教案的編寫過程需要反復修改和完善,確保教學目標的實現(xiàn)和教學效果的提高。編寫教案時,要充分考慮學生的學習特點和目標要求。通過學習這些教案范文,教師可以不斷提高自己的教學水平和專業(yè)素養(yǎng)。
曲線和方程的數(shù)學教案設計篇一
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結作業(yè)。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
xx。
xx。
曲線和方程的數(shù)學教案設計篇二
本節(jié)課的重難點都是從實際于問題中尋找相等關系,從而列方程解決實際問題,為了更好地突出重點、突破點,在教學過程中著力體現(xiàn)以下幾方面的特點:
1、突出問題的應用意識。首先用一個學生感興趣的突出問題引入課題,然后運用算術方法給出答案,在各環(huán)節(jié)的安排上都設計成一個個問題,引導學生能圍繞問題開展思考、討論,進行學習。
2、體現(xiàn)學生的主體意識。始終把學生放在主體地位,讓學生通過對列算式與列方程的比較,分別歸納出它們的特點,從感受到從算術方法到代數(shù)方法是數(shù)學的進步。通過學生之間的合作與交流,得了出問題的不同解答方法,讓學生對這節(jié)課的學習內容、方法、注意點等進行歸納。
3、體現(xiàn)學生思維的層次性。首先引導學生嘗試用算術方法解決問題,然后逐步引導學生列出含未知數(shù)的式子,尋找相等關系列出方程。在尋找相等關系,設未知數(shù)及練習和作業(yè)的布置等環(huán)節(jié)中,都注意了學生思維的層次性。
4、滲透建模的思想。把實際問題中的數(shù)量關系用方程的形式表示出來,就是建立一種數(shù)學模型,有意識地按設未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出數(shù)學模型的能力。
從當堂練習和作業(yè)情況來看,收到了很好的教學效果,絕大部分學生都能根據(jù)實際問題準確地建立數(shù)學模型,但也有少數(shù)幾個學生存在一定的問題,不能很好地列出方程。
【拓展閱讀】。
曲線和方程的數(shù)學教案設計篇三
教材的地位和作用。
“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關系,為“作形判數(shù)”與“就數(shù)論形”的相互轉化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節(jié)“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!
根據(jù)以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學目標。
根據(jù)教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:
知識目標:
1、了解曲線上的點與方程的解之間的一一對應關系;
2、初步領會“曲線的方程”與“方程的曲線”的概念;
3、學會根據(jù)已有的情景資料找規(guī)律,進而分析、判斷、歸納結論;
4、強化“形”與“數(shù)”一致并相互轉化的思想方法。
能力目標:
1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;
3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發(fā)展應用意識。
情感目標:
1、通過概念的引入,讓學生感受從特殊到一般的認知規(guī)律;
2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創(chuàng)新的科學精神。
三、重難點突破。
“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規(guī)定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的.方程。通過這些例題讓學生再一次體會“二者”缺一不可。
四、學情分析。
此前,學生已知,在建立了直角坐標系后平面內的點和有序實數(shù)對之間建立了一一對應關系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認識(特別是二元一次方程表示直線),現(xiàn)在要進一步研究平面內的曲線和含有兩個變數(shù)的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節(jié)課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區(qū)別。
曲線和方程的數(shù)學教案設計篇四
1.教材背景。
作為曲線內容學習的開始,“曲線與方程”這一小節(jié)思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側重對所求方程的檢驗.
本課為第二課時。
主要內容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求.
2.本課地位和作用。
承前啟后,數(shù)形結合。
曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎,是解幾中承上啟下的關鍵章節(jié).
“曲線”與“方程”是點的軌跡的兩種表現(xiàn)形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數(shù)形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題.體現(xiàn)了坐標法的本質——代數(shù)化處理幾何問題,是數(shù)形結合的典范.
后繼性、可探究性。
求曲線方程實質上就是求曲線上任意一點(x,y)橫縱坐標間的等量關系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現(xiàn)運動變化特點,但如何獲得曲線的方程呢?通過創(chuàng)設情景,激發(fā)學生興趣,充分發(fā)揮其主體地位的作用,學習過程具有較強的探究性.
同時,本課內容又為后面的軌跡探求提供方法的準備,并且以后還會繼續(xù)完善軌跡方程的求解方法.
數(shù)學建模與示范性作用。
曲線的方程是解析幾何的核心.求曲線方程的過程類似于數(shù)學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結規(guī)律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.
數(shù)學的文化價值。
解析幾何的發(fā)明是變量數(shù)學的第一個里程碑,也是近代數(shù)學崛起的兩大標志之一,是較為完整和典型的重大數(shù)學創(chuàng)新史例.解析幾何創(chuàng)始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質疑的科學精神等都是富有啟發(fā)性和激勵性的教育材料.可以根據(jù)學生實際情況,條件允許時指導學生課后收集相關資料,通過分析、整理,寫出研究報告.
3.學情分析。
我所授課班級的學生數(shù)學基礎比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數(shù)方法研究幾何問題的科學性、準確性和優(yōu)越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經有了自然的求知欲望.
