;。
當a是負數(shù)時,︱a︱=-a;。
當a=0時,︱a︱=0。
解答課本p19/7及p15練習,由p19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負數(shù)的大小?
3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導閱讀p16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4-3-2-1012……。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉€量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用p19/6,8為素材)。
通過以上探究活動得到:正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);。
4、師生活動比較下列各對數(shù)的大?。簆17例,p18練習。
5、師生小結歸納(幻燈片)。
三、筆記與板書提綱:
1、幻燈片。
2、師生板演練習p15/1。
四、練習與拓展選題:
p19/4,5,9,10。
絕對值與相反數(shù)教案篇十
1、先畫一條數(shù)軸,在數(shù)軸上表示下列各數(shù)的點,并比較它們的大?。?BR> ―4,2.4,0,―,―3,1.
2、一天,汽車司機張師傅從車站出發(fā),沿東西方向行駛,規(guī)定向東為正,若向東行駛3千米,記作_____;若向西行駛2千米,記作_____.
3、數(shù)軸上表示數(shù)―3的點a到原點的距離是,表示數(shù)5的點b到原點的距離是,a、b兩點之間的距離是.
4、數(shù)軸上到原點的距離是2的點有個,表示的數(shù)是.
【課堂重點】。
1、小明的家在學校西邊3km處,小麗的家在學校東邊2km處.
(2)從數(shù)軸上看,哪家離學校較近?哪家離學校較遠?
2、數(shù)軸上表示一個數(shù)的點與原點的距離,叫做這個數(shù)的.用符號“”表示.
3、如圖,你能說出數(shù)軸上a、b、c、d、e、f各點所表示的數(shù)的`絕對值嗎?
4、學習教材21頁例題,完成“練一練”.
5、想一想:。
(2)絕對值最小的數(shù)是.
6、例3:某廠生產(chǎn)鬧鐘,從中抽取5件檢驗時,比標準時間多的記為正數(shù),比標準時間少的記為負數(shù),請根據(jù)下表,選出最準確的鬧鐘.
12345。
+2s-3.5s6s+7s-4s。
誤差不超過5秒的為合格品,否則為次品,問有幾臺合格?
7、練習:某車間生產(chǎn)一批圓形零件,從中抽取8件進行檢驗,比規(guī)定直徑長的毫米數(shù)記為正數(shù),比規(guī)定直徑短的毫米數(shù)記為負數(shù),檢查記錄如下:。
12345678。
+0.3-0.2-0.3+0.40-0.1-0.5+0.3。
指出第幾個零件最標準?最接近標準的是哪個零件?誤差最大的是哪個零件?
8、通過本節(jié)課的學習,你有什么收獲?
【課后鞏固】。
|0|=_____,|9|=______,|-2|=________;。
(3)若|x|=6,則x=__________;。
(4)在數(shù)軸上點a表示-,點b表示,則點___________離原點的距離近些.
2、計算:
(1)|―3|×|―6.2|(2)|―5|+|―2.49|。
(3)―|―|(4)|―|÷||。
絕對值與相反數(shù)教案篇十一
一、教學目標:
1、掌握絕對值的概念,有理數(shù)大小比較法則。
2、學會絕對值的計算,會比較兩個或多個有理數(shù)的大小。
3、體驗數(shù)學的概念、法則來自于實際生活,滲透數(shù)形結合和分類思想。
二、教學難點:
兩個負數(shù)大小的比較。
三、知識重點:
絕對值的概念。
四、教學過程:
(一)設置情境。
1、引入課題。
星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正:
(1)用有理數(shù)表示黃老師兩次所行的路程。
(2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
2、學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關。
3、觀察并思考:
畫一條數(shù)軸,原點表示學校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離。
4、學生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數(shù)的正負性無關;一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|。
例如,上面的問題中|20|=20,|―10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負數(shù)表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關注它們所表示的意義。為引入絕對值概念做準備。使學生體驗數(shù)學知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數(shù)形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備。
(二)合作交流。
1、探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
―3,5,0,+58,0.6。
2、要求小組討論,合作學習。
3、教師引導學生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結合相反數(shù)的意義,最后總結得出求絕對值法則。
(三)鞏固練習。
1、其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數(shù)和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別。求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例。學生能做的盡量讓學生完成,教師在教學過程中只是組織者。本著這個理念,設計這個討論。
2、結合實際發(fā)現(xiàn)新知引導學生看教科書第16頁的圖,并回答相關問題:
(1)把14個氣溫從低到高排列。
(2)把這14個數(shù)用數(shù)軸上的點表示出來。
3、觀察并思考:
(2)學生交流后,教師總結:
14個數(shù)從左到右的順序就是溫度從低到高的順序:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。
4、想象練習:
想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)―100和―90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關系。要求學生在頭腦中有清晰的圖形。讓學生體會到數(shù)學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。
數(shù)在大小比較法則第2點學生較難掌握,要從絕對值的意義和數(shù)軸上的.數(shù)左小右大這方面結合起來來了解,所以配置想象練習,加強數(shù)與形的想象。
5、課堂練習例2,比較下列各數(shù)的大小。
比較大小的過程要緊扣法則進行,注意書寫格式。
6、練習:第18頁練習。
(三)小結與作業(yè)。
課堂小結怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大???
(四)本課作業(yè)。
1、必做題:教產(chǎn)書第19頁習題1,2,第4,5,6,10。
2、選做題:教師自行安排。
五、本課教育評注。
1、情景的創(chuàng)設出于如下考慮:
(1)體現(xiàn)數(shù)學知識與生活實際的緊密聯(lián)系,讓學生在這些熟悉的日常生活情境中獲得數(shù)學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣。
(2)教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉化為形來解釋,是難點),然后通過練習歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受。
2、一個數(shù)絕對值的法則,實際上是絕對值概念的直接應用,也體現(xiàn)著分類的數(shù)學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3、有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,幫助學生建立數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小這個數(shù)形結合的模型。為此設置了想象練習。
4、本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學內(nèi)容很多,學生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學。
絕對值與相反數(shù)教案篇十二
一、學習與導學目標:
情感態(tài)度:通過創(chuàng)設情境,初步感悟?qū)W習絕對值的必要性,促進責任心的形成。
二、學程與導程活動:
a、創(chuàng)設情境(幻燈片或掛圖)。
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題……。
2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
b、學習概念:
1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)。
2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;
(3)︱0︱=。(幻燈片)。
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導學生得出:(幻燈片)。
性質(zhì):一個正數(shù)的絕對值是它本身;
一個負數(shù)的絕對值是它的相反數(shù);
如果用字母a表示有理數(shù),上述性質(zhì)可表述為:
當a是正數(shù)時,︱a︱=a;。
當a是負數(shù)時,︱a︱=-a;。
當a=0時,︱a︱=0。
解答課本p19/7及p15練習,由p19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負數(shù)的大???
3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導閱讀p16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4-3-2-1012……。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉€量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用p19/6,8為素材)。
通過以上探究活動得到:正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);
兩個負數(shù),絕對值大的反而小。
4、師生活動比較下列各對數(shù)的大小:p17例,p18練習。
5、師生小結歸納(幻燈片)。
三、筆記與板書提綱:
1、幻燈片。
2、師生板演練習p15/1。
四、練習與拓展選題:
p19/4,5,9,10。
絕對值與相反數(shù)教案篇十三
(一)?教學內(nèi)容:
《絕對值》是七年級數(shù)學教材上冊1.2.4節(jié)內(nèi)容,此前,學生已經(jīng)學習了有理數(shù)的分類,數(shù)軸與相反數(shù)等基礎知識,為本課學習的基礎。絕對值不僅可以使學生加深對有理數(shù)的認識,還會為以后學習兩個負數(shù)的大小比較以及有理數(shù)的運算做準備。所以本課在有理數(shù)一章起到承上啟下的作用。
(二)教學目標:
根據(jù)數(shù)學課程內(nèi)容標準要求及教學內(nèi)容的特點,以及學生的認知水平,確定本節(jié)課的教學目標如下:
1,理解、掌握絕對值概念.體會絕對值的作用與意義;
2,能正確求出一個數(shù)的絕對值;
(三)教學重、難點分析:
教學重點:掌握絕對值的概念會求已知數(shù)的絕對值.
教學難點:掌握有理數(shù)的概念及分類。
(四)教學輔助手段。
利用多媒體(實物投影)、學案進行輔助教學。
第二部分:教學設計。
教學過程。
師生互動。
設計意圖。
一、創(chuàng)設情境、引入新課。
二、合作交流、探索新知。
問題1:什么叫做絕對值?
怎么用數(shù)學符號表示一個數(shù)的絕對值?
問題2:互為相反數(shù)的絕對值的關系怎樣?
問題3:正數(shù)的絕對值是什么數(shù)?零的絕對值是什么數(shù)?負數(shù)的絕對值是什么數(shù)?
問題4:設?a表示一個數(shù),?|a|等于什么?
三、拓展提高、應用鞏固。
1.判斷下列說法是否正確:
(1)符號相反的數(shù)互為相反數(shù)(??).
(2)符號相反且絕對值相等的數(shù)互為相反數(shù)(??)。
(3)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上越靠右.(??)。
(4)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離遠點越遠.(??)。
2.??求下列各數(shù)的絕對值:?,,0,,.
四、?概括總結、布置作業(yè)。
課堂小結:
1、?本節(jié)課收獲:由學生進行總結,其他同學幫忙補充,教師提示。
2、?對于本節(jié)課的知識,如果還有不明白的地方請?zhí)岢鰜恚瑢W和老師共同幫助解決。
布置作業(yè):
課本p11第1,2,3,??。
教師展示投影,甲乙兩車相向而行問題?,學生在學案上畫出數(shù)軸,并根據(jù)學案的要求,思考甲乙兩車行駛的距離引出的三個問題。
本環(huán)節(jié)教師關注重點:
學生能否區(qū)分方向和距離的不同。
學生能夠理解從距離角度看數(shù)即絕對值的意義。
學生口頭回答老師的問題。
對絕對值意義理解后教師讓學生用自己的語言概括絕對值的定義?
學生相互討論發(fā)言,教師進行補充并板書在黑板上,給出絕對值的數(shù)學符號書寫規(guī)范。
學生鞏固練習。
本環(huán)節(jié)教師關注重點:
學生是否正確理解了絕對值的概念并自己概括出來。
通過以下表格內(nèi)容:
數(shù)值。
-3。
-2。
2
3
絕對值。
讓學生填寫表格后并通過表格小組討論這些數(shù)能發(fā)現(xiàn)哪些規(guī)律?
