初中數(shù)學(xué)有理數(shù)乘法教案(通用23篇)

字號:

    教案可以為教師提供教學(xué)所需的教學(xué)資源和學(xué)習(xí)材料。教案的編寫應(yīng)該注意教學(xué)資源的選擇和利用。以下是小編為大家收集的教案范例,供大家參考和學(xué)習(xí)。
    初中數(shù)學(xué)有理數(shù)乘法教案篇一
    能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算。
    經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學(xué)學(xué)習(xí)的方法。
    一、創(chuàng)設(shè)情境。
    小學(xué)里,我們學(xué)過加法和減法運算,引進負數(shù)后,怎樣進行有理數(shù)的加法和減法運算呢?
    1、試一試。
    你能把上面比賽的過程及結(jié)果用有理數(shù)的算式表示出來嗎?
    做一做:比賽中勝負難料,兩場比賽的結(jié)果還可能有哪些情況呢?動動手填表。
    你還能舉出一些應(yīng)用有理數(shù)加法的實際例子嗎?
    二、探究歸納。
    用數(shù)軸和算式可以將以上過程及結(jié)果分別表示為:
    算式:________________________。
    用數(shù)軸和算式可以將以上過程及結(jié)果分別表示為:
    算式:________________________。
    請用數(shù)軸和算式分別表示以上過程及結(jié)果:
    算式:________________________。
    仿照上面的做法,請在數(shù)軸上呈現(xiàn)下面的算式所表示的筆尖運動的過程和結(jié)果。
    4、觀察、思考、討論、交流并得出有理數(shù)加法法則。
    (1)通過計算說明小蟲是否回到起點p。
    (2)如果小蟲爬行的速度為0.5厘米/秒,那么小蟲共爬行了多長時間。
    1、高速公路養(yǎng)護小組,乘車沿東西向公路巡視維護,如果約定向東為正,向西為負,當天的行駛記錄如下(單位:km)。
    +17,-9,+7,-15,-3,+11,-6,-8,+5,+16。
    (1)養(yǎng)護小組最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?
    (2)養(yǎng)護過程中,最遠外離出發(fā)點有多遠?
    (3)若汽車耗油量為0.09升/km,則這次養(yǎng)護共耗油多少升?
    初中數(shù)學(xué)有理數(shù)乘法教案篇二
    2、使學(xué)生更多經(jīng)歷有關(guān)知識發(fā)生、規(guī)律發(fā)現(xiàn)過程。
    重點:對乘法運算法則的運用,對積的確定。
    難點:如何在該知識中注重知識體系的延續(xù)。
    有理數(shù)的乘法是小學(xué)所學(xué)乘法運算的延續(xù),也是在學(xué)習(xí)了有理數(shù)的加法法則與有理數(shù)的減法法則的基礎(chǔ)上所學(xué)習(xí)的,所以應(yīng)注意到各種法則間的必然聯(lián)系,在本節(jié)中應(yīng)注重學(xué)生學(xué)習(xí)的'過程,多讓學(xué)生經(jīng)歷知識、規(guī)律發(fā)現(xiàn)的過程。在學(xué)習(xí)中應(yīng)掌握有理數(shù)的乘法法則。
    1、知識基礎(chǔ):
    其一:小學(xué)所學(xué)過的乘法運算方法;
    其二:有關(guān)在加法運算中結(jié)果的確定方法與步驟。
    2、知識形成:
    (引例)一只小蟲沿一條東西向的跑道,以每分鐘3米的速度爬行。
    列式:
    即:小蟲位于原來出發(fā)位置的東方6米處。
    拓展:如果規(guī)定向東為正,向西為負。
    列式:
    即:小蟲位于原來出發(fā)位置的西方6米處。
    概括:把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
    3、設(shè)疑:
    如果我們把中的一個因數(shù)2換成它的相。
    反數(shù)-2時,所得的積又會有什么變化?
    當然,當其中的一個因數(shù)為0時,所得的積還是等于0。
    兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
    任何數(shù)與零相乘,都得零。
    例:計算:
    p52.1、2、3。
    本節(jié)課從實際情形入手,對多種情形進行分析,從一般中找到規(guī)律,從而得到有關(guān)有理數(shù)乘法的運算法則。在運算中應(yīng)強調(diào)注意如何正確得到積的結(jié)果。
    p57.1、2、3。
    1、小學(xué)數(shù)學(xué)都學(xué)過哪些乘法的運算律?
    2、在對有理數(shù)的簡便運算中,一般應(yīng)考慮到哪些可能的情況?
    初中數(shù)學(xué)有理數(shù)乘法教案篇三
    知識與能力:在現(xiàn)實背景中,理解有理數(shù)乘方的意義,掌握有理數(shù)乘方的運算。
    過程與方法:培養(yǎng)學(xué)生觀察、分析、比較、歸納、概括的能力,滲透轉(zhuǎn)化的思想。
    情感態(tài)度與價值觀:培養(yǎng)學(xué)生勤思,認真,勇于探索的精神,并聯(lián)系實際,加強理解,體會數(shù)學(xué)給我們的生活帶來的便利。
    教學(xué)重點:正確理解乘方的意義,掌握乘方的運算法則,進行有理數(shù)乘方運算。
    教學(xué)難點:正確理解乘方、底數(shù)、指數(shù)的概念并合理運算。
    教材分析:本節(jié)內(nèi)容從小學(xué)所學(xué)過的一個數(shù)的平方與立方出發(fā),介紹了乘方的概念,然后,結(jié)合有理數(shù)乘方的運算,講述了乘方的運算方法。跟這部分內(nèi)容有關(guān)聯(lián)的是后面“科學(xué)計數(shù)法”、“有理數(shù)的混合運算”等部分內(nèi)容。
    教學(xué)方法:
    教法:引導(dǎo)探索法、嘗試指導(dǎo)法,充分體現(xiàn)學(xué)生主體地位;。
    學(xué)法:學(xué)生觀察思考,自主探索,合作交流。
    教學(xué)用具:電腦多媒體。
    課時安排:一課時。
    教學(xué)過程:教學(xué)環(huán)節(jié)、教師活動、學(xué)生活動、設(shè)計意圖。
    創(chuàng)設(shè)情境:(出示珠穆朗瑪峰圖片)。
    引語:同學(xué)們,珠穆朗瑪峰高嗎?對,它的海拔有8848千米,可是將一張紙連續(xù)對折30次,會有12個珠穆朗瑪峰高,你們感覺神奇嗎?就讓我們帶著這份神奇走進數(shù)學(xué)課堂。要求學(xué)生折紙試驗,對折一次變成了幾層?對折2次變成了幾層?連續(xù)對折30次,應(yīng)該列一個怎樣的算式?對折100次呢?如果把這些式子寫出來,太麻煩,下面咱們一起來認識一位數(shù)學(xué)新朋友,相信他能幫你解決這個難題。
    板書課題:拿出課前準備好的紙,每個學(xué)生都試驗一下,思考回答問題。激情導(dǎo)入,激發(fā)學(xué)生的求知欲。
    揭示學(xué)習(xí)目標:電腦展示學(xué)習(xí)目標、學(xué)生感悟、使學(xué)生了解本節(jié)學(xué)習(xí)內(nèi)容。
    電腦展示:
    1.了解有理數(shù)乘方的概念。
    2.理解冪,指數(shù),底數(shù)。
    3.一個數(shù)本身可以看作這個數(shù)本身的次方。
    4.(-a)n與-an一樣嗎?為什么?