二、目標分析。
1.教學目標。
知識技能目標。
理解坐標法的作用及意義.
掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件,選擇適當坐標系求曲線方程.
過程性目標。
通過學生積極參與,親身經歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優(yōu)越性,滲透數(shù)形結合的數(shù)學思想.
通過自主探索、合作交流,學生歷經從“特殊——一般——特殊”的認知模式,完善認知結構.
通過層層深入,培養(yǎng)學生發(fā)散思維的能力,深化對求曲線方程本質的理解.
情感、態(tài)度與價值觀目標。
通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的'喜悅,體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質疑的科學精神.
展現(xiàn)人文數(shù)學精神,體現(xiàn)數(shù)學文化價值及其在在社會進步、人類文明發(fā)展中的重要作用.
2.教學重點和難點。
難點:幾何條件的代數(shù)化。
依據(jù):求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數(shù)法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.
曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數(shù)研究的先決,求曲線方程的過程類似數(shù)學建模的過程,是課堂上必須突破的難點.
三、教學方法及教材處理。
1.教學方法:探究發(fā)現(xiàn)教學法.
遵循以學生為主體,教師為主導,發(fā)展為主旨的現(xiàn)代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,通過學生主動探索、積極參與、共同交流與協(xié)作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現(xiàn)知識的建構和發(fā)展,通過不斷探究、發(fā)現(xiàn),讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發(fā)揮.
2.學法指導。
學生學法:互相討論、探索發(fā)現(xiàn)。
由于學生在嘗試問題解決的過程中常會在新舊知識聯(lián)系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導.作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程進行反思等,在師生(生生)互動中,給予學生啟發(fā)和鼓勵,在心理上、認知上予以幫助.
這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結構,使學生思維、能力等得到和諧發(fā)展.
曲線和方程的數(shù)學教案設計篇五
這節(jié)課的內容是一元一次方程第一課時。課后,我對本節(jié)課從四方面進行了如下反思:
一:對選擇引例的反思。
在小學學生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學生認識到方程是更方便、更有力的數(shù)學工具,又要讓學生體驗到從算術方法到代數(shù)方法是數(shù)學的進步,這些目標的實現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學生很少有利用方程解應用題的經歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術到方程的進步呢?幾乎翻閱了所有的有關資料,無獨有偶,在新課標教案126頁的一道數(shù)學名題“啊哈,它的全部,它的一半,其和等于19?!弊屛已矍耙涣?,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數(shù)學組經驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現(xiàn)出從算術到方程的進步,因為題很簡單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優(yōu)越性,后面學習中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創(chuàng)新又能激發(fā)學生的興趣,既符合學生的已有經驗和知識水平,又符合學生的認知規(guī)律。
二:對選題的反思。
我在備課中【活動3】最初選用的題是:
修改后的題是:
判斷下列各式是方程的有:
(1)(2)(3)(4)(5)。
考慮到學生初對方程概念的研究,不在數(shù)字上人為的設置障礙,因為是否是方程與數(shù)字的大小根本無關,于是把數(shù)字全部統(tǒng)一成了6、2、8三個數(shù),利于學生從未知數(shù)和等號的角度進一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強,容易分散學生對概念本質的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個數(shù)、未知數(shù)的次數(shù)等均無關。
三:對課堂實踐的反思。
本節(jié)課的設計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結。
當環(huán)節(jié)進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發(fā)現(xiàn)學生在黑板上寫的全部都是未知數(shù)在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現(xiàn)的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數(shù)的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數(shù)的方程來彌補設計上的不足時,我忽然發(fā)現(xiàn)最后一排的一位男生已經高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數(shù)和等號就ok了,與未知數(shù)的位置無關!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜?!?BR> 四:教后整體反思。
成功之處:
1.引例、練習題的選擇都很恰當。
2.思路清晰,重點突出,注意到了學生的自主探索,節(jié)奏把握較好。
3.數(shù)學文化的滲透比較自然。
4.“寫一個或幾個一元一次方程”此環(huán)節(jié)的設計體現(xiàn)了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。
5.語言簡練,教態(tài)大方,師生互動比較熱烈,充分調動了學生的積極性。
6.板書設計較為合理。本節(jié)課的主要內容都以提煉的方式呈現(xiàn)出來。
不足之處:
1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。
2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。
3.授課語言仍需加強錘煉。
這節(jié)課的準備和每個環(huán)節(jié)的設計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!
曲線和方程的數(shù)學教案設計篇六
1.小明用天平測量物體的質量(如下圖),已知每個小砝碼的質量為1克,此時天平處于平衡狀態(tài).若設大砝碼的質量為x克.
考查說明:本題主要考查等式基本性質1.
答案與解析:根據(jù)等式基本性質1:等式兩邊同時加或減去同一個數(shù)或式子,結果仍為等式.
2.方程3y=。
兩邊都除以3得y=1。
改正:________________________________________________.
考查說明:本題主要考查等式基本性質2并熟練運用.
答案與解析:得y=。
兩邊同時除以3時,右邊也要除以3,不是乘以3。
3.當x=時,60-5x=0.