學生進行小組討論共同分析總結,得出組內(nèi)結論。
本環(huán)節(jié)教師關注重點:
學生能否從正負數(shù)的角度看數(shù)的絕對值。
組織好小組討論,使小組能真正發(fā)揮作用。
教師根據(jù)小組結論內(nèi)容進行提問,得出絕對值的規(guī)律。
教師提醒和引導從正負數(shù)零的角度來思考。
學生小組討論后教師進行補充。
給學生2分鐘時間完成習題。
學生完成后,教師在黑板上進行板演寫出完整的解題過程。
學生獨立完成,找兩名學生到黑板進行板演,對比過程的書寫并由學生進行糾錯,總結出完成的解題過程。
計算結果正確的學生舉手示意教師;
本環(huán)節(jié)教師關注重點:
(1)?學生對于絕對值概念的掌握及靈活應用。
(2)?培養(yǎng)學生的分類的數(shù)學思維。
有本題引出下節(jié)課所要研究的重點內(nèi)容。
本環(huán)節(jié)教師關注重點:
(1)?注重學生數(shù)學思維的形成。
(2)?提高學生的解題能力。
學生總結本節(jié)課內(nèi)容后,小組間互相提問,看哪組將問題處理的正確、清晰。
用一個小情境讓學生在興趣中體驗絕對值所代表的距離的意義,有實際問題引出絕對值的概念。
讓學生通過實際的意義來正確的了解絕對值的概念,并通過討論自己發(fā)表對絕對值概念的理解,發(fā)散學生的思維。
讓學生通過自主學習找答案,觀察數(shù)的規(guī)律自己總結不同數(shù)的絕對值的規(guī)律,提高學生的觀察力和思考能力。
讓學生自己總結,既鍛煉學生的語言表達能力,又能加深學生對知識的掌握和理解。培養(yǎng)學生的數(shù)學語言及分類的數(shù)學思維。
通過習題加深學生的記憶和對絕對值的概念的掌握。
通過總結和提問幫助學生記憶本節(jié)課知識點,并加深理解,進行實際運用。
絕對值與相反數(shù)教案篇十四
3,體驗分類是數(shù)學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類。
知識重點正確理解有理數(shù)的概念。
教學過程(師生活動)設計理念。
探索新知在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類。
學生思考討論和交流分類的情況。
學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵。
例如,
對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù),,.??…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))。
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念。
看書了解有理數(shù)名稱的由來。
“統(tǒng)稱”是指“合起來總的名稱”的意思。
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會。
練一練1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流。
2,教科書第10頁練習。
此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明。
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號。
思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學時,要讓學生總結已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇?,逐步得到如下的分類表?BR> 有理數(shù)這個分類可視學生的程度確定是否有必要教學。
小結與作業(yè)。
課堂小結到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業(yè)1,必做題:教科書第18頁習題1.2第1題。
2,教師自行準備。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概。
念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進。
行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視。關于分類標準與分。
類結果的關系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
課題:1.2.2數(shù)軸。
教學目標1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關系;
3,感受在特定的條件下數(shù)與形是可以相互轉化的,體驗生活中的數(shù)學。
教學難點數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)。
知識重點。
教學過程(師生活動)設計理念。
設置情境。
引入課題教師通過實例、課件演示得到溫度計讀數(shù)。
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)。
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。
點表示數(shù)的感性認識。
點表示數(shù)的理性認識。
合作交流。
探究新知教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
從而得出數(shù)軸的三要素:原點、正方向、單位長度體驗數(shù)形結合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。
尋找規(guī)律。
歸納結論問題3:
1,你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
3,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4,每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
(小組討論,交流歸納)。
歸納出一般結論,教科書第12的歸納。這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習。
教科書第12頁練習。
小結與作業(yè)。
課堂小結請學生總結:
1,數(shù)軸的三個要素;
2,數(shù)軸的作以及數(shù)與點的轉化方法。
本課作業(yè)1,必做題:教科書第18頁習題1.2第2題。
2,選做題:教師自行安排。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1,數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。
3,注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。
絕對值與相反數(shù)教案篇十五
1、理解反義詞的意義。
2、能根據(jù)畫面內(nèi)容說出相應的名詞、數(shù)量詞及成反對的反義詞,再將他們適當?shù)亟M合在一起,編成一首兒歌。
3、體驗幫助他人的快樂,培養(yǎng)幼兒樂于助人的品質(zhì)。
課前練習數(shù)量詞的運用、多媒體課件。
1、師生問好,請幼兒說說什么是反義詞。(意思相反的詞)。
2、游戲:聽節(jié)奏,說反義詞。
3、創(chuàng)設情境:毛毛蟲迷路的,翅膀也不見了,需要找到翅膀回家。引起幼兒興趣。
毛毛蟲請教仙女,仙女請幼兒幫助毛毛蟲,說出每間房子的密語,打開房子,找到里面的東西才能找到翅膀。激發(fā)幼兒幫助他人的熱情。
4、發(fā)現(xiàn)第一間房子,觀察畫面,提問:
(1)你看到了什么?(大象和鳥)。
(2)它們的數(shù)量是多少呢?我們該怎么說呢?
(3)我們用剛才說的話試試,(一頭大象一只鳥)發(fā)現(xiàn)不能打開門。
(4)我們看看大象身體跟鳥的身體有什么不同?(大、?。?BR> (5)我們可以用反義詞大、小來形容,可以說“一個大,一個小”。
(6)我們把這兩句話合起來試試。(一個大,一個小,一頭大象一只鳥)。
(7)發(fā)現(xiàn)門能打開,教師總結:要說出一對反義詞,并把圖上的內(nèi)容說出來。
5、發(fā)現(xiàn)第二間房子,觀察畫面,提問:
(1)你看到他們在干什么?(騎車、走)。
(2)數(shù)量是多少呢?我們該怎么說呢?(一人騎車,一人走)。
(3)我們再看看騎車的人騎到哪里了?(前面)走的呢?(后面)。
(4)那我們可以說“一個前,一個后”把兩句合起來說:“一個前,一個后,一人騎車一人走”
(5)教師總結:要把反義詞說在前,內(nèi)容說在后。
6、發(fā)現(xiàn)第三間房子,觀察圖片,提問:
(1)你們看到圖上有什么?我們該怎么說呢?
(2)這一捆韭菜有多少根呢?那草呢?韭菜多還是草多呢?我們可以怎么說呢?(一個多,一個少)。
(3)把兩句話合起來說。(一個多,一個少,一捆韭菜一根草)。
(4)鼓勵幼兒。
7、發(fā)現(xiàn)第四間房子,觀察圖片,提問:
(1)你發(fā)現(xiàn)他們相反的地方了嗎?我們該怎么說?(一個黑,一個白)。
(2)把你看到的動物加上去說。(一個黑,一個白,一只烏鴉一只鵝)。
8、發(fā)現(xiàn)第五間房子,觀察圖片,提問:
(1)圖上有什么動物?(一頭肥豬一只猴)。
(2)你發(fā)現(xiàn)了他們的身體有什么不同?引導幼兒說出“一個胖,一個瘦”
(3)請幼兒把兩句話連起來說。
9、發(fā)現(xiàn)第六間房子,觀察圖片,提問:
(1)小朋友們,看了這幅圖,你知道該怎么說了嗎?
(2)引導幼兒說出“一個長,一個短,一根竹竿一把傘”
10、打開了所有的房間,拿到了6個數(shù)字,還是沒有找到翅膀,請仙女幫忙。(看課件)。
11、請幼兒看圖片,引導幼兒把圖片連起來,編成一首兒歌。
12、幫助毛毛蟲找到了翅膀,體驗幫助他人的快樂。
13、邀請幼兒和蝴蝶一同飛舞。
活動延伸:請幼兒畫出美麗的蝴蝶,并展示作品。
絕對值與相反數(shù)教案篇十六
一教材分析:
教材所處的地位及作用:
本節(jié)課選自新人教版七年級數(shù)學上冊§1.2節(jié),是學生進入初中階段后,在學習了正、負數(shù)、數(shù)軸以及相反數(shù)的基礎上,對絕對值進行探究、學習的一個課題。絕對值是本章的一個重點,是比較有理數(shù)大小的又一工具,也是以后學習有理數(shù)混和運算的基礎。另外,這一節(jié)課與前面所學的知識有千絲萬縷的聯(lián)系:絕對值的幾何意義是在數(shù)軸的基礎上得出的,代數(shù)意義又是運用前面所學的相反數(shù)知識來解決的。因此,這節(jié)課是一節(jié)承上啟下的課。
二學情分析:
七年級學生剛剛跨入少年期,他們在身體發(fā)育、知識經(jīng)驗、心理品質(zhì)方面,依然保留這小學生的天真活潑、對新生事物很感興趣,求知欲望強、具有強烈的好奇心與求知欲,直觀思維已比較成熟,但理性思維的發(fā)展還很有限,于是我用學生常見的行程問題導入這節(jié)課。
三教學目標:
知識目標:
(1)是學生掌握有理數(shù)的絕對值概念及表示方法。
(2)使學生熟練掌握有理數(shù)絕對值的求法和有關計算問題。
能力目標:
(1)在絕對值概念形成的過程中,滲透數(shù)形結合等思想方法,并注意培養(yǎng)學生的概括能力(2)能根據(jù)一個數(shù)的絕對值表示“距離”,初步理解絕對值的概念。
(3)給出一個數(shù),能求出它的絕對值。
情感態(tài)度與價值觀:
從上節(jié)課學的相反數(shù)到本節(jié)的絕對值,使學生感知數(shù)學知識具有普遍的聯(lián)系性。
四教學重點、難點:
根據(jù)學生的實際和本節(jié)課的要求,確定以下重、難點:
重點:給出一個數(shù)會求它的絕對值。
難點:絕對值的幾何意義,代數(shù)意義的導出;負數(shù)的絕對值是它的相反數(shù)。
五教學方法與教學手段:
教法分析:
基于本節(jié)課內(nèi)容的特點和七年級學生的心理特征,我在我在教學中選擇互動是學習模式,與學生建立平等融洽的關系,營造自主探究與合作交流的氛圍,共同演示、操作、觀察、練習等活動中運用多媒體來提高教學效果,驗證結論,激發(fā)學生學習興趣。
學法分析:
教學過程是師生互相交流的過程,教師起引導作用,學生在教師的啟發(fā)下充分發(fā)揮主體性作用。結合七年級學生的特點,讓學生自己通過觀察、類比、猜想、歸納,共同探討交流,利用課件和圖片自主探索等方式,激發(fā)學習興趣,培養(yǎng)應用意識和發(fā)散思維。
六教學過程:
創(chuàng)設情境。
2)它們行駛的路程的遠近相同嗎?
思考:-8與8是相反數(shù),把它們在數(shù)軸上表示出來,它們有什么相同之處和不同之處?(讓學生充分發(fā)揮主體作用,()從自己的視點去觀察、歸納、總結得出絕對值的幾何意義。)2、形成概念:一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absoutevalue),記作:|a|.
3、例題講解。
例1求下列各數(shù)的絕對值。
-19,0,-2.3,+0.56,-6,+6,。
練習:求下列各數(shù)的絕對值。
|9||-2.5||-9||2.5||0|議一議:上述各數(shù)的絕對值與這些數(shù)本身有什么關系?(通過練習求三種類型數(shù)的絕對值,得出絕對值的代數(shù)意義。)4、引出法則:正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
議一議:
(1)當a是正數(shù)(a0)時,|a|=____;。
(2)當a是負數(shù)(a0)時,|a|=__;。
(3)當a=0時,(a=0)時|a|=__.