    電腦展示:
    1.把下列各式寫成乘方的形式,并指出底數(shù)和指數(shù)。
    (-3)×(-3)×(-3)×(-3)。
    -2×2×2×2×2×2×2。
    2.你自己能找到同樣的例子嗎?
    3.計算:(–2)3(–13)3-26。
    學(xué)生積極思考,相互交流討論,讓不同層次的學(xué)生發(fā)言。此組練習(xí)具有梯度性,可調(diào)動不同層次學(xué)生的積極性。
    完成下列計算:
    22232425。
    (-2)2(-2)3(-2)4(-2)5。
    觀察計算結(jié),想一想:正數(shù)冪的符號與指數(shù)有何關(guān)系?負數(shù)冪的符號與指數(shù)有何關(guān)系?
    學(xué)生對計算結(jié)果進行分析相互交流得出結(jié)論,把問題再次交給學(xué)生,充分發(fā)揮學(xué)生的主觀能動性,培養(yǎng)學(xué)生歸納、總結(jié)的能力。
    學(xué)生做作業(yè)。
    教學(xué)反思:本節(jié)課的教學(xué)設(shè)計采用:“先學(xué)后教,當堂訓(xùn)練”的教學(xué)模式。整個教學(xué)過程從思考問題到問題解決,學(xué)生自主學(xué)習(xí)貫穿始終,中間圍繞“自學(xué)-交流、更正-點撥、歸納”三個環(huán)節(jié)組織教學(xué),注重培養(yǎng)學(xué)生觀察、思考、交流歸納的能力。不足之處:在練習(xí)的講評上,應(yīng)給學(xué)生一個較為自由的空間,讓學(xué)生相互啟發(fā),相互交流。
    初中數(shù)學(xué)有理數(shù)乘法教案篇四
    數(shù)學(xué)學(xué)習(xí)是最看重基礎(chǔ)的,只有堅實的基礎(chǔ)才能夠做好每一道題目。那么今天小編就來為大家分享和總結(jié)一下關(guān)于初中數(shù)學(xué)有理數(shù)的乘方教案的相關(guān)信息,希望同學(xué)們能夠?qū)⑦@篇教案中的知識給總結(jié)清楚了。
    一、說教材。
    1、地位作用。
    有理數(shù)的乘方是初一年級上學(xué)期第一章第五節(jié)的教學(xué)內(nèi)容,是有理數(shù)的一種基本運算,從教材編排的結(jié)構(gòu)上看,共需要4個課時,此課為第一課時,是在學(xué)生學(xué)習(xí)了有理數(shù)的加、減、乘、除運算的基礎(chǔ)上來學(xué)習(xí)的,它既是有理數(shù)乘法的推廣和延續(xù),又是后繼學(xué)習(xí)有理數(shù)的混合運算、科學(xué)記數(shù)法和開方的基礎(chǔ),起到承前啟后、鋪路架橋的作用。在這一課的教學(xué)過程中,可以培養(yǎng)學(xué)生觀察問題、分析問題和解決問題的能力,以及轉(zhuǎn)化的數(shù)學(xué)思想,通過這一課的學(xué)習(xí),對培養(yǎng)學(xué)生的這些能力和轉(zhuǎn)化的數(shù)學(xué)思想起到很重要的作用。
    2、教學(xué)目標。
    (1)讓學(xué)生理解并掌握有理數(shù)的乘方、冪、底數(shù)、指數(shù)的概念及意義;能夠正確進行有理數(shù)的乘方運算。
    (2)在生動的情境中讓學(xué)生獲得有理數(shù)乘方的初步經(jīng)驗;培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力;經(jīng)歷從乘法到乘方的推廣的過程,從中感受轉(zhuǎn)化的數(shù)學(xué)思想。
    (3)讓學(xué)生通過觀察、推理,歸納出有理數(shù)乘方的符號法則,增進學(xué)生學(xué)好數(shù)學(xué)的自信心。
    (4)經(jīng)歷知識的拓展過程,培養(yǎng)學(xué)生探究的能力和動手操作的能力,體會與他人合作交流的重要性。
    3、教學(xué)重點:
    有理數(shù)的乘方、冪、底數(shù)、指數(shù)的概念及其相互間的關(guān)系;有理數(shù)乘方的運算方法。
    4、教學(xué)難點:
    有理數(shù)的乘方、冪、底數(shù)、指數(shù)的概念及其相互間的關(guān)系的理解。
    二、說教學(xué)方法。
    啟發(fā)誘導(dǎo)式、實踐探究式。
    三、說學(xué)法。
    根據(jù)初一學(xué)生好動、好問、好奇的心理特征,課堂上采取由淺入深的啟發(fā)誘導(dǎo),隨著教學(xué)內(nèi)容的深入,讓學(xué)生一步一步的跟著動腦、動手、動口,在合作交流中培養(yǎng)學(xué)生學(xué)習(xí)的積極性和主動性,使學(xué)習(xí)方式由“學(xué)會”變?yōu)椤皶W(xué)”。
    四、說教學(xué)手段。
    利用多媒體教學(xué),目的之一是使課堂生動、形象又直觀,能激發(fā)學(xué)生的學(xué)習(xí)興趣,目的之二是增大教學(xué)容量,增強教學(xué)效果。
    五、說教學(xué)設(shè)計。
    以上就是小編為大家分享和總結(jié)的關(guān)于初中數(shù)學(xué)有理數(shù)的乘方教案的相關(guān)信息,希望同學(xué)們能夠很好地將這一部分的知識給總結(jié)清楚,更好地為考試做準備。
    初中數(shù)學(xué)有理數(shù)乘法教案篇五
    1、知識目標:了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進行準確運算。
    2、能力目標:通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
    3、情感目標:培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。
    重點:有理數(shù)乘法運算法則的推導(dǎo)及熟練運用。
    難點:有理數(shù)乘法運算中積的符號的確定。
    1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?