考查說明:本題主要考查利用等式兩條基本性質來解簡單方程.
答案與解析:12.由原方程和等式性質1得5x=60,再由等式性質2,兩邊同除以5,得x=12.
4.方程的解是(36,48中選填一個)。
考查說明:本題考查的知識點是方程的解的概念,使得等號成立即可.
答案與解析:36.方程的解使等式兩邊相等,把兩個數(shù)代入驗算即可.
5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.
考查說明:本題主要考查根據(jù)題意找等量關系,從而列出方程.
答案與解析:55-x=29+x.等量關系為:抽調后,三班人數(shù)=八班人數(shù),關鍵要理解三班少了x人的同時,八班多了x人.
二、選擇題。
6.下列方程中,是一元一次方程的是()。
a、
b、
c、
d、
考查說明:本題主要考查一元一次方程的概念.
答案與解析:a.a和b都需要化簡后再判斷,c明顯是二元的,d分母中含未知數(shù),不是整式方程.
7.根據(jù)下列條件能列出方程的是()。
a.一個數(shù)的'與另一個數(shù)的的和。
b.與1的差的4倍是8。
c.和的60%。
d.甲的3倍與乙的差的2倍。
考查說明:本題考查的知識點是方程與代數(shù)式的區(qū)別.
答案與解析:b.其余幾個答案都不能列出等號.
三、解答題。
考查說明:本題考查的知識點是列一元一次方程解應用題,并會利用等式性質解簡單的一元一次方程.本題等量關系為:教師票價+學生票價=910.
答案與解析:設:學生有x人,根據(jù)題意。
列出方程得70+70x×=910,
解方程得70x×=840,
即35x=840,
所以x=24.
曲線和方程的數(shù)學教案設計篇七
2.通過自學探究掌握裁邊分割問題。
(閱讀課本p47頁,思考下列問題)。
1.閱讀探究3并進行填空;
2.完成p48的思考并掌握裁邊分割問題的特點;
設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學生口答書中填空,老師再給予補充。
思考:如果換一種設法,是否可以更簡單?
設正中央的長方形長為9acm,寬為7acm,依題意得。
9a·7a=(可讓上層學生在自學時,先上來板演)。
效果檢測時,由同座的同學給予點評與糾正。
9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)。
注意點:要善于利用圖形的平移把問題簡單化!
(只要求設元、列方程)。
曲線和方程的數(shù)學教案設計篇八
本節(jié)課的重難點在于設未知數(shù)和找等量關系,通過這兩道題的練習,為第三道題的變式練習做準備。
3.養(yǎng)殖場有白兔和黑兔,白兔的只數(shù)是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
請同學們先獨立完成第一問,然后我們進行交流。
第二問請大家認真思考,觀察與第一問的區(qū)別,獨立完成后,進行交流。
四、課堂小結。
通過本節(jié)課的學習:
曲線和方程的數(shù)學教案設計篇九
1.使學生初步學會分析稍復雜的兩步計算的應用題的數(shù)量關系,正確列出方程.。
2.學生會找出應用題中相等的數(shù)量關系.。
教學重點。
訓練學生用方程解“已知比一個數(shù)的幾倍多(少)幾是多少,求這個數(shù)”的應用題.。
教學難點。
分析應用題等量關系,并會列出方程.。
教學過程。
一、復習準備。
(一)寫出下面各題的式子.。
1.比的3倍多15。
2.比的4倍少2。
3.2個與34的和。
4.5個與0.6的3倍的差。
(二)解答復習題。
少年宮舞蹈隊有23人,合唱隊的人數(shù)比舞蹈隊的3倍多15人.合唱隊有多少人?
(學生獨立解答)。
23×3+15。
=69+15。
=84(人)。
答:合唱隊有84人.。
二、新授教學。
(一)導入新課(改復習為例4)。
少年宮合唱隊有84人,合唱隊的人數(shù)比舞蹈隊的3倍多15人.舞蹈隊有多少人?
1.比較:例4與復習題有什么相同點和不同點?
相同點:“合唱隊的人數(shù)比舞蹈隊的3倍多15人”這句話沒有變;
不同點:復習題已知舞蹈隊人數(shù)求合唱隊人數(shù),
例4是已知合唱隊人數(shù)求舞蹈隊人數(shù).。
(二)教學例4。
1.畫線段圖分析題意。
2.看圖思考:舞蹈隊人數(shù)和合唱隊人數(shù)有什么關系?
3.學生匯報討論結果:舞蹈隊人數(shù)的3倍加上15正好等于合唱隊人數(shù).。
(根據(jù):合唱隊人數(shù)比舞蹈隊人數(shù)的3倍多15人)。
4.列方程解答。
教師板書:
解:設舞蹈隊有人.。
答:舞蹈隊有23人.。
5.思考:還可以怎樣列方程?(或)。
引導:例題的方法最簡單,解題時要用簡單的方法解.。
(三)變式練習。
少年宮合唱隊有84人,合唱隊的人數(shù)比舞蹈隊的人數(shù)的4倍少8人,舞蹈隊有多少人?