想一想:
(1)絕對值是3的數(shù)有幾個?各是什么?
(2)絕對值是0的數(shù)有幾個?各是什么?
(3)絕對值是-2的數(shù)是否存在?若存在,請說出來?
判斷。
(1)+7的絕對值與-7的絕對值互為相反數(shù)。()(2)既不是正數(shù)也不是負數(shù)的有理數(shù)的絕對值是零。()(3)數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點與原點的距離。()(4)絕對值最小的數(shù)是0.()。
如何求一個數(shù)的絕對值。
作業(yè)布置。
必做題:
寫出下列各數(shù)的絕對值:
-125,+23,-3.5,0,-0.05。
上面的數(shù)中那個數(shù)的絕對值最大?那個數(shù)的絕對值最?。?BR> 選做題:(通過這一活動可以拓寬學生的知識視野,1、讓學生了解一點分類討論的思想;2、把所學應用于生活)1、已知|x|=3,|y|=4,求x+y的值。
2、正式排球比賽對所用的排球重量是有嚴格規(guī)定的,現(xiàn)檢查5個排球的重量,超過規(guī)定重量的克數(shù)記作正數(shù),不足規(guī)定重量的克數(shù)記作負數(shù),檢查結果如下表:
+15。
-10。
+30。
-20。
-40。
問題:
(1)指出哪個排球的質(zhì)量好一些(即重量最接近規(guī)定質(zhì)量)?
絕對值與相反數(shù)教案篇十七
師:字母可表示任意的數(shù),可以表示正數(shù),也可以表示負數(shù),也可以表示0.
教師引導學生用數(shù)學式子表示正數(shù)、負數(shù)、0,并再提問:這時的絕對值分別是多少?
學生活動:分組討論,教師加入討論,學生互相補充回答。
教師板書:
師強調(diào):這種表示方法就相當于前面三句話,比較起來后者更通俗易懂。
【教法說明】用字母表示規(guī)律是難點。這時教師放手,讓學生有目的地考慮、分析,共同得出結論。
(四)歸納小結。
師:這節(jié)課我們學習了絕對值。
(1)一個數(shù)的絕對值是在數(shù)軸上表示這個數(shù)的點到原點的距離;(2)求一個數(shù)的絕對值必須先判斷是正數(shù)還是負數(shù)。
回顧反饋:
(出示投影2)。
1.-3的絕對值是在_____________上表示-3的點到__________的距離,-3的絕對值是____________.
2.絕對值是3的數(shù)有____________個,各是___________;絕對值是2.7的數(shù)有___________個,各是___________;絕對值是0的數(shù)有____________個,是____________.
八、隨堂練習。
1.判斷題。
(1)數(shù)的絕對值就是數(shù)軸上表示數(shù)的點與原點的距離()(2)負數(shù)沒有絕對值()。
2.填表。
九、布置作業(yè)。
課本第50頁2、4.
絕對值與相反數(shù)教案篇十八
(1)掌握與()型的絕對值不等式的解法。
(2)掌握與()型的絕對值不等式的解法。
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結合的能力;
設計。
在將看成一個整體的關鍵處點撥、啟發(fā),使學生主動地進行練習。
繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤。
三、課堂練習。
解下列不等式:
(1);
筆答。
(1);
檢查落實情況。
四、小結。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集。
或型的絕對值不等式,若把看成一個整體一個字母,就可以歸結為或型絕對值不等式的解法。
五、作業(yè)。
1、閱讀課本含絕對值不等式解法。
2、習題2、3、4。
1、抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎。
2、在解與絕對值不等式中的關鍵處設問、質(zhì)疑、點撥,讓學生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學生解題能力的目的。
3、針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力。
絕對值與相反數(shù)教案篇十九
蘇軾,北宋大文學家、書畫家。字子瞻,號東坡居士,眉山(今屬四川)人。蘇洵子,蘇轍兄。嘉佑進士。北宋中期的文壇領袖,文學巨匠,唐宋八大家之一。其文縱橫恣肆,其詩題材廣闊,清新豪健,善用夸張、比喻,獨具風格。詞開豪放一派,與辛棄疾并稱“蘇辛”,有《東坡全集》、《東坡樂府》。
3、《浣溪沙》上闕寫景,描繪了哪三幅畫面?畫面有何特點?山下小溪邊,長著矮小嬌嫩的蘭草,山上松間沙路潔凈無塵,黃昏時瀟瀟細雨中杜鵑在啼叫。畫面清新優(yōu)美,淡雅寧靜。
4、下闕轉入抒懷,抒發(fā)了怎樣的情懷?由西流的溪水,想到青春可以永駐,大可不必為日月變遷、人生衰老而嘆息。表現(xiàn)了積極進取的人生態(tài)度。
5、作者寫此詞時,正是在政治上失意,生活處于逆境之時,能有如此積極的人生觀,豁達的胸懷,實在難能可貴。
6、齊讀并背誦這首詞。
學習《赤壁》。
1、教師范讀,學生跟讀。
2、簡介作者并解題。
杜牧(803-852)唐代詩人。字牧之,京兆萬年人。太和進士,和李商隱并稱“小李杜”。赤壁是東漢末年周瑜大敗曹操的地方,但杜牧所詠赤壁并非此處,而是湖北黃岡的赤鼻磯,所以說此詩雖為詠史詩,其實也是借題發(fā)揮。
3、《赤壁》開頭為什么從一把不起眼的折戟寫起,這樣寫有何作用?
與古代戰(zhàn)爭聯(lián)系起來,很自然的引起后文對歷史的詠嘆。但是,這兩句的作用主要不在于作為詩的引導,它本身也蘊涵著強烈的意念活動。沙里沉埋著鐵戟,點出此地曾有過歷史風云。折戟沉沙而仍未銷蝕,又暗寓歲月流逝而物存人非之慨。凡是在歷史上留下蹤跡地人物、事件,常會被無情地時光銷蝕掉,也易從人們的記憶中消逝,就像這鐵戟一樣沉淪埋沒,但又常因偶然的'機會被人記起,或引起懷念,或勾起深思。正由于發(fā)現(xiàn)了這片折戟,使詩人心緒無法平靜,因此他要磨洗并辨認一番,發(fā)現(xiàn)原來是“前朝”三國赤壁之戰(zhàn)時的遺物。因此,“認前朝”又進一步勃發(fā)了作者浮想聯(lián)翩的思緒,為后二句論史抒懷做了鋪墊。
4、全詩最精彩的是久為人們傳誦的末二句,這兩句議論感慨抒發(fā)了作者怎樣的思想感情?
這兩句詩人發(fā)表議論,“東風”不僅僅指的是自然界的風,而是含有建功立業(yè)各種條件和因素。曲折的反映出詩人的抑郁不平和豪爽胸襟??畤@歷史上英雄成名的機遇,是因為他自己生不逢時,有政治軍事才能而不得一展。似乎又有另一層意思:只要有機遇,相信自己總會有所作為,顯示出一種逼人的英氣。
5、齊讀、背誦。
四、課堂練習。
課后練習:對對子。
出:白對:黑出:來對:去出:美對:丑出:是對:非出:藍天對:白云。
五、布置作業(yè)。
1、背誦并默寫五首詩詞。
2、完成課后練習四作者郵箱:xxx。
絕對值與相反數(shù)教案篇二十
1.引導幼兒初步用各種感官感知物品,通過比較能初步理解反義詞的含義.
2.鼓勵幼兒積極動腦找出圖片中的反義詞,并能準確的說出反義詞組.3.培養(yǎng)幼兒對漢字的興趣,并認識漢字大小,高矮,多少,長短.
1.通過教師展示各種相反實物,并對其感知感官,能準確的回答來勢提出的問題,初步理解反義詞的含義.
2.幼兒通過對圖片的觀察,能夠掌握找朋友游戲,并能融入其中.
1.活動圖片若干份(有相反意思)。
2.大小,高矮,多少,長短字卡.
3.大小皮球各一個,高矮房子積木各一個,裝有多,少書的籃子各一個,長短子各一把.
小朋友們好,我是小兔子姐姐,今天我代表相反國國王帶領你們。
去相反國參觀,想不想去呀?(想)好,那么請跟我來.(走到教室門口即“相反國”)相反國到了,小朋友跟我一起去參觀吧!
1.從神秘的柜子里變出大小皮球,引導幼兒自己發(fā)現(xiàn)皮球大小的特。
征,從而引出“大”“小”第一對相反詞,并請幼兒認讀.
2.從神秘的柜子里變出高矮不一的兩座房子積木,引導幼兒自。
己發(fā)現(xiàn)房子高矮的特征,從而引出“高”“矮”第二對相反詞,并請幼兒認讀.
3.從神秘的柜子里變出裝有多,少書的籃子各一個,引導幼兒自己發(fā)現(xiàn)書本多少的特征,從而引出“多”“少”第三對相反詞幼兒認讀.
4.從神秘的柜子里變出長多尺子各一把.引導幼兒自己發(fā)現(xiàn)尺。
子長短的特征,從而引出“長”“短”第四對相反詞,并請幼兒認讀.
1.在幼兒理解相反的含義及初步認識相反詞之后,只要老師說出一個詞,幼兒就要說出它的相反詞.在這個對答的游戲中,加深鞏固所學的知識,做到幼互動.
2.教師給每位幼兒都發(fā)上事先準備好的相反意思圖片,再請幼兒找出與自己的圖片意思相反圖片的主人做好朋友.通過這一環(huán)節(jié)使幼兒與幼兒互動,拓展了幼兒的思維.
兔子姐姐知道今晚用有邀請涵—(相反意思圖片)的小朋友就能參。
加相反國王的“相反好朋友”晚會.現(xiàn)在給你們發(fā)圖片自己去找找圖片的相反好朋友吧!
絕對值與相反數(shù)教案篇二十一
借助于數(shù)軸理解相反數(shù)和絕對值的概念,會求一個數(shù)的絕對值,能借助絕對值比較兩個負數(shù)的大小。
【過程與方法】。
通過自主探索、小組討論、合作交流探索得到絕對值的過程,培養(yǎng)學生發(fā)現(xiàn)和解決問題的能力,鍛煉學生合作交流的意識。
【情感態(tài)度與價值觀】。
體會到數(shù)學和生活之間的聯(lián)系,提升學生學習數(shù)學的自信心和樂趣。
二、教學重難點。
【教學重點】。
【教學難點】。
求一個數(shù)的絕對值和相反數(shù);借助絕對值比較負數(shù)間的大小。
三、教學過程。
(一)引入新課。
教師回顧舊知并提問:上節(jié)課學習了哪些知識?