    求幾個的運算,叫乘法。
    一個數(shù)同0相乘,得0。
    2、請你列舉幾道小學(xué)學(xué)過的乘法算式。
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
    可以列式為:(+2)(+3)=。
    問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
    可以列式為:
    問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
    可以表示為:
    問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
    可以表示為:
    2、觀察這四個式子:
    (+2)(+3)=+6(—2)(—3)=+6。
    (—2)(+3)=—6(+2)(—3)=—6。
    正數(shù)乘正數(shù)積為__數(shù):負數(shù)乘負數(shù)積為__數(shù):
    負數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負數(shù)積為__數(shù):
    乘積的絕對值等于各乘數(shù)絕對值的_____。
    思考:當一個因數(shù)為0時,積是多少?
    兩數(shù)相乘,同號得,異號得,并把絕對值。
    任何數(shù)同0相乘,都得。
    1、你能確定下列乘積的符號嗎?
    37積的符號為;(—3)7積的符號為;
    3(—7)積的`符號為;(—3)(—7)積的符號為。
    2先閱讀,再填空:
    (—5)x(—3)。同號兩數(shù)相乘。
    (—5)x(—3)=+()得正。
    5x3=15把絕對值相乘。
    所以(—5)x(—3)=15。
    填空:(—7)x4____________________。
    (—7)x4=—()___________。
    7x4=28_____________。
    所以(—7)x4=____________。
    [例1]計算:
    (1)(—5)(2)(—5)。
    (3)(—6)(—0.45)(4)(—7)0=。
    解:(1)(—5)(—6)=+(56)=+30=30。
    請同學(xué)們仿照上述步驟計算(2)(3)(4)。
    (2)(—5)6==。
    (3)(—6)(—0.45)==。
    (4)(—7)0=。
    讓我們來總結(jié)求解步驟:
    兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。
    1、小組口算比賽,看誰更棒。
    (1)3(—4)(2)2(—6)(3)(—6)2。
    (4)6(—2)(5)(—6)0(6)0(—6)。
    2、仔細計算。,注意積的符號和絕對值。
    (1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
    (4)(—2)(—)(5)(—)(—)(6)(—)5。
    1、下列說法錯誤的是()。
    a、一個數(shù)同0相乘,仍得0。
    b、一個數(shù)同1相乘,仍得原數(shù)。
    c、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)。
    d、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)。
    2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()。
    a、10b、12c、—20d、不是以上的答案。
    3、計算下列各題:
    (5)(—6)(—5)=;(6)(—5)(—6)=。
    初中數(shù)學(xué)有理數(shù)乘法教案篇六
    (二)能力訓(xùn)練目標:
    1、經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
    2、能運用乘法運算律簡化計算。
    (三)情感與價值觀要求:
    1、在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
    2、在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團隊意識。
    乘法運算律的運用。
    乘法運算律的運用。
    探究交流相結(jié)合。
    創(chuàng)設(shè)問題情境,引入新課。
    問題2:計算下列各題:
    (1)(一7)×8;。
    (2)8×(一7);
    (5)[3×(一4)]×(一5);
    (6)3×[(一4)×(一5)];
    [師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
    像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)。
    [師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
    [生]例如:5×[3十(一7)]和5×3十5×(一7);(略)。
    [師](一5)×(3一7)和(一5)×3一5×7的結(jié)果相等嗎?
    (注意:(一5)×(3一7)中的3一7應(yīng)看作3與(一7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)。
    講授新課:
    用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
    應(yīng)得出:
    1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
    2、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
    3、一般地,一個數(shù)同兩個數(shù)的'和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
    [師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
    3、用簡便方法計算:
    練習(xí)(教科書第42頁)。
    這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。
    課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
    用簡便方法計算:
    (1)6.868×(一5)十6.868×(一12)十6.868×(十17)。
    (2)[(4×8)×25一8]×125。
    初中數(shù)學(xué)有理數(shù)乘法教案篇七
    (二)能力訓(xùn)練目標:
    1.經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
    2.能運用乘法運算律簡化計算。
    (三)情感與價值觀要求:
    1.在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
    2.在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團隊意識。
    乘法運算律的運用。
    乘法運算律的運用。
    探究交流相結(jié)合。
    創(chuàng)設(shè)問題情境,引入新課。
    [活動1]。
    問題2:計算下列各題:
    (1)(-7)×8;。
    (2)8×(-7);。
    (5)[3×(-4)]×(-5);。
    (6)3×[(-4)×(-5)];。
    [師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
    像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)。
    [師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
    [生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
    [師](-5)×(3-7)和(-5)×3-5×7的結(jié)果相等嗎?
    (注意:(-5)×(3-7)中的3-7應(yīng)看作3與(-7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)。
    講授新課:
    [活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
    應(yīng)得出:
    1.一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等.