三、課堂小結。
今天這節(jié)課你學到了什么知識?在學習中你有什么感想?
四、鞏固練習。
(一)只列式不計算.。
1.圖書室有文藝書180本,比科技書的2倍多20本,科技書本.。
2.養(yǎng)雞廠養(yǎng)母雞400只,比公雞的2倍少40只,公雞只.。
(二)學校飼養(yǎng)小組今年養(yǎng)兔25只,比去年養(yǎng)的只數(shù)的3倍少8只.去年養(yǎng)兔多少只?
(三)一個等腰三角形的周長是86厘米,底是38厘米.它的腰是多少厘米?
五、課后作業(yè)。
六、板書設計。
例4.少年宮合唱隊有84人,合唱隊的人數(shù)比舞蹈隊的3倍多15人.舞蹈隊有多少人?
解:設舞蹈隊有人.。
答:舞蹈隊有23人.。
教案點評:
分析數(shù)量之間的等量關系,學生已有一定的基礎,本節(jié)主要訓練學生掌握根據(jù)題目所給的不同條件,找等量關系的方法。
首先引導學生用多種方法解答,并通過觀察、比較、分析,從眾多的等量關系中找出最佳思路,使學生學會從多種角度思考問題,培養(yǎng)學生思維的靈活性。
曲線和方程的數(shù)學教案設計篇十
一、運用簡便方法使計算更簡單。
二、解決生活中的.問題。
1、學校買來一批籃球和足球。買來籃球12只,共用a元,買來足球b只,每只25元。
籃球的單價比足球貴多少元?當a=576時,籃球的單價比足球貴多少元?
買這批籃球和足球共用了多少元?當a=1200,b=80時籃球和足球共用了多少元?
曲線和方程的數(shù)學教案設計篇十一
“用字母表示數(shù)”是(北師大版)義務教育課程標準實驗教科書數(shù)學四年級下冊第85~86頁的學習內容,它是學習代數(shù)知識的基礎。四年級的學生在以往的數(shù)學學習中,接觸到的都是具體的'數(shù),而現(xiàn)在要學會用字母即抽象的符號來代表具體情境中的數(shù)量,用含有字母的式子來表示簡單的數(shù)量關系,這是從具體形象思維到抽象邏輯思維的一次過渡,也是思維的一次飛躍。對四年級學生來說,本課內容較為抽象,教學有一定難度。本節(jié)課從設想到實踐,有很多體會,而我感受最深的是有機整合學習材料,追求教學的實效性。“用字母表示數(shù)”是學生學習代數(shù)知識的入門內容。
為上好這節(jié)展示課,我認真學習了“課標”中關于這一部分的目標要求,并查閱了不同版本實驗教材中這部分內容的編寫。在充分比較的基礎上,發(fā)現(xiàn)各版本實驗教材與“老教材”都有很大的不同?!袄辖滩摹狈浅娬{知識技能的。目標,而各版本實驗教材則是更加重視讓學生經歷探索用字母表示數(shù)的過程,體會字母表示數(shù)的意義和作用。特別是北師大版實驗教材中編入的“青蛙兒歌”、“年齡問題”和“擺三角形”三個材料都非常有利于學生反復體會用字母表示數(shù)的需要?;谝陨险J識,我決定依據(jù)北師大版教材,選擇這三個典型材料教學。但考慮到教學內容的邏輯結構和對目標的整體把握,適當進行了擴充和調整。把教材上“推想淘氣和媽媽年齡”的活動改為“推想同學和老師的年齡”,這樣更貼近學生實際,更有親和力和感染力,更能激發(fā)學生的學習興趣。在整合學習材料時,考慮的不是新、奇、異的素材,而是重視創(chuàng)設富有思考性的情境,有利于學生有效地經歷用字母表示數(shù)的過程。為此,在教學設計中,我利用“青蛙兒歌”引出課題展開新課的教學,引導學生用字母表示數(shù),體會字母的作用;將教學重點放在“推想同學和老師的年齡”和“擺三角形”這兩個環(huán)節(jié),使學生自然地萌生出用字母表示數(shù)的需要,并滲透歸納猜想、數(shù)形結合等數(shù)學思想方法,從而落實了教學目標。我把“含有字母的式子里乘號的簡寫與略寫”這項內容讓學生自己看書學習,在反饋檢查時,學生對自學內容掌握得也很好。通過對學習材料的有機整合,明晰了課堂教學主線,收到了很好的實效。
曲線和方程的數(shù)學教案設計篇十二
1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數(shù)學“建模”能力的培養(yǎng)。為后面學習打下基礎。
3、在課堂的第二個環(huán)節(jié)中,通過實際問題的'引入,讓學生動起腦來,階梯型問題的設置使得一些后進生也投入到課堂中來,體現(xiàn)了差異性的教學。在學生慢慢列出方程的同時其實也培養(yǎng)了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優(yōu)點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發(fā)學生參與數(shù)學的興趣,在列完方程的最后讓學生歸納出列方程解應用題的基本步驟。使學生加深對知識的掌握也培養(yǎng)了他們的語言組織能力以及學會標準的數(shù)學用語。
二、從教學方法反思。
本節(jié)課本著“尊重差異”為基礎,先“引導發(fā)現(xiàn)”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應用題的基礎,抓住基礎知識再去發(fā)展他們的邏輯思維能力對后進生是十分重要的。
三、從學生反饋反思。
這堂課學生能積極思考,認真學習,課后作業(yè)都能及時完成。作業(yè)質量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數(shù)量關系去列方程。
曲線和方程的數(shù)學教案設計篇十三
1.教學目標、重點、難點.