預設:學習了數(shù)軸,知道了有理數(shù)都可以用數(shù)軸上的點來表示。
多媒體出示,3與-3,5和-5等數(shù)字,再次提出問題:這些數(shù)有什么相同點,你能找到這些數(shù)在數(shù)軸上的位置嗎?引出新課。
(二)探索新知。
學生自主觀察,并寫出幾組類似的數(shù)字。
絕對值與相反數(shù)教案篇二十二
(1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負數(shù)的大小。
(2)、通過應用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法目標:
(3)、通過對“做一做”“議一議”“試一試”的交流和討論,培養(yǎng)學生有條理地用語言表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。
1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)。
2.在組長的組織下進行討論、交流。(約5分鐘)。
3、小組分任務展示。(約25分鐘)。
4、達標檢測。(約5分鐘)。
5、總結(約5分鐘)。
(一)、溫故知新:。
(二)小組合作交流,探究新知。
1、觀察下圖,回答問題:(五組完成)。
大象距原點多遠?兩只小狗分別距原點多遠?
歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:4的絕對值記作,它表示在上與的距離,所以|4|=。
2、做一做:
(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2。
(2)、求下列各組數(shù)的絕對值:(一組完成)。
(1)4,-4;。
(2)0.8,-0.8;。
從上面的結果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)。
你能從中發(fā)現(xiàn)什么規(guī)律?
小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)。
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。
5:做一做:(三組完成)。
1、
(1)在數(shù)軸上表示下列各數(shù),并比較它們的大小:
-3,-1。
(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。
(3)你發(fā)現(xiàn)了什么?
2、比較下列每組數(shù)的大小。
(1)-1和–5;(五組完成)。
(2)-8和-3(七組完成)。
5和-2.7(六組完成)。
1、填空:
絕對值是10的數(shù)有()。
|+15|=()|–4|=()。
|0|=()|4|=()。
2、判斷。
(1)、絕對值最小的數(shù)是0。()。
(2)、一個數(shù)的絕對值一定是正數(shù)。()。
(3)、一個數(shù)的絕對值不可能是負數(shù)。()。
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()。
(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。
1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
2絕對值的性質(zhì):正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
3、會利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而小。
p50頁,知識技能第1,2題。
絕對值與相反數(shù)教案篇二十三
1、能借助數(shù)軸初步理解絕對值的概念,會求一個數(shù)的絕對值。
2、正確理解絕對值的代數(shù)意義和幾何意義,滲透數(shù)形結合與分類討論思想。重點和難點:理解絕對值的概念,能求一個數(shù)的絕對值。
任務一、復習舊知:
1、什么叫互為相反數(shù)?在數(shù)軸上表示互為相反數(shù)的兩點和原點的位置關系怎樣?
2、數(shù)軸上與原點的距離是2的點表示的數(shù)有_____個,他們表示的數(shù)是_____;與原點的距離是5的點有____個、任務二、新知理解:
1、自讀課本p11-p12,體會絕對值的意義。
a的絕對值記作_______,如5的絕對值記作______,結果是_____、
(2)|0|=_______;
絕對值的代數(shù)意義:(1)一個正數(shù)的絕對值是__________;。
(2)一個負數(shù)的絕對值是___________(3)0的絕對值是___________。
上述可以用式子表示為:(1)當a是正數(shù)時,|a|=_______,
任務三:鞏固練習。
1、求下列各數(shù)的絕對值:?7。
12,?
110。
4、7510、5。
2.計算|-2|+|+8||34|?|?815。
||-20|?|?45|。
(2)如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身;(3)如果一個數(shù)的絕對值是它本身,那么這個數(shù)是正數(shù)(4)一個數(shù)的絕對值越大,表示它的'點在數(shù)軸上越靠右。歸納:(1)不論有理數(shù)a取何值,它的絕對值總是______。
(2)兩個互為相反數(shù)的絕對值____。能力提升:
4)若|a-2|=3,則a=______。
略
絕對值與相反數(shù)教案篇一
2.使學生能求出已知數(shù)的相反數(shù)。
3.使學生能根據(jù)相反數(shù)的意思進行化簡。
【學習過程】。
【情景創(chuàng)設】。
回憶上節(jié)課的情境,小明從學校出發(fā)沿東西大街走了0.5千米,在數(shù)軸上表示出他的位置。點a,點b即是小明到達的位置。
觀察a,b兩點位置及共到原點的距離,你有什么發(fā)現(xiàn)嗎?
絕對值與相反數(shù)教案篇二
表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。
1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)2.在組長的組織下進行討論、交流。(約5分鐘)3、小組分任務展示。(約25分鐘)4、達標檢測。(約5分鐘)5、總結(約5分鐘)。
(一)、溫故知新:。
(二)小組合作交流,探究新知。
1、觀察下圖,回答問題:(五組完成)。
大象距原點多遠?兩只小狗分別距原點多遠?
歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.
4的絕對值記作,它表示在上與的距離,所以|4|=。
2、做一做:
(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2(2)、求下列各組數(shù)的絕對值:(一組完成)。
(1)4,-4;(2)0.8,-0.8;。
從上面的結果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)。
(1)|+2|=,
你能從中發(fā)現(xiàn)什么規(guī)律?
小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)。
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。
5:做一做:(三組完成)。
1、(1)在數(shù)軸上表示下列各數(shù),并比較它們的大?。?BR> -3,-1。
(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。
(3)你發(fā)現(xiàn)了什么?
2、比較下列每組數(shù)的大小。
(1)-1和–5;(五組完成)(2)?
(3)-8和-3(七組完成)。
5和-2.7(六組完成)6五、達標檢測:
1:填空:
|+15|=()|–4|=()。
|0|=()|4|=()2:判斷(1)、絕對值最小的數(shù)是0。()(2)、一個數(shù)的絕對值一定是正數(shù)。()(3)、一個數(shù)的絕對值不可能是負數(shù)。()。
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。
1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值.
2.絕對值的性質(zhì):正數(shù)的絕對值是它本身;。
負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
3、會利用絕對值比較兩個負數(shù)的大小:兩個負數(shù)比較大小,絕對值大的反而小.
p50頁,知識技能第1,2題.
絕對值與相反數(shù)教案篇三
在教學過程中,結合學生實際情況給枯燥的數(shù)學概念賦予生活的意味,貼近學生生活,使學生不再被動地接受知識,可以有自己獨到的見解,學生也可以大膽說出心中的想法。
2、激勵學生去發(fā)現(xiàn)問題、解決問題。
《新課程標準》明確地把“形成解決問題的一些基本策略”作為一個重要的課程目標。為此數(shù)學教學中設置一些具有挑戰(zhàn)性的問題情境,激發(fā)學生進行思考,提出具有一定跨度的問題串引導學生進行自主探索,用“試一試,你能行”、“請與同學交流你的想法”等語言鼓勵學生進行交流,使學生在探索的過程中進一步理解。
3、面向每一個學生,使每個人都獲得成功。
課堂教學中,我們投入一“石”,激起了學生學習的“千層浪”,使得課堂變成了學生思維操練的場所。教師引導學生去尋找和發(fā)現(xiàn),自己只是一個組織者和參與者,和學生一起共同探索。學生真正成為學習的主任,學生不僅積極地參與每一個教學環(huán)節(jié),情緒高昂,切身感受了學習的快樂,品嘗了學生求知、參與、成功、交流和自尊的需要。我鼓勵學生“你學會多少就匯報多少…..”這充分調(diào)動了學生學習的積極性、主動性,大大引發(fā)了學生潛在的創(chuàng)造動因,創(chuàng)設了有利于個性發(fā)展的情境,因而引出了不同的學習結果,激發(fā)了學生學習的興趣,提高了課堂效率。
將本文的word文檔下載到電腦,方便收藏和打印。
絕對值與相反數(shù)教案篇四
1、化簡:
2、若一個數(shù)的相反數(shù)是2,則這個數(shù)是_____,若一個數(shù)的相反數(shù)是-3,則這個數(shù)是___,若一個數(shù)的相反數(shù)是它本身,則這個數(shù)是______.
3、的絕對值的相反數(shù)是_______,0.7的相反數(shù)的絕對值是_______.
4、絕對值最小的數(shù)是____,絕對值不小于3的整數(shù)有個,分別是.
【課堂重點】。
1、完成教材23頁填空.
2、觀察教材上填空的結果思考:一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?與同學交流.
正數(shù)的絕對值是_______;負數(shù)的絕對值是_______;零的絕對值是_______.
3、學習教材23頁例5,完成教材24頁“練一練”第一題.思考:
4、想一想:兩個數(shù)比較大小,絕對值大的那個一定大嗎?
結論:
5、學習教材23頁例6,完成教材24頁“練一練’第二題.
6、練習:
|0|=_______;|-1|=_______;|2|=_______;。
+|-1.5|=_______;-|-2|=_______;。
+(-5)=_______;―(-4)=_______;-(+5)=_______.
(2)若|x|=x,則x_______0;。
若|x|=-x,則x_______0.
(3)絕對值等于5的數(shù)是______.
(4)絕對值小于5的負整數(shù)是______.
(5)絕對值不大于5而又不小于2的整數(shù)是______.
(6)絕對值不大于5.3而又不小于2的整數(shù)是______.
(7)已知ab0,-a_____-b.
7、這節(jié)課主要學習了什么?你有什么收獲?
【課后鞏固】。
1、用“”“=”或“”號填空。
+|-5|___-|-4|;-(+5)___-[-|-5|]。
2、|x|=3,則x=_____;|-x|=|-2|,則x=______.
3、相反數(shù)大于-2而又小于3的整數(shù)有__________;-(+7)的相反數(shù)是________.
4、比-3大且比4小的整數(shù)有_______個,分別是__________.
5、絕對值大于1且不大于4的負整數(shù)有__________個,分別為__________.
6、若分別求x,y的值.
絕對值與相反數(shù)教案篇五
2.會求已知數(shù)的相反數(shù)和絕對值.
4.經(jīng)歷將實際問題數(shù)學化的過程,感受數(shù)學與生活的關系.
【教學過程設計建議(第一課時)】。
1.情境創(chuàng)設。
走了3km,你能在數(shù)軸上表示出小明昨天到達的位置嗎?
2.探索活動。
“議一議”的活動,應引導學生從利用“形(數(shù)軸)”比較有理數(shù)大小轉化為用“數(shù)(絕對值)”來比較.
(2)用相同的方法歸納出兩個負數(shù)的大小與這兩個負數(shù)的絕對值的大小關系;
(3)在經(jīng)歷了(1)、(2)之后,引導學生歸納,得出用絕對值比較有理數(shù)大小的方法.
3.例題教學。
例2的第(1)小題是兩個正數(shù)的大小比較;第(2)小題是兩個負數(shù)的大小比較,在比較一3與一6的大小時,可讓學生再次觀察溫度計上的刻度,借助“一6℃比一3℃冷”的生活經(jīng)驗,認識兩個負數(shù)的大小與這兩個負數(shù)的絕對值的大小關系.
【教學過程設計建議(第二課時)】。
1.情境創(chuàng)設。
數(shù)軸上點a在原點的左邊,點b在原點的右邊,并且點a與點b到原點的距離相同.根據(jù)小明、小麗的觀察發(fā)現(xiàn),討論5與一5的關系.如:
小明、小麗的觀察結論正確嗎?
你能說得比小明、小麗更完整一些嗎?
此外,還可以設計一些距離相同但方向相反的實際問題,引入互為相反數(shù)的概念.
2.探索活動。
(1)給出相反數(shù)的描述性定義后,要讓學生大量舉例以鞏固概念.