    2.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
    3.一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
    [活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
    3.用簡便方法計算:
    [活動4]。
    練習(xí)(教科書第42頁)。
    這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。
    課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
    用簡便方法計算:
    (1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
    (2)[(4×8)×25一8]×125。
    初中數(shù)學(xué)有理數(shù)乘法教案篇八
    5、本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
    本節(jié)的教學(xué)重點是能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習(xí)除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
    本節(jié)的難點是對有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。
    a·b=b·a;
    (a·b)·c=a·(b·c);
    (a+b)·c=a·c+b·c。
    1、有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
    2、兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”,絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法。
    3、基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
    4、幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
    5、小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。
    6、如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。
    初中數(shù)學(xué)有理數(shù)乘法教案篇九
    本次說課我共分成教材分析、教學(xué)方法與手段、教學(xué)過程分析和幾點思考四部分,具體內(nèi)容如下:
    (一)教材的地位和作用:本節(jié)課的內(nèi)容是《新人教版七年級數(shù)學(xué)》教材中的第一章第四節(jié),“有理數(shù)的乘除法”是把“有理數(shù)乘法”和“有理數(shù)除法”的內(nèi)容進行整合,在“有理數(shù)的加減混合運算”之后的一個學(xué)習(xí)內(nèi)容。在本章教材的編排中,“有理數(shù)的乘法”起著承上啟下的作用,它既是有理數(shù)加減的深入學(xué)習(xí),又是有理數(shù)除法、有理數(shù)乘方的基礎(chǔ),在有理數(shù)運算中有很重要的地位?!坝欣頂?shù)的乘法”從具體情境入手,把乘法看做連加,通過類比,讓學(xué)生進行充分討論、自主探索與合作交流的形式,自己歸納出有理數(shù)乘法法則。通過這個探索的過程,發(fā)展了學(xué)生觀察、歸納、猜測、驗證的能力,使學(xué)生在學(xué)習(xí)的過程中獲得成功的體驗,增強了自信心。所以本節(jié)課的學(xué)習(xí)具有一定的現(xiàn)實地位。
    (二)學(xué)情分析:因為學(xué)生在小學(xué)的學(xué)習(xí)里已經(jīng)接觸過正數(shù)和0的乘除法,對于兩個正數(shù)相乘、正數(shù)與0相乘、兩個正數(shù)相除、0與正數(shù)相除的情況學(xué)生已經(jīng)掌握。同時由于前面學(xué)習(xí)了有理數(shù)的加減法運算,學(xué)生對負數(shù)參與運算有了一定的認識,但仍還有一定的困難。另外,經(jīng)過前一階段的教學(xué),學(xué)生對數(shù)學(xué)問題的研究方法有了一定的了解,課堂上合作交流也做得相對較好。
    (三)教學(xué)目標分析:基于以上的學(xué)情分析,我確定本節(jié)課的教學(xué)目標如下。
    1、知識目標:讓學(xué)生經(jīng)歷學(xué)習(xí)過程,探索歸納得出有理數(shù)的乘除法法則,并能熟練運用。
    2、能力目標:在課堂學(xué)習(xí)過程中,使學(xué)生經(jīng)歷探索有理數(shù)乘除法法則的過程,發(fā)展觀察、猜想、歸納、驗證、運算的能力,同時在探索法則的過程中培養(yǎng)學(xué)生分類和歸納的數(shù)學(xué)思想。
    3、情感態(tài)度和價值觀:在探索過程中尊重學(xué)生的學(xué)習(xí)態(tài)度,樹立學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心,培養(yǎng)學(xué)生嚴謹?shù)臄?shù)學(xué)思維習(xí)慣。
    4、教學(xué)重點:會進行有理數(shù)的乘除法運算。
    5、教學(xué)難點:有理數(shù)乘除法法則的探索與運用。
    確定教學(xué)目標的理由依據(jù)是:新課標中指出課堂教學(xué)中應(yīng)體現(xiàn)知識與技能、過程與方法、情感態(tài)度與價值觀的.三維目標,同時也基于本節(jié)內(nèi)容的地位與作用。而確定重難點是根據(jù)新課標的要求,結(jié)合學(xué)生的學(xué)情而確定的。
    根據(jù)本節(jié)課的內(nèi)容特點及學(xué)生的學(xué)情,我選擇的教學(xué)方法是引導(dǎo)探索、小組合作、效果反饋的教學(xué)方法。為了提高課堂的教學(xué)容量,增加實際問題的直觀性,我選用多媒體輔助教學(xué)手段。
    關(guān)于學(xué)法:本節(jié)課里我主要指導(dǎo)學(xué)生采用了自主探索、合作交流、自我反思的學(xué)習(xí)方法,我想這樣更能有效的培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的能力,更好的培養(yǎng)學(xué)生數(shù)學(xué)地思考問題。
    本課共6課時,重點是有理數(shù)乘除法法則的教學(xué),下面我重點說有理數(shù)乘法法則的教學(xué)。整體的教學(xué)程序包括:情景創(chuàng)設(shè)、提出問題;引導(dǎo)探索、歸納結(jié)論;知識運用、加深理解;變式練習(xí)、形成能力;回顧與反思、納入知識系統(tǒng);布置作業(yè);板書設(shè)計七部分。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十
    經(jīng)歷探索有理數(shù)乘法法則過程,掌握有理數(shù)的乘法法則,能用法則進行有理數(shù)的乘法。
    經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展學(xué)生歸納、猜想、驗證等能力。
    培養(yǎng)學(xué)生積極探索精神,感受數(shù)學(xué)與實際生活的聯(lián)系。
    教學(xué)重、難點與關(guān)鍵
    1.重點:應(yīng)用法則正確地進行有理數(shù)乘法運算。
    2.難點:兩負數(shù)相乘,積的符號為正與兩負數(shù)相加和的符號為負號容易混淆。
    3.關(guān)鍵:積的符號的確定。
    教具準備
    投影儀。
    一、引入新課
    五、新授
    課本第28頁圖1.4-1,一只蝸牛沿直線l爬行,它現(xiàn)在的位置恰在l上的點o.
    (1)如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
    (2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
    (3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
    (4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
    分析:以上4個問題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區(qū)分方向,我們規(guī)定:向左為負,向右為正;為區(qū)分時間,我們規(guī)定:現(xiàn)在前為負,現(xiàn)在后為正,那么(1)中2cm記作+2cm,3分后記作+3分。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十一
    教案是教師為順利而有效地開展 教學(xué)活動,根據(jù)教學(xué) 大綱和教科書要求及學(xué)生的實際情況,以課時或課題為單位,對 教學(xué)內(nèi)容、教學(xué) 步驟、教學(xué) 方法等進行的具體設(shè)計和安排的一種實用性教學(xué)文書。以下是小編整理的關(guān)于有理數(shù)教案,希望大家認真閱讀!