教學目標:
(1)了解方程的解的概念.
(2)體驗對方程解的估算,會檢驗一個數(shù)是不是某個一元方程的解.
(3)滲透對應思想.
重點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
難點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
2.例、習題的意圖。
本節(jié)課重點是了解方程的解的意義.通過實際問題中對所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產生尋求方程解法的需求,為后面的學習做好鋪墊.
例1是通過實際問題列出方程,根據(jù)(1)題未知數(shù)的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學生親身體驗什么是方程的解,也為例2檢驗一個數(shù)值是不是方程的解做好鋪墊.對第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學習解方程奠定了積極的心理儲備.
例2是根據(jù)方程的解的意義,使學生會檢驗一個數(shù)值是不是方程的解,這一點應切實使學生掌握.
3.認知難點與突破方法。
難點是方程解的意義和檢驗一個數(shù)是不是一個一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學會檢驗一個數(shù)是不是一個一元方程的解.抓住關鍵字“等號左右兩邊相等”,檢驗一個數(shù)是不是一個一元方程的解,要分別計算方程的左右兩邊,若其值相等,則這個未知數(shù)是方程的解,若不相等,則不是方程的解.
二、新課引入。
復習:
1.什么是一元一次方程?
2.練習:當,,時,求式子的值.
答案:,,.
通過練習2強調求式子的值的一般步驟,其中易錯易混的地方,如代入的值是負數(shù),應加上括號,數(shù)與數(shù)相乘時應恢復乘號,運算關系不能混淆等.
三、例題講解。
例1教材p69中例1。
分析:三個題目中的相等關系分別是:
(1)計算機已使用的時間+繼續(xù)使用的時間=規(guī)定的檢修時間.
(2)2(長+寬)=周長.
(3)女生人數(shù)—男生人數(shù)=.
分析:方程中等號左邊有未知數(shù),估算的值代入方程應使等號左邊的值等于等號右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數(shù),不妨讓,,……分別代入方程算一算.
由計算結果可以看到,每一個的允許值都使代數(shù)式有一個確定的數(shù)值,為方便起見,可以列一個表格:
1234567…185021502300245026002750…從表中發(fā)現(xiàn):當時,的值是,也就是,當時,方程中等號的左邊:.等號的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數(shù)的值為5.所以,方程的解就是.
教材p71中的小云朵,可以多選幾個情況來說明,以加強對方程解得意義的理解.
從表中你還能發(fā)現(xiàn)哪個方程的解?(引導學生得出)如方程的解是;方程的解是等等,使學生進一步體會方程解的概念.
方程解的意義:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
由于這兩個方程估算其解有一定的困難,數(shù)不整齊,或方程比較復雜,出現(xiàn)矛盾沖突,引導學生得出:學習解方程的方法十分必要.
怎樣檢驗一個數(shù)是否是方程的解呢?
曲線和方程的數(shù)學教案設計篇十四
在小學數(shù)學教學中,列方程解應用題是難點。這一部分內容融入了等式的性質,利用四則運算各部分的關系,有助于對所學的算術知識進行鞏固和加深理解,初步滲透代數(shù)的思想,然而在這一部分教學中存在一定的難點。
一、審清題意:
審題,理解題意。即全面分析題目中的已知量、未知量及二者之間的關系。特別要把牽涉到的一些概念術語弄清,如同向,相向,增加到,增加了等。
二、確立未知數(shù):
三、尋找等量關系:
“含有未知數(shù)的等式稱為方程”因而是“等式”是列方程比不可少的條件。所以尋找等量關系是解題的關鍵。常見的等量關系有以下幾種:
1、總量相等;2、成倍數(shù)相等;3、按公式相等;
小學常用數(shù)量關系總結:
曲線和方程的數(shù)學教案設計篇一
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結作業(yè)。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
xx。
xx。
曲線和方程的數(shù)學教案設計篇二
本節(jié)課的重難點都是從實際于問題中尋找相等關系,從而列方程解決實際問題,為了更好地突出重點、突破點,在教學過程中著力體現(xiàn)以下幾方面的特點:
1、突出問題的應用意識。首先用一個學生感興趣的突出問題引入課題,然后運用算術方法給出答案,在各環(huán)節(jié)的安排上都設計成一個個問題,引導學生能圍繞問題開展思考、討論,進行學習。
2、體現(xiàn)學生的主體意識。始終把學生放在主體地位,讓學生通過對列算式與列方程的比較,分別歸納出它們的特點,從感受到從算術方法到代數(shù)方法是數(shù)學的進步。通過學生之間的合作與交流,得了出問題的不同解答方法,讓學生對這節(jié)課的學習內容、方法、注意點等進行歸納。
3、體現(xiàn)學生思維的層次性。首先引導學生嘗試用算術方法解決問題,然后逐步引導學生列出含未知數(shù)的式子,尋找相等關系列出方程。在尋找相等關系,設未知數(shù)及練習和作業(yè)的布置等環(huán)節(jié)中,都注意了學生思維的層次性。
4、滲透建模的思想。把實際問題中的數(shù)量關系用方程的形式表示出來,就是建立一種數(shù)學模型,有意識地按設未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出數(shù)學模型的能力。
從當堂練習和作業(yè)情況來看,收到了很好的教學效果,絕大部分學生都能根據(jù)實際問題準確地建立數(shù)學模型,但也有少數(shù)幾個學生存在一定的問題,不能很好地列出方程。
【拓展閱讀】。
曲線和方程的數(shù)學教案設計篇三
教材的地位和作用。
“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關系,為“作形判數(shù)”與“就數(shù)論形”的相互轉化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節(jié)“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!