(2)圍繞“只有符號不同”展開討論,讓學生充。
分發(fā)表看法.搞清它的意義是判斷兩個數(shù)是否互為相反數(shù)的需要,要及時肯定學生中的較好的解釋,如:
“兩個數(shù)的符號不同,絕對值相等.”
“除0以外,絕對值相等的數(shù)有兩個,一個是正數(shù),一個是負數(shù),它們僅僅是符號不同.”
“寫已知數(shù)的相反數(shù),只要在這個數(shù)的前面添一個負號.”
“有理數(shù)由符號和絕對值兩部分組成,如果改變有理數(shù)的符號,那么數(shù)軸上表示有理數(shù)的點就從原點的一側變到另一側.”
(3)通過“議一議”,歸納出一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)的關系.需要注意的是,在寫一個數(shù)的絕對值時,要緊扣課本第27頁上的結論,要求學生首先關注對該數(shù)的判斷:是正數(shù)還是?負數(shù);然后再選擇法則:正數(shù)該如何,負數(shù)該如何,0該如何;最后給出結果.否則今后極易發(fā)生這樣的錯誤:|a|=a,|-a|=a.
3.例題教學。
例4的解答中標注的理由,例5的卡通人旁白,
都只是為了強調(diào)本節(jié)課的重要結論和相反數(shù)的定義,滲透“推理要有依據(jù)”,學生作業(yè)和考試時不作要求.
上一篇:相反數(shù)與絕對值練習。
下一篇:沒有了。
絕對值與相反數(shù)教案篇六
教學目標:
1.知道一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系;。
2.會利用絕對值比較兩個有理數(shù)大小;。
3.在具體進行兩個負數(shù)的大小比較中,培養(yǎng)推理論證能力,體會數(shù)形結合與轉化的思想方法.
教學重點:
知道一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系;會利用絕對值比較兩個有理數(shù)大小.
教學難點:
會利用絕對值比較兩個有理數(shù)大小.
教學過程:
一、議一議:
1.根據(jù)絕對值與相反數(shù)的意義填空:
(1)|2.3|=,=,|6|=;。
(3)|0|=______,0的相反數(shù)是______.
2.(1)任意說出一個負數(shù),并說出它的絕對值、它的相反數(shù).
(2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?
3.(1)2與3哪個大?這兩個數(shù)的絕對值哪個大?
(2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?
(3)任意寫出兩個負數(shù),并說出這兩個負數(shù)哪個大?他們的絕對值哪個大?
(4)兩個有理數(shù)的大小與這兩個數(shù)的'絕對值的大小有什么關系?
二、展示交流。
活動一、探究一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)之間的關系。
小組討論:
1.一個數(shù)的絕對值一定與這個數(shù)本身相等嗎?
2.一個數(shù)的絕對值一定與它的相反數(shù)相等嗎?
3.舉例說明一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?
活動二、探究兩個有理數(shù)的大小與這兩個數(shù)的絕對值的大小有什么關系。
議一議:
1.數(shù)軸上的點的大小是如何排列的?
2.兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?
3.比較下列兩個數(shù)的大小。
(1)與;(2)-3.5與-4.6;。
(3)-|-與-(-2).
三、課堂反饋。
1.-2的符號是______,絕對值是______;3.5的符號是______,絕對值是______.
3.符號是-,絕對值是4.3的數(shù)是______.
5.計算:(1)|-+|-=;(2)|-3|-|-2.5|=.
6.比較下面有理數(shù)的大小并且說明理由.
(1)-0.7與-1.7;(2)-與-0.273;。
(3)+(-5)與-(-3).
7.用將各數(shù)從小到大排列起來:(直接寫出結論,不必說明理由)。
-4,+(-),-(-1.5),0,|-3|。
四、課堂作業(yè):
課本p29習題2.4第5,7題。
絕對值與相反數(shù)教案篇七
1、略2、+3千米,-2千米3、3,5,8;4、2,±2.
【課堂重點】。
5、(1)非負(2)06、3。
7、第5個最標準,第6個誤差最小,第7個誤差最大.
【課后鞏固】。
2、(1)18.6(2)7.49(3)-(4)3、8.
絕對值與相反數(shù)教案篇八
本節(jié)課我首先復習相反數(shù)的知識,從一對相反數(shù)在數(shù)軸上的位置,自然引出它們距離原點相等。接著舉例:出租車從車站出發(fā),向南行了10千米,又從車站出發(fā)向北行了5千米。如果用正負數(shù)表示兩次運行的情況,需要先規(guī)定一個正方向,假設向北為正,則分別是-10千米和+5千米。可是要想知道這兩次運行中,出租車一共用了多少油,與方向還有關系嗎?該與什么有關呢?面對這些問題,學生紛紛說出,只與從出發(fā)點到目的地的距離有關。
我及時給予鼓勵,并在黑板上板書“距離”二字。
(1)3到原點的距離是3個單位長度。
(2)-3到原點的距離是3個單位長度。
這時,我問學生,“這句話文字太多,想不想簡化一下?”
學生齊答“想”!
“好,那么用三個字就可以代替這句話?!庇械膶W生已經(jīng)小聲說出了,是“絕對值”。
于是板書課題――絕對值。
接下來又問,“寫這三個字也有點麻煩,想不想再簡化一下?”
“想”,我看到學生已經(jīng)笑了,好像這是很好玩的事,越來越簡單了。于是我又及時給出符號“||”的寫法。
到此時,學生已經(jīng)明白“絕對值”就是“一個數(shù)到原點的距離”。學生自己總結出來了。
為了講清絕對值的意義,我設計了循序漸進的幾個例子。
(1)|-5|=(2)|7|=(3)|-1/3|=(4)|0|=。
當學生說出以上四個式子的結果后,又出示了第五個(5)|a|=。
很多學生沒有思考馬上就答出“等于a"。
針對學生的回答,我問“上節(jié)課,在學習相反數(shù)的時候,我告訴大家,字母可以表示哪些數(shù)?”
學生立即回答,“任意有理數(shù)”。那么這里的a也應該是任意有理數(shù)。
在此基礎上,我引導學生得出|a|的.三種情況。尤其當a0時,|a|=-a,讓學生明白,字母a中包含著一個看不見的“-”號。-a實際上是a的相反數(shù),也是一個正數(shù)。
就這樣,在我的預謀中,學生自然的明白了絕對值的意義,并學會了化簡絕對值的符號,也理解了非負數(shù)的含義。
再次面對初一的新生,我覺得很多非常熟悉的知識,可以用不同的說法讓學生理解,而且,教師一定要思路清晰。整個新知識的處理,要一氣呵成,讓學生在環(huán)環(huán)相扣的緊張狀態(tài)中,形成知識系統(tǒng),直到講完新課.
當所有的內(nèi)容已經(jīng)胸有成竹的時候,再來教給學生,竟然可以深入淺出,四兩拔千斤,尤其當你啟發(fā)點撥的到位,學生水到渠成的自己得出你想要講解的新課時,心里會有一種成就感,當然學生在不知不覺中自己掌握了新知識的主要內(nèi)容,他們也不會覺得難以接受。
絕對值與相反數(shù)教案篇九
一、學習與導學目標:
情感態(tài)度:通過創(chuàng)設情境,初步感悟?qū)W習絕對值的必要性,促進責任心的形成。
二、學程與導程活動:
a、創(chuàng)設情境(幻燈片或掛圖)。
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題……。
2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
b、學習概念:
1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)。
2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;。
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;。
(3)︱0︱=。(幻燈片)。
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導學生得出:(幻燈片)。
性質(zhì):一個正數(shù)的絕對值是它本身;。
如果用字母a表示有理數(shù),上述性質(zhì)可表述為:
當a是正數(shù)時,︱a︱=a;。
當a是負數(shù)時,︱a︱=-a;。
當a=0時,︱a︱=0。
解答課本p19/7及p15練習,由p19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負數(shù)的大小?
3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導閱讀p16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4-3-2-1012……。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉€量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用p19/6,8為素材)。
通過以上探究活動得到:正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);。
4、師生活動比較下列各對數(shù)的大?。簆17例,p18練習。
5、師生小結歸納(幻燈片)。
三、筆記與板書提綱:
1、幻燈片。
2、師生板演練習p15/1。
四、練習與拓展選題:
p19/4,5,9,10。
絕對值與相反數(shù)教案篇十
1、先畫一條數(shù)軸,在數(shù)軸上表示下列各數(shù)的點,并比較它們的大?。?BR> ―4,2.4,0,―,―3,1.
2、一天,汽車司機張師傅從車站出發(fā),沿東西方向行駛,規(guī)定向東為正,若向東行駛3千米,記作_____;若向西行駛2千米,記作_____.
3、數(shù)軸上表示數(shù)―3的點a到原點的距離是,表示數(shù)5的點b到原點的距離是,a、b兩點之間的距離是.
4、數(shù)軸上到原點的距離是2的點有個,表示的數(shù)是.
【課堂重點】。
1、小明的家在學校西邊3km處,小麗的家在學校東邊2km處.
(2)從數(shù)軸上看,哪家離學校較近?哪家離學校較遠?
2、數(shù)軸上表示一個數(shù)的點與原點的距離,叫做這個數(shù)的.用符號“”表示.
3、如圖,你能說出數(shù)軸上a、b、c、d、e、f各點所表示的數(shù)的`絕對值嗎?
4、學習教材21頁例題,完成“練一練”.
5、想一想:。
(2)絕對值最小的數(shù)是.
6、例3:某廠生產(chǎn)鬧鐘,從中抽取5件檢驗時,比標準時間多的記為正數(shù),比標準時間少的記為負數(shù),請根據(jù)下表,選出最準確的鬧鐘.
12345。
+2s-3.5s6s+7s-4s。
誤差不超過5秒的為合格品,否則為次品,問有幾臺合格?
7、練習:某車間生產(chǎn)一批圓形零件,從中抽取8件進行檢驗,比規(guī)定直徑長的毫米數(shù)記為正數(shù),比規(guī)定直徑短的毫米數(shù)記為負數(shù),檢查記錄如下:。
12345678。
+0.3-0.2-0.3+0.40-0.1-0.5+0.3。
指出第幾個零件最標準?最接近標準的是哪個零件?誤差最大的是哪個零件?
8、通過本節(jié)課的學習,你有什么收獲?
【課后鞏固】。
|0|=_____,|9|=______,|-2|=________;。
(3)若|x|=6,則x=__________;。
(4)在數(shù)軸上點a表示-,點b表示,則點___________離原點的距離近些.