    這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。
    (3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。
    從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學(xué)生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當然對初學(xué)者不宜講的過多,但適當引導(dǎo)學(xué)生進行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。
    (一)知識與技能
    1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
    2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。
    (二)過程與方法
    1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。
    2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。
    (三)情感、態(tài)度與價值觀
    1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐 的辯證唯物主義觀點。
    2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。
    1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。
    2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。
    1、重點、難點分析
    本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的'是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。
    2、知識結(jié)構(gòu)
    有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下:
    定 義 規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸
    三要素 原 點 正方向 單位長度
    應(yīng) 用 數(shù)形結(jié)合
    1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)興趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十二
    1、熟練有理數(shù)的乘法運算并能用乘法運算律簡化運算。
    2、讓學(xué)生通過觀察、思考、探究、討論,主動地進行學(xué)習(xí)。
    3、培養(yǎng)學(xué)生語言表達能力以及與他人溝通、交往能力,使其逐漸熱愛數(shù)學(xué)這門課程。
    教學(xué)重點:正確運用運算律,使運算簡化。
    教學(xué)難點:運用運算律,使運算簡化。
    一、學(xué)前準備。
    1、下面兩組練習(xí),請同學(xué)們選擇一組計算。并比較它們的結(jié)果:
    請以小組為單位,相互檢查,看計算對了嗎?
    二、探究新知。
    1、下面我們以小組為單位,仔細觀察上面的式子與結(jié)果,把你的發(fā)現(xiàn)相互交流交流。
    2、怎么樣,在有理數(shù)運算律中,乘法的交換律,結(jié)合律以及分配律還成立嗎?
    3、歸納、總結(jié)。
    乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積相等。
    即:ab=ba。
    乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
    即:(ab)c=a(bc)。
    乘法分配律:一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
    即:a(b+c)=ab+bc。
    三、新知應(yīng)用。
    1、例題。
    用兩種方法計算(+-)12。
    2、看誰算得快,算得準。
    1)(-7)(-)2)915.
    四、課堂小結(jié)。
    怎么樣,這節(jié)課有什么收獲,還有那些問題沒有解決?
    乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積相等。
    即:ab=ba。
    乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
    即:(ab)c=a(bc)。
    乘法分配律:一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
    即:a(b+c)=ab+bc。
    五、作業(yè)布置。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十三
    本次說課我共分成教材分析、教學(xué)方法與手段、教學(xué)過程分析和幾點思考四部分,具體內(nèi)容如下:
    (一)教材的地位和作用:本節(jié)課的內(nèi)容是《新人教版七年級數(shù)學(xué)》教材中的第一章第四節(jié),“有理數(shù)的乘除法”是把“有理數(shù)乘法”和“有理數(shù)除法”的內(nèi)容進行整合,在“有理數(shù)的加減混合運算”之后的一個學(xué)習(xí)內(nèi)容。在本章教材的編排中,“有理數(shù)的乘法”起著承上啟下的作用,它既是有理數(shù)加減的深入學(xué)習(xí),又是有理數(shù)除法、有理數(shù)乘方的基礎(chǔ),在有理數(shù)運算中有很重要的地位?!坝欣頂?shù)的乘法”從具體情境入手,把乘法看做連加,通過類比,讓學(xué)生進行充分討論、自主探索與合作交流的形式,自己歸納出有理數(shù)乘法法則。通過這個探索的過程,發(fā)展了學(xué)生觀察、歸納、猜測、驗證的能力,使學(xué)生在學(xué)習(xí)的過程中獲得成功的體驗,增強了自信心。所以本節(jié)課的學(xué)習(xí)具有一定的現(xiàn)實地位。
    (二)學(xué)情分析:因為學(xué)生在小學(xué)的學(xué)習(xí)里已經(jīng)接觸過正數(shù)和0的乘除法,對于兩個正數(shù)相乘、正數(shù)與0相乘、兩個正數(shù)相除、0與正數(shù)相除的情況學(xué)生已經(jīng)掌握。同時由于前面學(xué)習(xí)了有理數(shù)的加減法運算,學(xué)生對負數(shù)參與運算有了一定的認識,但仍還有一定的困難。另外,經(jīng)過前一階段的教學(xué),學(xué)生對數(shù)學(xué)問題的研究方法有了一定的了解,課堂上合作交流也做得相對較好。
    (三)教學(xué)目標分析:基于以上的學(xué)情分析,我確定本節(jié)課的教學(xué)目標如下。
    1、知識目標:讓學(xué)生經(jīng)歷學(xué)習(xí)過程,探索歸納得出有理數(shù)的乘除法法則,并能熟練運用。
    2、能力目標:在課堂學(xué)習(xí)過程中,使學(xué)生經(jīng)歷探索有理數(shù)乘除法法則的過程,發(fā)展觀察、猜想、歸納、驗證、運算的能力,同時在探索法則的過程中培養(yǎng)學(xué)生分類和歸納的數(shù)學(xué)思想。
    3、情感態(tài)度和價值觀:在探索過程中尊重學(xué)生的學(xué)習(xí)態(tài)度,樹立學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心,培養(yǎng)學(xué)生嚴謹?shù)臄?shù)學(xué)思維習(xí)慣。
    4、教學(xué)重點:會進行有理數(shù)的乘除法運算。
    5、教學(xué)難點:有理數(shù)乘除法法則的探索與運用。