根據(jù)以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學目標。
根據(jù)教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:
知識目標:
1、了解曲線上的點與方程的解之間的一一對應關系;
2、初步領會“曲線的方程”與“方程的曲線”的概念;
3、學會根據(jù)已有的情景資料找規(guī)律,進而分析、判斷、歸納結論;
4、強化“形”與“數(shù)”一致并相互轉化的思想方法。
能力目標:
1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;
3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發(fā)展應用意識。
情感目標:
1、通過概念的引入,讓學生感受從特殊到一般的認知規(guī)律;
2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創(chuàng)新的科學精神。
三、重難點突破。
“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規(guī)定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的.方程。通過這些例題讓學生再一次體會“二者”缺一不可。
四、學情分析。
此前,學生已知,在建立了直角坐標系后平面內的點和有序實數(shù)對之間建立了一一對應關系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認識(特別是二元一次方程表示直線),現(xiàn)在要進一步研究平面內的曲線和含有兩個變數(shù)的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節(jié)課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區(qū)別。
曲線和方程的數(shù)學教案設計篇四
1.教材背景。
作為曲線內容學習的開始,“曲線與方程”這一小節(jié)思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側重對所求方程的檢驗.
本課為第二課時。
主要內容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求.
2.本課地位和作用。
承前啟后,數(shù)形結合。
曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎,是解幾中承上啟下的關鍵章節(jié).
“曲線”與“方程”是點的軌跡的兩種表現(xiàn)形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數(shù)形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題.體現(xiàn)了坐標法的本質——代數(shù)化處理幾何問題,是數(shù)形結合的典范.
后繼性、可探究性。
求曲線方程實質上就是求曲線上任意一點(x,y)橫縱坐標間的等量關系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現(xiàn)運動變化特點,但如何獲得曲線的方程呢?通過創(chuàng)設情景,激發(fā)學生興趣,充分發(fā)揮其主體地位的作用,學習過程具有較強的探究性.
同時,本課內容又為后面的軌跡探求提供方法的準備,并且以后還會繼續(xù)完善軌跡方程的求解方法.
數(shù)學建模與示范性作用。
曲線的方程是解析幾何的核心.求曲線方程的過程類似于數(shù)學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結規(guī)律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.
數(shù)學的文化價值。
解析幾何的發(fā)明是變量數(shù)學的第一個里程碑,也是近代數(shù)學崛起的兩大標志之一,是較為完整和典型的重大數(shù)學創(chuàng)新史例.解析幾何創(chuàng)始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質疑的科學精神等都是富有啟發(fā)性和激勵性的教育材料.可以根據(jù)學生實際情況,條件允許時指導學生課后收集相關資料,通過分析、整理,寫出研究報告.
3.學情分析。
我所授課班級的學生數(shù)學基礎比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數(shù)方法研究幾何問題的科學性、準確性和優(yōu)越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經有了自然的求知欲望.
二、目標分析。
1.教學目標。
知識技能目標。
理解坐標法的作用及意義.
掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件,選擇適當坐標系求曲線方程.
過程性目標。
通過學生積極參與,親身經歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優(yōu)越性,滲透數(shù)形結合的數(shù)學思想.
通過自主探索、合作交流,學生歷經從“特殊——一般——特殊”的認知模式,完善認知結構.
通過層層深入,培養(yǎng)學生發(fā)散思維的能力,深化對求曲線方程本質的理解.
情感、態(tài)度與價值觀目標。
通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的'喜悅,體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質疑的科學精神.
展現(xiàn)人文數(shù)學精神,體現(xiàn)數(shù)學文化價值及其在在社會進步、人類文明發(fā)展中的重要作用.
2.教學重點和難點。
難點:幾何條件的代數(shù)化。
依據(jù):求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數(shù)法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.
曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數(shù)研究的先決,求曲線方程的過程類似數(shù)學建模的過程,是課堂上必須突破的難點.
三、教學方法及教材處理。
1.教學方法:探究發(fā)現(xiàn)教學法.