2、計算:
(1)|―3|×|―6.2|(2)|―5|+|―2.49|。
(3)―|―|(4)|―|÷||。
絕對值與相反數(shù)教案篇十一
一、教學目標:
1、掌握絕對值的概念,有理數(shù)大小比較法則。
2、學會絕對值的計算,會比較兩個或多個有理數(shù)的大小。
3、體驗數(shù)學的概念、法則來自于實際生活,滲透數(shù)形結合和分類思想。
二、教學難點:
兩個負數(shù)大小的比較。
三、知識重點:
絕對值的概念。
四、教學過程:
(一)設置情境。
1、引入課題。
星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正:
(1)用有理數(shù)表示黃老師兩次所行的路程。
(2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
2、學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關。
3、觀察并思考:
畫一條數(shù)軸,原點表示學校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離。
4、學生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數(shù)的正負性無關;一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|。
例如,上面的問題中|20|=20,|―10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負數(shù)表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關注它們所表示的意義。為引入絕對值概念做準備。使學生體驗數(shù)學知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數(shù)形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備。
(二)合作交流。
1、探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
―3,5,0,+58,0.6。
2、要求小組討論,合作學習。
3、教師引導學生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結合相反數(shù)的意義,最后總結得出求絕對值法則。
(三)鞏固練習。
1、其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數(shù)和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別。求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例。學生能做的盡量讓學生完成,教師在教學過程中只是組織者。本著這個理念,設計這個討論。
2、結合實際發(fā)現(xiàn)新知引導學生看教科書第16頁的圖,并回答相關問題:
(1)把14個氣溫從低到高排列。
(2)把這14個數(shù)用數(shù)軸上的點表示出來。
3、觀察并思考:
(2)學生交流后,教師總結:
14個數(shù)從左到右的順序就是溫度從低到高的順序:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。
4、想象練習:
想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)―100和―90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關系。要求學生在頭腦中有清晰的圖形。讓學生體會到數(shù)學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。
數(shù)在大小比較法則第2點學生較難掌握,要從絕對值的意義和數(shù)軸上的.數(shù)左小右大這方面結合起來來了解,所以配置想象練習,加強數(shù)與形的想象。
5、課堂練習例2,比較下列各數(shù)的大小。
比較大小的過程要緊扣法則進行,注意書寫格式。
6、練習:第18頁練習。
(三)小結與作業(yè)。
課堂小結怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大???
(四)本課作業(yè)。
1、必做題:教產(chǎn)書第19頁習題1,2,第4,5,6,10。
2、選做題:教師自行安排。
五、本課教育評注。
1、情景的創(chuàng)設出于如下考慮:
(1)體現(xiàn)數(shù)學知識與生活實際的緊密聯(lián)系,讓學生在這些熟悉的日常生活情境中獲得數(shù)學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣。
(2)教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉化為形來解釋,是難點),然后通過練習歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受。
2、一個數(shù)絕對值的法則,實際上是絕對值概念的直接應用,也體現(xiàn)著分類的數(shù)學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3、有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,幫助學生建立數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小這個數(shù)形結合的模型。為此設置了想象練習。
4、本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學內(nèi)容很多,學生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學。
絕對值與相反數(shù)教案篇十二
一、學習與導學目標:
情感態(tài)度:通過創(chuàng)設情境,初步感悟?qū)W習絕對值的必要性,促進責任心的形成。
二、學程與導程活動:
a、創(chuàng)設情境(幻燈片或掛圖)。
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題……。
2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
b、學習概念:
1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)。
2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;
(3)︱0︱=。(幻燈片)。
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導學生得出:(幻燈片)。
性質(zhì):一個正數(shù)的絕對值是它本身;
一個負數(shù)的絕對值是它的相反數(shù);
如果用字母a表示有理數(shù),上述性質(zhì)可表述為:
當a是正數(shù)時,︱a︱=a;。
當a是負數(shù)時,︱a︱=-a;。
當a=0時,︱a︱=0。
解答課本p19/7及p15練習,由p19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負數(shù)的大???
3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導閱讀p16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4-3-2-1012……。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉€量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用p19/6,8為素材)。
通過以上探究活動得到:正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);
兩個負數(shù),絕對值大的反而小。
4、師生活動比較下列各對數(shù)的大小:p17例,p18練習。
5、師生小結歸納(幻燈片)。
三、筆記與板書提綱:
1、幻燈片。
2、師生板演練習p15/1。
四、練習與拓展選題:
p19/4,5,9,10。
絕對值與相反數(shù)教案篇十三
(一)?教學內(nèi)容:
《絕對值》是七年級數(shù)學教材上冊1.2.4節(jié)內(nèi)容,此前,學生已經(jīng)學習了有理數(shù)的分類,數(shù)軸與相反數(shù)等基礎知識,為本課學習的基礎。絕對值不僅可以使學生加深對有理數(shù)的認識,還會為以后學習兩個負數(shù)的大小比較以及有理數(shù)的運算做準備。所以本課在有理數(shù)一章起到承上啟下的作用。
(二)教學目標:
根據(jù)數(shù)學課程內(nèi)容標準要求及教學內(nèi)容的特點,以及學生的認知水平,確定本節(jié)課的教學目標如下:
1,理解、掌握絕對值概念.體會絕對值的作用與意義;
2,能正確求出一個數(shù)的絕對值;
(三)教學重、難點分析:
教學重點:掌握絕對值的概念會求已知數(shù)的絕對值.
教學難點:掌握有理數(shù)的概念及分類。
(四)教學輔助手段。
利用多媒體(實物投影)、學案進行輔助教學。
第二部分:教學設計。
教學過程。
師生互動。
設計意圖。
一、創(chuàng)設情境、引入新課。
二、合作交流、探索新知。
問題1:什么叫做絕對值?
怎么用數(shù)學符號表示一個數(shù)的絕對值?
問題2:互為相反數(shù)的絕對值的關系怎樣?
問題3:正數(shù)的絕對值是什么數(shù)?零的絕對值是什么數(shù)?負數(shù)的絕對值是什么數(shù)?
問題4:設?a表示一個數(shù),?|a|等于什么?
三、拓展提高、應用鞏固。
1.判斷下列說法是否正確:
(1)符號相反的數(shù)互為相反數(shù)(??).
(2)符號相反且絕對值相等的數(shù)互為相反數(shù)(??)。
(3)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上越靠右.(??)。
(4)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離遠點越遠.(??)。
2.??求下列各數(shù)的絕對值:?,,0,,.
四、?概括總結、布置作業(yè)。
課堂小結:
1、?本節(jié)課收獲:由學生進行總結,其他同學幫忙補充,教師提示。
2、?對于本節(jié)課的知識,如果還有不明白的地方請?zhí)岢鰜恚瑢W和老師共同幫助解決。
布置作業(yè):
課本p11第1,2,3,??。
教師展示投影,甲乙兩車相向而行問題?,學生在學案上畫出數(shù)軸,并根據(jù)學案的要求,思考甲乙兩車行駛的距離引出的三個問題。
本環(huán)節(jié)教師關注重點:
學生能否區(qū)分方向和距離的不同。
學生能夠理解從距離角度看數(shù)即絕對值的意義。
學生口頭回答老師的問題。
對絕對值意義理解后教師讓學生用自己的語言概括絕對值的定義?
學生相互討論發(fā)言,教師進行補充并板書在黑板上,給出絕對值的數(shù)學符號書寫規(guī)范。
學生鞏固練習。
本環(huán)節(jié)教師關注重點:
學生是否正確理解了絕對值的概念并自己概括出來。
通過以下表格內(nèi)容:
數(shù)值。
-3。
-2。
2
3
絕對值。
讓學生填寫表格后并通過表格小組討論這些數(shù)能發(fā)現(xiàn)哪些規(guī)律?
學生進行小組討論共同分析總結,得出組內(nèi)結論。
本環(huán)節(jié)教師關注重點:
學生能否從正負數(shù)的角度看數(shù)的絕對值。
組織好小組討論,使小組能真正發(fā)揮作用。
教師根據(jù)小組結論內(nèi)容進行提問,得出絕對值的規(guī)律。
教師提醒和引導從正負數(shù)零的角度來思考。
學生小組討論后教師進行補充。
給學生2分鐘時間完成習題。
學生完成后,教師在黑板上進行板演寫出完整的解題過程。
學生獨立完成,找兩名學生到黑板進行板演,對比過程的書寫并由學生進行糾錯,總結出完成的解題過程。
計算結果正確的學生舉手示意教師;
本環(huán)節(jié)教師關注重點:
(1)?學生對于絕對值概念的掌握及靈活應用。
(2)?培養(yǎng)學生的分類的數(shù)學思維。
有本題引出下節(jié)課所要研究的重點內(nèi)容。
本環(huán)節(jié)教師關注重點:
(1)?注重學生數(shù)學思維的形成。
(2)?提高學生的解題能力。
學生總結本節(jié)課內(nèi)容后,小組間互相提問,看哪組將問題處理的正確、清晰。
用一個小情境讓學生在興趣中體驗絕對值所代表的距離的意義,有實際問題引出絕對值的概念。
讓學生通過實際的意義來正確的了解絕對值的概念,并通過討論自己發(fā)表對絕對值概念的理解,發(fā)散學生的思維。
讓學生通過自主學習找答案,觀察數(shù)的規(guī)律自己總結不同數(shù)的絕對值的規(guī)律,提高學生的觀察力和思考能力。
讓學生自己總結,既鍛煉學生的語言表達能力,又能加深學生對知識的掌握和理解。培養(yǎng)學生的數(shù)學語言及分類的數(shù)學思維。
通過習題加深學生的記憶和對絕對值的概念的掌握。
通過總結和提問幫助學生記憶本節(jié)課知識點,并加深理解,進行實際運用。
絕對值與相反數(shù)教案篇十四
3,體驗分類是數(shù)學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類。
知識重點正確理解有理數(shù)的概念。
教學過程(師生活動)設計理念。
探索新知在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類。
學生思考討論和交流分類的情況。
學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵。
例如,
對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù),,.??…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))。
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念。
看書了解有理數(shù)名稱的由來。
“統(tǒng)稱”是指“合起來總的名稱”的意思。
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會。
練一練1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流。
2,教科書第10頁練習。
此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明。
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號。
思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學時,要讓學生總結已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇?,逐步得到如下的分類表?BR> 有理數(shù)這個分類可視學生的程度確定是否有必要教學。
小結與作業(yè)。
課堂小結到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業(yè)1,必做題:教科書第18頁習題1.2第1題。
2,教師自行準備。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概。
念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進。
行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視。關于分類標準與分。
類結果的關系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
課題:1.2.2數(shù)軸。
教學目標1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關系;
3,感受在特定的條件下數(shù)與形是可以相互轉化的,體驗生活中的數(shù)學。
教學難點數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)。
知識重點。
教學過程(師生活動)設計理念。
設置情境。
引入課題教師通過實例、課件演示得到溫度計讀數(shù)。
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)。
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。
點表示數(shù)的感性認識。
點表示數(shù)的理性認識。
合作交流。
探究新知教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
從而得出數(shù)軸的三要素:原點、正方向、單位長度體驗數(shù)形結合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。
尋找規(guī)律。
歸納結論問題3:
1,你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
3,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4,每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
(小組討論,交流歸納)。
歸納出一般結論,教科書第12的歸納。這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習。
教科書第12頁練習。
小結與作業(yè)。
課堂小結請學生總結:
1,數(shù)軸的三個要素;
2,數(shù)軸的作以及數(shù)與點的轉化方法。
本課作業(yè)1,必做題:教科書第18頁習題1.2第2題。
2,選做題:教師自行安排。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1,數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。
3,注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。
絕對值與相反數(shù)教案篇十五
1、理解反義詞的意義。
2、能根據(jù)畫面內(nèi)容說出相應的名詞、數(shù)量詞及成反對的反義詞,再將他們適當?shù)亟M合在一起,編成一首兒歌。
3、體驗幫助他人的快樂,培養(yǎng)幼兒樂于助人的品質(zhì)。
課前練習數(shù)量詞的運用、多媒體課件。
1、師生問好,請幼兒說說什么是反義詞。(意思相反的詞)。
2、游戲:聽節(jié)奏,說反義詞。
3、創(chuàng)設情境:毛毛蟲迷路的,翅膀也不見了,需要找到翅膀回家。引起幼兒興趣。
毛毛蟲請教仙女,仙女請幼兒幫助毛毛蟲,說出每間房子的密語,打開房子,找到里面的東西才能找到翅膀。激發(fā)幼兒幫助他人的熱情。
4、發(fā)現(xiàn)第一間房子,觀察畫面,提問:
(1)你看到了什么?(大象和鳥)。
(2)它們的數(shù)量是多少呢?我們該怎么說呢?