    確定教學(xué)目標的理由依據(jù)是:新課標中指出課堂教學(xué)中應(yīng)體現(xiàn)知識與技能、過程與方法、情感態(tài)度與價值觀的三維目標,同時也基于本節(jié)內(nèi)容的地位與作用。而確定重難點是根據(jù)新課標的要求,結(jié)合學(xué)生的學(xué)情而確定的。
    根據(jù)本節(jié)課的內(nèi)容特點及學(xué)生的學(xué)情,我選擇的教學(xué)方法是引導(dǎo)探索、小組合作、效果反饋的教學(xué)方法。為了提高課堂的教學(xué)容量,增加實際問題的直觀性,我選用多媒體輔助教學(xué)手段。
    關(guān)于學(xué)法:本節(jié)課里我主要指導(dǎo)學(xué)生采用了自主探索、合作交流、自我反思的學(xué)習(xí)方法,我想這樣更能有效的培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的能力,更好的培養(yǎng)學(xué)生數(shù)學(xué)地思考問題。
    分析:
    本課共6課時,重點是有理數(shù)乘除法法則的教學(xué),下面我重點說有理數(shù)乘法法則的教學(xué)。整體的教學(xué)程序包括:情景創(chuàng)設(shè)、提出問題;引導(dǎo)探索、歸納結(jié)論;知識運用、加深理解;變式練習(xí)、形成能力;回顧與反思、納入知識系統(tǒng);布置作業(yè);板書設(shè)計七部分。
    設(shè)計七部分。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十四
    1.知識目標使學(xué)生了解了負數(shù)產(chǎn)生的背景,理解正、負數(shù)及零的意義,掌握正、負數(shù)的表示方法,會用正、負數(shù)表示具有相反意義的量。
    3.思想目標對學(xué)生進行愛國主義思想教育;培養(yǎng)學(xué)生良好的個性品質(zhì)和學(xué)習(xí)習(xí)慣。
    本課教材所處位置,是小學(xué)所學(xué)算術(shù)數(shù)之后數(shù)的范圍的第一次擴充,是算術(shù)數(shù)到有理數(shù)的銜接與過渡,并且是以后學(xué)習(xí)數(shù)軸、相反數(shù)、絕對值以及有理數(shù)運算的基礎(chǔ)。
    正、負數(shù)的意義,
    負數(shù)的意義及0的內(nèi)涵。
    鑒于初一年級學(xué)生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學(xué)法及情感教學(xué),創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生主動思考,用大量的實例和生動的語言激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)節(jié)學(xué)習(xí)情緒。并利用計算機和投影膠片輔助教學(xué),增大教學(xué)密度。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十五
    3、通過探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
    2、學(xué)習(xí)難點:運算順序的確定與性質(zhì)符號的處理。
    (一)、學(xué)前準備。
    1、計算。
    1)(0.0318)(1.4)。
    2)2+(8)×2。
    (二)、探究新知。
    1、由上面的問題1,計算方便嗎?想過別的方法嗎?
    2、由上面的問題2,你的計算方法是先算乘除法,再算加減法。
    3、結(jié)合問題1,閱讀課本p36p37頁內(nèi)容(帶計算器的同學(xué)跟著操作、練習(xí))。
    4、結(jié)合問題2,你先猜想,有理數(shù)的混合運算順序應(yīng)該是先算乘除法,再算加減法。
    5、閱讀p36,并動手做做。
    1、計算。
    1)、186(2)。
    2)11+(22)3(11)。
    3)(0.1)(100)。
    1、有理數(shù)的混合運算順序應(yīng)該是先算乘除法,再算加減法。
    2、計算器的使用。
    p39第7題(4、5、7、8)、第8題。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十六
    1、知識與技能目標:經(jīng)歷有理數(shù)乘法法則探究的過程,學(xué)習(xí)兩個有理數(shù)相乘的法則。
    3、情感目標:通過小組合作,培養(yǎng)與他人合作的精神。
    教學(xué)難點:如何觀察給定的乘法算式,從哪幾個角度概況算式的規(guī)律。
    2、出幾道小學(xué)里已經(jīng)做過的兩數(shù)相乘的題目,并計算。
    (一)創(chuàng)設(shè)情境,引入新知。
    問題:根據(jù)課前準備,小學(xué)我們計算的兩個數(shù)相乘都是正數(shù)乘正數(shù)或者正數(shù)乘零,現(xiàn)在我們知道有理數(shù)包括正數(shù)、負數(shù)和零三類,根據(jù)這種分類,你能說出兩個有理數(shù)相乘會出現(xiàn)哪幾種情況?(根據(jù)學(xué)生回答板書各種類型)。
    預(yù)設(shè):學(xué)生可能會把正數(shù)乘負數(shù)、負數(shù)乘正數(shù)當作一種情況,教師可引導(dǎo)為兩種。
    (二)觀察歸納,學(xué)習(xí)法則(設(shè)計說明:法則的得出分兩部分)。
    第一部分分類探究(說明:3組探究重點是探究1)。
    探究1(師生共同活動)。
    問題1、觀察下面熟識的算式,你能發(fā)現(xiàn)什么規(guī)律?
    3×3=9。
    3×2=6。
    3×1=3。
    3×0=0。
    預(yù)設(shè):如果學(xué)生有困難,可以提示學(xué)生觀察兩個因數(shù)有什么變化規(guī)律,積有什么變化規(guī)律。
    這樣會得到規(guī)律:左邊因數(shù)都是3,右邊因數(shù)依次減1,而積依次減3。
    問題2、根據(jù)這個規(guī)律,你能填寫下面的結(jié)論嗎?
    3×(-1)=。
    3×(-2)=。
    3×(-3)=。
    問題3這組數(shù)據(jù)的規(guī)律,對其他組類似規(guī)律的數(shù)據(jù)也成立嗎?自己根據(jù)這個規(guī)律構(gòu)造一組數(shù)試一試。
    歸納可得:(板書)正數(shù)乘正數(shù),結(jié)果為正,絕對值相乘;正數(shù)乘負數(shù),結(jié)果為負,絕對值相乘。
    階段性學(xué)習(xí)方法小結(jié):回想探究1的結(jié)論,我們是怎樣一步步得到的?
    (讓學(xué)生充分發(fā)表見解,教師適當引導(dǎo),得出主要環(huán)節(jié):觀察-猜想-歸納)。
    (說明:設(shè)計意圖有兩個,一是初一學(xué)生學(xué)法意識的形成,二是為探究2,3的學(xué)習(xí)做好引導(dǎo))。
    探究2(小組討論)。
    根據(jù)剛才得到的規(guī)律,你能得出下面的結(jié)果嗎?能據(jù)此總結(jié)出規(guī)律嗎?
    3×3=9。
    2×3=6。
    1×3=3。
    0×3=0。
    (-1)×3=。
    (-2)×3=。
    (-3)×3=。
    (選一組代表上講臺分析,得出結(jié)論)。
    歸納小結(jié):(負數(shù)乘正數(shù),結(jié)果為負,絕對值相乘)。
    探究3(同桌交流)、
    利用上面的規(guī)律填空,并說出其中的規(guī)律。
    (-3)×3=。
    (-3)×2=。
    (-3)×1=。
    (-3)×0=。
    (-3)×(-1)=。
    (-3)×(-2)=。
    (-3)×(-3)=。
    由學(xué)生總結(jié)得出:負數(shù)乘負數(shù),結(jié)果為正,絕對值相乘。
    第二部分歸納總結(jié)。
    問題1:總結(jié)上面所有的情況,你能試著說出有理數(shù)乘法的法則嗎?