遵循以學生為主體,教師為主導,發(fā)展為主旨的現(xiàn)代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,通過學生主動探索、積極參與、共同交流與協(xié)作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現(xiàn)知識的建構和發(fā)展,通過不斷探究、發(fā)現(xiàn),讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發(fā)揮.
2.學法指導。
學生學法:互相討論、探索發(fā)現(xiàn)。
由于學生在嘗試問題解決的過程中常會在新舊知識聯(lián)系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導.作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程進行反思等,在師生(生生)互動中,給予學生啟發(fā)和鼓勵,在心理上、認知上予以幫助.
這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結構,使學生思維、能力等得到和諧發(fā)展.
曲線和方程的數(shù)學教案設計篇五
這節(jié)課的內容是一元一次方程第一課時。課后,我對本節(jié)課從四方面進行了如下反思:
一:對選擇引例的反思。
在小學學生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學生認識到方程是更方便、更有力的數(shù)學工具,又要讓學生體驗到從算術方法到代數(shù)方法是數(shù)學的進步,這些目標的實現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學生很少有利用方程解應用題的經歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術到方程的進步呢?幾乎翻閱了所有的有關資料,無獨有偶,在新課標教案126頁的一道數(shù)學名題“啊哈,它的全部,它的一半,其和等于19?!弊屛已矍耙涣?,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數(shù)學組經驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現(xiàn)出從算術到方程的進步,因為題很簡單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優(yōu)越性,后面學習中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創(chuàng)新又能激發(fā)學生的興趣,既符合學生的已有經驗和知識水平,又符合學生的認知規(guī)律。
二:對選題的反思。
我在備課中【活動3】最初選用的題是:
修改后的題是:
判斷下列各式是方程的有:
(1)(2)(3)(4)(5)。
考慮到學生初對方程概念的研究,不在數(shù)字上人為的設置障礙,因為是否是方程與數(shù)字的大小根本無關,于是把數(shù)字全部統(tǒng)一成了6、2、8三個數(shù),利于學生從未知數(shù)和等號的角度進一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強,容易分散學生對概念本質的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個數(shù)、未知數(shù)的次數(shù)等均無關。
三:對課堂實踐的反思。
本節(jié)課的設計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結。
當環(huán)節(jié)進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發(fā)現(xiàn)學生在黑板上寫的全部都是未知數(shù)在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現(xiàn)的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數(shù)的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數(shù)的方程來彌補設計上的不足時,我忽然發(fā)現(xiàn)最后一排的一位男生已經高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數(shù)和等號就ok了,與未知數(shù)的位置無關!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜?!?BR> 四:教后整體反思。
成功之處:
1.引例、練習題的選擇都很恰當。
2.思路清晰,重點突出,注意到了學生的自主探索,節(jié)奏把握較好。
3.數(shù)學文化的滲透比較自然。
4.“寫一個或幾個一元一次方程”此環(huán)節(jié)的設計體現(xiàn)了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。
5.語言簡練,教態(tài)大方,師生互動比較熱烈,充分調動了學生的積極性。
6.板書設計較為合理。本節(jié)課的主要內容都以提煉的方式呈現(xiàn)出來。
不足之處:
1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。
2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。
3.授課語言仍需加強錘煉。
這節(jié)課的準備和每個環(huán)節(jié)的設計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!
曲線和方程的數(shù)學教案設計篇六
1.小明用天平測量物體的質量(如下圖),已知每個小砝碼的質量為1克,此時天平處于平衡狀態(tài).若設大砝碼的質量為x克.
考查說明:本題主要考查等式基本性質1.
答案與解析:根據(jù)等式基本性質1:等式兩邊同時加或減去同一個數(shù)或式子,結果仍為等式.
2.方程3y=。
兩邊都除以3得y=1。
改正:________________________________________________.
考查說明:本題主要考查等式基本性質2并熟練運用.
答案與解析:得y=。
兩邊同時除以3時,右邊也要除以3,不是乘以3。
3.當x=時,60-5x=0.
考查說明:本題主要考查利用等式兩條基本性質來解簡單方程.
答案與解析:12.由原方程和等式性質1得5x=60,再由等式性質2,兩邊同除以5,得x=12.
4.方程的解是(36,48中選填一個)。
考查說明:本題考查的知識點是方程的解的概念,使得等號成立即可.
答案與解析:36.方程的解使等式兩邊相等,把兩個數(shù)代入驗算即可.
5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.
考查說明:本題主要考查根據(jù)題意找等量關系,從而列出方程.
答案與解析:55-x=29+x.等量關系為:抽調后,三班人數(shù)=八班人數(shù),關鍵要理解三班少了x人的同時,八班多了x人.
二、選擇題。
6.下列方程中,是一元一次方程的是()。
a、
b、
c、
d、
考查說明:本題主要考查一元一次方程的概念.
答案與解析:a.a和b都需要化簡后再判斷,c明顯是二元的,d分母中含未知數(shù),不是整式方程.
7.根據(jù)下列條件能列出方程的是()。
a.一個數(shù)的'與另一個數(shù)的的和。
b.與1的差的4倍是8。
c.和的60%。
d.甲的3倍與乙的差的2倍。
考查說明:本題考查的知識點是方程與代數(shù)式的區(qū)別.