(3)我們用剛才說的話試試,(一頭大象一只鳥)發(fā)現(xiàn)不能打開門。
(4)我們看看大象身體跟鳥的身體有什么不同?(大、?。?BR> (5)我們可以用反義詞大、小來形容,可以說“一個大,一個小”。
(6)我們把這兩句話合起來試試。(一個大,一個小,一頭大象一只鳥)。
(7)發(fā)現(xiàn)門能打開,教師總結:要說出一對反義詞,并把圖上的內(nèi)容說出來。
5、發(fā)現(xiàn)第二間房子,觀察畫面,提問:
(1)你看到他們在干什么?(騎車、走)。
(2)數(shù)量是多少呢?我們該怎么說呢?(一人騎車,一人走)。
(3)我們再看看騎車的人騎到哪里了?(前面)走的呢?(后面)。
(4)那我們可以說“一個前,一個后”把兩句合起來說:“一個前,一個后,一人騎車一人走”
(5)教師總結:要把反義詞說在前,內(nèi)容說在后。
6、發(fā)現(xiàn)第三間房子,觀察圖片,提問:
(1)你們看到圖上有什么?我們該怎么說呢?
(2)這一捆韭菜有多少根呢?那草呢?韭菜多還是草多呢?我們可以怎么說呢?(一個多,一個少)。
(3)把兩句話合起來說。(一個多,一個少,一捆韭菜一根草)。
(4)鼓勵幼兒。
7、發(fā)現(xiàn)第四間房子,觀察圖片,提問:
(1)你發(fā)現(xiàn)他們相反的地方了嗎?我們該怎么說?(一個黑,一個白)。
(2)把你看到的動物加上去說。(一個黑,一個白,一只烏鴉一只鵝)。
8、發(fā)現(xiàn)第五間房子,觀察圖片,提問:
(1)圖上有什么動物?(一頭肥豬一只猴)。
(2)你發(fā)現(xiàn)了他們的身體有什么不同?引導幼兒說出“一個胖,一個瘦”
(3)請幼兒把兩句話連起來說。
9、發(fā)現(xiàn)第六間房子,觀察圖片,提問:
(1)小朋友們,看了這幅圖,你知道該怎么說了嗎?
(2)引導幼兒說出“一個長,一個短,一根竹竿一把傘”
10、打開了所有的房間,拿到了6個數(shù)字,還是沒有找到翅膀,請仙女幫忙。(看課件)。
11、請幼兒看圖片,引導幼兒把圖片連起來,編成一首兒歌。
12、幫助毛毛蟲找到了翅膀,體驗幫助他人的快樂。
13、邀請幼兒和蝴蝶一同飛舞。
活動延伸:請幼兒畫出美麗的蝴蝶,并展示作品。
絕對值與相反數(shù)教案篇十六
一教材分析:
教材所處的地位及作用:
本節(jié)課選自新人教版七年級數(shù)學上冊§1.2節(jié),是學生進入初中階段后,在學習了正、負數(shù)、數(shù)軸以及相反數(shù)的基礎上,對絕對值進行探究、學習的一個課題。絕對值是本章的一個重點,是比較有理數(shù)大小的又一工具,也是以后學習有理數(shù)混和運算的基礎。另外,這一節(jié)課與前面所學的知識有千絲萬縷的聯(lián)系:絕對值的幾何意義是在數(shù)軸的基礎上得出的,代數(shù)意義又是運用前面所學的相反數(shù)知識來解決的。因此,這節(jié)課是一節(jié)承上啟下的課。
二學情分析:
七年級學生剛剛跨入少年期,他們在身體發(fā)育、知識經(jīng)驗、心理品質(zhì)方面,依然保留這小學生的天真活潑、對新生事物很感興趣,求知欲望強、具有強烈的好奇心與求知欲,直觀思維已比較成熟,但理性思維的發(fā)展還很有限,于是我用學生常見的行程問題導入這節(jié)課。
三教學目標:
知識目標:
(1)是學生掌握有理數(shù)的絕對值概念及表示方法。
(2)使學生熟練掌握有理數(shù)絕對值的求法和有關計算問題。
能力目標:
(1)在絕對值概念形成的過程中,滲透數(shù)形結合等思想方法,并注意培養(yǎng)學生的概括能力(2)能根據(jù)一個數(shù)的絕對值表示“距離”,初步理解絕對值的概念。
(3)給出一個數(shù),能求出它的絕對值。
情感態(tài)度與價值觀:
從上節(jié)課學的相反數(shù)到本節(jié)的絕對值,使學生感知數(shù)學知識具有普遍的聯(lián)系性。
四教學重點、難點:
根據(jù)學生的實際和本節(jié)課的要求,確定以下重、難點:
重點:給出一個數(shù)會求它的絕對值。
難點:絕對值的幾何意義,代數(shù)意義的導出;負數(shù)的絕對值是它的相反數(shù)。
五教學方法與教學手段:
教法分析:
基于本節(jié)課內(nèi)容的特點和七年級學生的心理特征,我在我在教學中選擇互動是學習模式,與學生建立平等融洽的關系,營造自主探究與合作交流的氛圍,共同演示、操作、觀察、練習等活動中運用多媒體來提高教學效果,驗證結論,激發(fā)學生學習興趣。
學法分析:
教學過程是師生互相交流的過程,教師起引導作用,學生在教師的啟發(fā)下充分發(fā)揮主體性作用。結合七年級學生的特點,讓學生自己通過觀察、類比、猜想、歸納,共同探討交流,利用課件和圖片自主探索等方式,激發(fā)學習興趣,培養(yǎng)應用意識和發(fā)散思維。
六教學過程:
創(chuàng)設情境。
2)它們行駛的路程的遠近相同嗎?
思考:-8與8是相反數(shù),把它們在數(shù)軸上表示出來,它們有什么相同之處和不同之處?(讓學生充分發(fā)揮主體作用,()從自己的視點去觀察、歸納、總結得出絕對值的幾何意義。)2、形成概念:一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absoutevalue),記作:|a|.
3、例題講解。
例1求下列各數(shù)的絕對值。
-19,0,-2.3,+0.56,-6,+6,。
練習:求下列各數(shù)的絕對值。
|9||-2.5||-9||2.5||0|議一議:上述各數(shù)的絕對值與這些數(shù)本身有什么關系?(通過練習求三種類型數(shù)的絕對值,得出絕對值的代數(shù)意義。)4、引出法則:正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
議一議:
(1)當a是正數(shù)(a0)時,|a|=____;。
(2)當a是負數(shù)(a0)時,|a|=__;。
(3)當a=0時,(a=0)時|a|=__.
想一想:
(1)絕對值是3的數(shù)有幾個?各是什么?
(2)絕對值是0的數(shù)有幾個?各是什么?
(3)絕對值是-2的數(shù)是否存在?若存在,請說出來?
判斷。
(1)+7的絕對值與-7的絕對值互為相反數(shù)。()(2)既不是正數(shù)也不是負數(shù)的有理數(shù)的絕對值是零。()(3)數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點與原點的距離。()(4)絕對值最小的數(shù)是0.()。
如何求一個數(shù)的絕對值。
作業(yè)布置。
必做題:
寫出下列各數(shù)的絕對值:
-125,+23,-3.5,0,-0.05。
上面的數(shù)中那個數(shù)的絕對值最大?那個數(shù)的絕對值最?。?BR> 選做題:(通過這一活動可以拓寬學生的知識視野,1、讓學生了解一點分類討論的思想;2、把所學應用于生活)1、已知|x|=3,|y|=4,求x+y的值。
2、正式排球比賽對所用的排球重量是有嚴格規(guī)定的,現(xiàn)檢查5個排球的重量,超過規(guī)定重量的克數(shù)記作正數(shù),不足規(guī)定重量的克數(shù)記作負數(shù),檢查結果如下表:
+15。
-10。
+30。
-20。
-40。
問題:
(1)指出哪個排球的質(zhì)量好一些(即重量最接近規(guī)定質(zhì)量)?
絕對值與相反數(shù)教案篇十七
師:字母可表示任意的數(shù),可以表示正數(shù),也可以表示負數(shù),也可以表示0.
教師引導學生用數(shù)學式子表示正數(shù)、負數(shù)、0,并再提問:這時的絕對值分別是多少?
學生活動:分組討論,教師加入討論,學生互相補充回答。
教師板書:
師強調(diào):這種表示方法就相當于前面三句話,比較起來后者更通俗易懂。
【教法說明】用字母表示規(guī)律是難點。這時教師放手,讓學生有目的地考慮、分析,共同得出結論。
(四)歸納小結。
師:這節(jié)課我們學習了絕對值。
(1)一個數(shù)的絕對值是在數(shù)軸上表示這個數(shù)的點到原點的距離;(2)求一個數(shù)的絕對值必須先判斷是正數(shù)還是負數(shù)。
回顧反饋:
(出示投影2)。
1.-3的絕對值是在_____________上表示-3的點到__________的距離,-3的絕對值是____________.
2.絕對值是3的數(shù)有____________個,各是___________;絕對值是2.7的數(shù)有___________個,各是___________;絕對值是0的數(shù)有____________個,是____________.
八、隨堂練習。
1.判斷題。
(1)數(shù)的絕對值就是數(shù)軸上表示數(shù)的點與原點的距離()(2)負數(shù)沒有絕對值()。
2.填表。
九、布置作業(yè)。
課本第50頁2、4.