    兩數(shù)相乘,同號得正,異號得負,再把絕對值相乘。任何數(shù)與0相乘,都得0。
    問題2:你認為根據(jù)有理數(shù)乘法法則進行有理數(shù)乘法運算時,應(yīng)按照怎樣的步驟進行運算?可類比加法的運算方法。
    (說明:向?qū)W生滲透分類討論及類比思想,再次形成學(xué)法體系)。
    (三)例題示范,學(xué)會應(yīng)用。
    說說這節(jié)課你有什么收獲?你還有什么問題存在?
    初中數(shù)學(xué)有理數(shù)乘法教案篇十七
    3.進一步感悟“轉(zhuǎn)化”的思想。
    把有理數(shù)的加減法混合運算統(tǒng)一為加法運算。
    省略負數(shù)前面的加號的有理數(shù)加法,運用運算律交換加數(shù)位置時,符號不變。
    根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運算可以統(tǒng)一為加法運算。
    1、完成下列計算:
    (1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
    歸納:根據(jù)有理數(shù)的減法法則,有理數(shù)的`加減混合運算可以統(tǒng)一為運算;
    省略負數(shù)前面的加號和()后的形式是______________________;
    展示交流。
    1、把下列運算統(tǒng)一成加法運算:
    2、將下列有理數(shù)加法運算中,加號省略:
    (1)12+(-8)=________________;
    3、將下列運算先統(tǒng)一成加法,再省略加號:
    =___[]______________________。
    4、仿照本p37例6,完成下列計算:
    盤點收獲。
    個案補充。
    1.計算:
    本p39習(xí)題2。5第6題(1)、(3)、(5),第7題。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十八
    2.培養(yǎng)學(xué)生觀察、分析、歸納及運算能力.。
    三角尺、小黑板、小卡片。
    1課時。
    (一)、從學(xué)生原有認知結(jié)構(gòu)提出問題。
    1.計算:
    2.化簡下列各式符號:
    (1)-(-6);(2)-(+8);(3)+(-7);
    (4)+(+4);(5)-(-9);(6)-(+3).。
    3.填空:
    (1)______+6=20;(2)20+______=17;
    (3)______+(-2)=-20;(4)(-20)+______=-6.。
    (二)、師生共同研究有理數(shù)減法法則。
    問題1(1)(+10)-(+3)=______;
    (2)(+10)+(-3)=______.。
    教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,即(+10)-(+3)=(+10)+(-3).。
    (2)(+10)+(+3)=______.。
    (2)的結(jié)果是多少?
    于是,(+10)-(-3)=(+10)+(+3).。
    至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:
    減去一個數(shù),等于加上這個數(shù)的相反數(shù).。
    教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃?;二是減數(shù)變?yōu)槠湎喾磾?shù).減數(shù)變號(減法============加法)。
    (三)、運用舉例變式練習(xí)。
    例1計算:
    (1)(-3)-(-5);(2)0-7.。
    例2計算:
    通過計算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):
    閱讀課本63頁例3。
    (四)、小結(jié)。
    1.教師指導(dǎo)學(xué)生閱讀教材后強調(diào)指出:
    (五)、課堂練習(xí)。
    1.計算:
    (1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
    2.計算:
    3.計算:
    (1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
    (4)(-5.9)-(-6.1);
    利用有理數(shù)減法解下列問題。
    課本習(xí)題2.6知識技能的2、3、4和問題解決1。
    (一)知識回顧(三)例題解析(五)課堂小結(jié)。
    例1、例2、例3。
    (二)觀察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計。
    初中數(shù)學(xué)有理數(shù)乘法教案篇十九
    (1)能確定多個因數(shù)相乘時,積的符號,并能用法則進行多個因數(shù)的乘積運算。
    經(jīng)歷探索幾個不為0的數(shù)相乘,積的符號問題的過程,發(fā)展觀察、歸納驗證等能力。
    培養(yǎng)學(xué)生主動探索,積極思考的學(xué)習(xí)興趣。
    教學(xué)重、難點與關(guān)鍵。
    1.重點:能用法則進行多個因數(shù)的乘積運算。
    2.難點:積的符號的確定。
    3.關(guān)鍵:讓學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律。
    教具準備。
    投影儀。
    2.計算:(1)│-5│(-2);(2)(-)(3)0(-99.9)。
    1.多個有理數(shù)相乘,可以把它們按順序依次相乘。
    例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14;。
    又如:(+2)[(-78)]=(+2)(-26)=-52.
    我們知道計算有理數(shù)的乘法,關(guān)鍵是確定積的符號。
    觀察:下列各式的積是正的還是負的?
    (1)234(2)234(-4)。
    (3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
    易得出:(1)、(3)式積為負,(2)、(4)式積為正,積的符號與負因數(shù)的個數(shù)有關(guān)。
    教師問:幾個不是0的數(shù)相乘,積的符號與負因數(shù)的個數(shù)之間有什么關(guān)系?
    學(xué)生完成思考后,教師指出:幾個不是0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關(guān),當負因數(shù)的個數(shù)為負數(shù)時,積為負數(shù);當負因數(shù)的個數(shù)為偶數(shù)時,積為正數(shù)。
    2.多個不是0的有理數(shù)相乘,先由負因數(shù)的個數(shù)確定積的符號再求各個絕對值的積。
    初中數(shù)學(xué)有理數(shù)乘法教案篇二十
    2.內(nèi)容解析。
    有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的.
    與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
    基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則.
    二、目標及其解析。
    1.目標。
    (1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
    (2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
    2.目標解析。
    達成目標(1)的標志是學(xué)生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.
    達成目標(2)的標志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
    三、教學(xué)問題診斷分析。
    有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
    本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
    四、教學(xué)過程設(shè)計。
    教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
    設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識,為下面的教學(xué)做好準備,又滲透了分類討論思想.
    問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
    3×3=9,
    3×2=6,
    3×1=3,
    3×0=0.
    追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
    如果學(xué)生仍然有困難,教師給予提示:
    (1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
    (2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
    設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
    教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
    追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
    3×(-2)=,
    3×(-3)=.
    練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
    設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解.
    先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
    設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習(xí)奠定基礎(chǔ).
    問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
    3×3=9,
    2×3=6,
    1×3=3,
    0×3=0.
    鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
    設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學(xué)生的模仿、概括的能力.
    追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
    (-1)×3=,
    (-2)×3=,
    (-3)×3=.
    練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
    先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
    追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
    設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
    問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
    (-3)×3=,
    (-3)×2=,
    (-3)×1=,
    (-3)×0=.
    追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
    (-3)×(-1)=,
    (-3)×(-2)=,
    (-3)×(-3)=.
    設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成.
    問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
    學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.
    學(xué)生獨立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.
    設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.
    例1計算:
    (1)。
    ;(2)。
    ;(3)。
    學(xué)生獨立完成后,全班交流.
    教師說明:在(3)中,我們得到了。
    =1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。
    與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
    追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
    設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
    設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
    小結(jié)、布置作業(yè)。
    請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
    (2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
    (3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
    (4)你能舉例說明符號法則“負負得正”的合理性嗎?
    設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面進行小結(jié).
    作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題.
    五、目標檢測設(shè)計。
    1.判斷下列運算結(jié)果的符號:
    (1)5×(-3);。
    (2)(-3)×3;。
    (3)(-2)×(-7);。
    (4)(+0.5)×(+0.7).
    2計算:
    (1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
    (4)。
    ;(5)0×(-6);(6)8×。
    設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況.
    初中數(shù)學(xué)有理數(shù)乘法教案篇二十一
    二、難點:正確進行有理數(shù)的乘除運算。
    預(yù)習(xí)導(dǎo)學(xué)。
    一、創(chuàng)設(shè)情景,談話導(dǎo)入。
    我們已經(jīng)學(xué)習(xí)了有理數(shù)的乘除法,同學(xué)們歸納,總結(jié)一下有理數(shù)的乘法法則以及乘法運算律。
    二、精講點撥質(zhì)疑問難。
    根據(jù)預(yù)習(xí)內(nèi)容,同學(xué)們回答以下問題:
    (3)0與任何自然數(shù)相乘,得____。
    (1)乘法交換律:ab=_________。
    (2)乘法結(jié)合律:(ab)c=_______。
    (3)乘法分配律:(a+b)c=________。
    3、有理數(shù)的除法法則:
    除以一個不等于0的數(shù),等于乘這個數(shù)的__________。
    比較有理數(shù)的乘法,除法法則,發(fā)現(xiàn)_________可能轉(zhuǎn)化為__________。
    初中數(shù)學(xué)有理數(shù)乘法教案篇二十二
    2.內(nèi)容解析。
    有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算。有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的。
    與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”。本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性。與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析。由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心。
    基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則。
    1.目標。
    (1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法。
    (2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性。
    2.目標解析。
    達成目標(2)的標志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程。
    有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負數(shù)參與了運算。本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性。上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難。為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求。
    本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律。
    教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù)。
    設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識,為下面的教學(xué)做好準備,又滲透了分類討論思想。
    問題2下面從我們熟悉的乘法運算開始。觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
    3×3=9,
    3×2=6,
    3×1=3,
    3×0=0.
    追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
    如果學(xué)生仍然有困難,教師給予提示:
    (1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
    (2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
    設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備。通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”。
    教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
    追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
    3×(-2)=,
    3×(-3)=.
    練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律。
    設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解。
    先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積。
    設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習(xí)奠定基礎(chǔ)。
    問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
    3×3=9,
    2×3=6,
    1×3=3,
    0×3=0.
    鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律。
    設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學(xué)生的模仿、概括的能力。
    追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
    (-1)×3=,
    (-2)×3=,
    (-3)×3=.
    練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律。
    先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積。
    追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
    設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”。既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力。
    問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
    (-3)×3=,
    (-3)×2=,
    (-3)×1=,
    (-3)×0=.
    追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
    (-3)×(-1)=,
    (-3)×(-2)=,
    (-3)×(-3)=.
    設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論。因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成。
    問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
    學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書。
    學(xué)生獨立思考、回答。如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字。
    設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟。
    例1計算:
    學(xué)生獨立完成后,全班交流。
    教師說明:在(3)中,我們得到了。
    =1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。
    與-2互為倒數(shù)。一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
    追問:在(2)中,8和-8互為相反數(shù)。由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
    設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
    設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值。
    小結(jié)、布置作業(yè)。
    請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
    (2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
    (3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則。
    (4)你能舉例說明符號法則“負負得正”的合理性嗎?
    設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面進行小結(jié)。
    作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題。
    五、目標檢測設(shè)計。
    1.判斷下列運算結(jié)果的符號:
    (1)5×(-3);。
    (2)(-3)×3;。
    (3)(-2)×(-7);。
    (4)(+0.5)×(+0.7).
    設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法的符號法則的理解。
    2計算:
    (1)6×(-9);。
    (2)(-6)×0.25;。
    (3)(-0.5)×(-8);。
    (4)0×(-6);。
    設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況。
    初中數(shù)學(xué)有理數(shù)乘法教案篇二十三
    學(xué)習(xí)目標:。
    1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算。
    2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.
    3、培養(yǎng)語言表達能力.調(diào)動學(xué)習(xí)積極性,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣.
    學(xué)習(xí)重點:有理數(shù)乘法。
    學(xué)習(xí)難點:法則推導(dǎo)。
    教學(xué)方法:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合。
    教學(xué)過程。
    一、學(xué)前準備。
    計算:
    (1)(一2)十(一2)。
    (2)(一2)十(一2)十(一2)。
    (3)(一2)十(一2)十(一2)十(一2)。
    (4)(一2)十(一2)十(一2)十(一2)十(一2)。
    猜想下列各式的值:
    (一2)×2(一2)×3。
    (一2)×4(一2)×5。
    二、探究新知。
    1、自學(xué)有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.
    2、觀察以上各式,結(jié)合對問題的研究,請同學(xué)們回答:
    (3)負數(shù)乘以正數(shù)積為__________數(shù),(4)負數(shù)乘以負數(shù)積為__________數(shù)。
    提出問題:一個數(shù)和零相乘如何解釋呢?