絕對值與相反數(shù)教案篇十八
(1)掌握與()型的絕對值不等式的解法。
(2)掌握與()型的絕對值不等式的解法。
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結合的能力;
設計。
在將看成一個整體的關鍵處點撥、啟發(fā),使學生主動地進行練習。
繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤。
三、課堂練習。
解下列不等式:
(1);
筆答。
(1);
檢查落實情況。
四、小結。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集。
或型的絕對值不等式,若把看成一個整體一個字母,就可以歸結為或型絕對值不等式的解法。
五、作業(yè)。
1、閱讀課本含絕對值不等式解法。
2、習題2、3、4。
1、抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎。
2、在解與絕對值不等式中的關鍵處設問、質(zhì)疑、點撥,讓學生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學生解題能力的目的。
3、針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力。
絕對值與相反數(shù)教案篇十九
蘇軾,北宋大文學家、書畫家。字子瞻,號東坡居士,眉山(今屬四川)人。蘇洵子,蘇轍兄。嘉佑進士。北宋中期的文壇領袖,文學巨匠,唐宋八大家之一。其文縱橫恣肆,其詩題材廣闊,清新豪健,善用夸張、比喻,獨具風格。詞開豪放一派,與辛棄疾并稱“蘇辛”,有《東坡全集》、《東坡樂府》。
3、《浣溪沙》上闕寫景,描繪了哪三幅畫面?畫面有何特點?山下小溪邊,長著矮小嬌嫩的蘭草,山上松間沙路潔凈無塵,黃昏時瀟瀟細雨中杜鵑在啼叫。畫面清新優(yōu)美,淡雅寧靜。
4、下闕轉入抒懷,抒發(fā)了怎樣的情懷?由西流的溪水,想到青春可以永駐,大可不必為日月變遷、人生衰老而嘆息。表現(xiàn)了積極進取的人生態(tài)度。
5、作者寫此詞時,正是在政治上失意,生活處于逆境之時,能有如此積極的人生觀,豁達的胸懷,實在難能可貴。
6、齊讀并背誦這首詞。
學習《赤壁》。
1、教師范讀,學生跟讀。
2、簡介作者并解題。
杜牧(803-852)唐代詩人。字牧之,京兆萬年人。太和進士,和李商隱并稱“小李杜”。赤壁是東漢末年周瑜大敗曹操的地方,但杜牧所詠赤壁并非此處,而是湖北黃岡的赤鼻磯,所以說此詩雖為詠史詩,其實也是借題發(fā)揮。
3、《赤壁》開頭為什么從一把不起眼的折戟寫起,這樣寫有何作用?
與古代戰(zhàn)爭聯(lián)系起來,很自然的引起后文對歷史的詠嘆。但是,這兩句的作用主要不在于作為詩的引導,它本身也蘊涵著強烈的意念活動。沙里沉埋著鐵戟,點出此地曾有過歷史風云。折戟沉沙而仍未銷蝕,又暗寓歲月流逝而物存人非之慨。凡是在歷史上留下蹤跡地人物、事件,常會被無情地時光銷蝕掉,也易從人們的記憶中消逝,就像這鐵戟一樣沉淪埋沒,但又常因偶然的'機會被人記起,或引起懷念,或勾起深思。正由于發(fā)現(xiàn)了這片折戟,使詩人心緒無法平靜,因此他要磨洗并辨認一番,發(fā)現(xiàn)原來是“前朝”三國赤壁之戰(zhàn)時的遺物。因此,“認前朝”又進一步勃發(fā)了作者浮想聯(lián)翩的思緒,為后二句論史抒懷做了鋪墊。
4、全詩最精彩的是久為人們傳誦的末二句,這兩句議論感慨抒發(fā)了作者怎樣的思想感情?
這兩句詩人發(fā)表議論,“東風”不僅僅指的是自然界的風,而是含有建功立業(yè)各種條件和因素。曲折的反映出詩人的抑郁不平和豪爽胸襟??畤@歷史上英雄成名的機遇,是因為他自己生不逢時,有政治軍事才能而不得一展。似乎又有另一層意思:只要有機遇,相信自己總會有所作為,顯示出一種逼人的英氣。
5、齊讀、背誦。
四、課堂練習。
課后練習:對對子。
出:白對:黑出:來對:去出:美對:丑出:是對:非出:藍天對:白云。
五、布置作業(yè)。
1、背誦并默寫五首詩詞。
2、完成課后練習四作者郵箱:xxx。
絕對值與相反數(shù)教案篇二十
1.引導幼兒初步用各種感官感知物品,通過比較能初步理解反義詞的含義.
2.鼓勵幼兒積極動腦找出圖片中的反義詞,并能準確的說出反義詞組.3.培養(yǎng)幼兒對漢字的興趣,并認識漢字大小,高矮,多少,長短.
1.通過教師展示各種相反實物,并對其感知感官,能準確的回答來勢提出的問題,初步理解反義詞的含義.
2.幼兒通過對圖片的觀察,能夠掌握找朋友游戲,并能融入其中.
1.活動圖片若干份(有相反意思)。
2.大小,高矮,多少,長短字卡.
3.大小皮球各一個,高矮房子積木各一個,裝有多,少書的籃子各一個,長短子各一把.
小朋友們好,我是小兔子姐姐,今天我代表相反國國王帶領你們。
去相反國參觀,想不想去呀?(想)好,那么請跟我來.(走到教室門口即“相反國”)相反國到了,小朋友跟我一起去參觀吧!
1.從神秘的柜子里變出大小皮球,引導幼兒自己發(fā)現(xiàn)皮球大小的特。
征,從而引出“大”“小”第一對相反詞,并請幼兒認讀.
2.從神秘的柜子里變出高矮不一的兩座房子積木,引導幼兒自。
己發(fā)現(xiàn)房子高矮的特征,從而引出“高”“矮”第二對相反詞,并請幼兒認讀.
3.從神秘的柜子里變出裝有多,少書的籃子各一個,引導幼兒自己發(fā)現(xiàn)書本多少的特征,從而引出“多”“少”第三對相反詞幼兒認讀.
4.從神秘的柜子里變出長多尺子各一把.引導幼兒自己發(fā)現(xiàn)尺。
子長短的特征,從而引出“長”“短”第四對相反詞,并請幼兒認讀.
1.在幼兒理解相反的含義及初步認識相反詞之后,只要老師說出一個詞,幼兒就要說出它的相反詞.在這個對答的游戲中,加深鞏固所學的知識,做到幼互動.
2.教師給每位幼兒都發(fā)上事先準備好的相反意思圖片,再請幼兒找出與自己的圖片意思相反圖片的主人做好朋友.通過這一環(huán)節(jié)使幼兒與幼兒互動,拓展了幼兒的思維.
兔子姐姐知道今晚用有邀請涵—(相反意思圖片)的小朋友就能參。
加相反國王的“相反好朋友”晚會.現(xiàn)在給你們發(fā)圖片自己去找找圖片的相反好朋友吧!
絕對值與相反數(shù)教案篇二十一
借助于數(shù)軸理解相反數(shù)和絕對值的概念,會求一個數(shù)的絕對值,能借助絕對值比較兩個負數(shù)的大小。
【過程與方法】。
通過自主探索、小組討論、合作交流探索得到絕對值的過程,培養(yǎng)學生發(fā)現(xiàn)和解決問題的能力,鍛煉學生合作交流的意識。
【情感態(tài)度與價值觀】。
體會到數(shù)學和生活之間的聯(lián)系,提升學生學習數(shù)學的自信心和樂趣。
二、教學重難點。
【教學重點】。
【教學難點】。
求一個數(shù)的絕對值和相反數(shù);借助絕對值比較負數(shù)間的大小。
三、教學過程。
(一)引入新課。
教師回顧舊知并提問:上節(jié)課學習了哪些知識?
預設:學習了數(shù)軸,知道了有理數(shù)都可以用數(shù)軸上的點來表示。
多媒體出示,3與-3,5和-5等數(shù)字,再次提出問題:這些數(shù)有什么相同點,你能找到這些數(shù)在數(shù)軸上的位置嗎?引出新課。
(二)探索新知。
學生自主觀察,并寫出幾組類似的數(shù)字。
絕對值與相反數(shù)教案篇二十二
(1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負數(shù)的大小。
(2)、通過應用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法目標:
(3)、通過對“做一做”“議一議”“試一試”的交流和討論,培養(yǎng)學生有條理地用語言表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。
1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)。
2.在組長的組織下進行討論、交流。(約5分鐘)。
3、小組分任務展示。(約25分鐘)。
4、達標檢測。(約5分鐘)。
5、總結(約5分鐘)。
(一)、溫故知新:。
(二)小組合作交流,探究新知。
1、觀察下圖,回答問題:(五組完成)。
大象距原點多遠?兩只小狗分別距原點多遠?
歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:4的絕對值記作,它表示在上與的距離,所以|4|=。
2、做一做:
(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2。
(2)、求下列各組數(shù)的絕對值:(一組完成)。
(1)4,-4;。
(2)0.8,-0.8;。
從上面的結果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)。
你能從中發(fā)現(xiàn)什么規(guī)律?
小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)。
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。
5:做一做:(三組完成)。
1、
(1)在數(shù)軸上表示下列各數(shù),并比較它們的大小:
-3,-1。
(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。
(3)你發(fā)現(xiàn)了什么?
2、比較下列每組數(shù)的大小。
(1)-1和–5;(五組完成)。
(2)-8和-3(七組完成)。
5和-2.7(六組完成)。
1、填空:
絕對值是10的數(shù)有()。
|+15|=()|–4|=()。
|0|=()|4|=()。
2、判斷。
(1)、絕對值最小的數(shù)是0。()。
(2)、一個數(shù)的絕對值一定是正數(shù)。()。
(3)、一個數(shù)的絕對值不可能是負數(shù)。()。
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()。
(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。
1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
2絕對值的性質(zhì):正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
3、會利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而小。
p50頁,知識技能第1,2題。
絕對值與相反數(shù)教案篇二十三
1、能借助數(shù)軸初步理解絕對值的概念,會求一個數(shù)的絕對值。
2、正確理解絕對值的代數(shù)意義和幾何意義,滲透數(shù)形結合與分類討論思想。重點和難點:理解絕對值的概念,能求一個數(shù)的絕對值。
任務一、復習舊知:
1、什么叫互為相反數(shù)?在數(shù)軸上表示互為相反數(shù)的兩點和原點的位置關系怎樣?
2、數(shù)軸上與原點的距離是2的點表示的數(shù)有_____個,他們表示的數(shù)是_____;與原點的距離是5的點有____個、任務二、新知理解:
1、自讀課本p11-p12,體會絕對值的意義。
a的絕對值記作_______,如5的絕對值記作______,結果是_____、
(2)|0|=_______;
絕對值的代數(shù)意義:(1)一個正數(shù)的絕對值是__________;。
(2)一個負數(shù)的絕對值是___________(3)0的絕對值是___________。
上述可以用式子表示為:(1)當a是正數(shù)時,|a|=_______,
任務三:鞏固練習。
1、求下列各數(shù)的絕對值:?7。
12,?
110。
4、7510、5。
2.計算|-2|+|+8||34|?|?815。
||-20|?|?45|。
(2)如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身;(3)如果一個數(shù)的絕對值是它本身,那么這個數(shù)是正數(shù)(4)一個數(shù)的絕對值越大,表示它的'點在數(shù)軸上越靠右。歸納:(1)不論有理數(shù)a取何值,它的絕對值總是______。
(2)兩個互為相反數(shù)的絕對值____。能力提升:
4)若|a-2|=3,則a=______。
略