答案與解析:b.其余幾個答案都不能列出等號.
三、解答題。
考查說明:本題考查的知識點是列一元一次方程解應用題,并會利用等式性質解簡單的一元一次方程.本題等量關系為:教師票價+學生票價=910.
答案與解析:設:學生有x人,根據(jù)題意。
列出方程得70+70x×=910,
解方程得70x×=840,
即35x=840,
所以x=24.
曲線和方程的數(shù)學教案設計篇七
2.通過自學探究掌握裁邊分割問題。
(閱讀課本p47頁,思考下列問題)。
1.閱讀探究3并進行填空;
2.完成p48的思考并掌握裁邊分割問題的特點;
設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學生口答書中填空,老師再給予補充。
思考:如果換一種設法,是否可以更簡單?
設正中央的長方形長為9acm,寬為7acm,依題意得。
9a·7a=(可讓上層學生在自學時,先上來板演)。
效果檢測時,由同座的同學給予點評與糾正。
9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)。
注意點:要善于利用圖形的平移把問題簡單化!
(只要求設元、列方程)。
曲線和方程的數(shù)學教案設計篇八
本節(jié)課的重難點在于設未知數(shù)和找等量關系,通過這兩道題的練習,為第三道題的變式練習做準備。
3.養(yǎng)殖場有白兔和黑兔,白兔的只數(shù)是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
請同學們先獨立完成第一問,然后我們進行交流。
第二問請大家認真思考,觀察與第一問的區(qū)別,獨立完成后,進行交流。
四、課堂小結。
通過本節(jié)課的學習:
曲線和方程的數(shù)學教案設計篇九
1.使學生初步學會分析稍復雜的兩步計算的應用題的數(shù)量關系,正確列出方程.。
2.學生會找出應用題中相等的數(shù)量關系.。
教學重點。
訓練學生用方程解“已知比一個數(shù)的幾倍多(少)幾是多少,求這個數(shù)”的應用題.。
教學難點。
分析應用題等量關系,并會列出方程.。
教學過程。
一、復習準備。
(一)寫出下面各題的式子.。
1.比的3倍多15。
2.比的4倍少2。
3.2個與34的和。
4.5個與0.6的3倍的差。
(二)解答復習題。
少年宮舞蹈隊有23人,合唱隊的人數(shù)比舞蹈隊的3倍多15人.合唱隊有多少人?
(學生獨立解答)。
23×3+15。
=69+15。
=84(人)。
答:合唱隊有84人.。
二、新授教學。
(一)導入新課(改復習為例4)。
少年宮合唱隊有84人,合唱隊的人數(shù)比舞蹈隊的3倍多15人.舞蹈隊有多少人?
1.比較:例4與復習題有什么相同點和不同點?
相同點:“合唱隊的人數(shù)比舞蹈隊的3倍多15人”這句話沒有變;
不同點:復習題已知舞蹈隊人數(shù)求合唱隊人數(shù),
例4是已知合唱隊人數(shù)求舞蹈隊人數(shù).。
(二)教學例4。
1.畫線段圖分析題意。
2.看圖思考:舞蹈隊人數(shù)和合唱隊人數(shù)有什么關系?
3.學生匯報討論結果:舞蹈隊人數(shù)的3倍加上15正好等于合唱隊人數(shù).。
(根據(jù):合唱隊人數(shù)比舞蹈隊人數(shù)的3倍多15人)。
4.列方程解答。
教師板書:
解:設舞蹈隊有人.。
答:舞蹈隊有23人.。
5.思考:還可以怎樣列方程?(或)。
引導:例題的方法最簡單,解題時要用簡單的方法解.。
(三)變式練習。
少年宮合唱隊有84人,合唱隊的人數(shù)比舞蹈隊的人數(shù)的4倍少8人,舞蹈隊有多少人?
三、課堂小結。
今天這節(jié)課你學到了什么知識?在學習中你有什么感想?
四、鞏固練習。
(一)只列式不計算.。
1.圖書室有文藝書180本,比科技書的2倍多20本,科技書本.。
2.養(yǎng)雞廠養(yǎng)母雞400只,比公雞的2倍少40只,公雞只.。
(二)學校飼養(yǎng)小組今年養(yǎng)兔25只,比去年養(yǎng)的只數(shù)的3倍少8只.去年養(yǎng)兔多少只?
(三)一個等腰三角形的周長是86厘米,底是38厘米.它的腰是多少厘米?
五、課后作業(yè)。
六、板書設計。
例4.少年宮合唱隊有84人,合唱隊的人數(shù)比舞蹈隊的3倍多15人.舞蹈隊有多少人?
解:設舞蹈隊有人.。
答:舞蹈隊有23人.。
教案點評:
分析數(shù)量之間的等量關系,學生已有一定的基礎,本節(jié)主要訓練學生掌握根據(jù)題目所給的不同條件,找等量關系的方法。
首先引導學生用多種方法解答,并通過觀察、比較、分析,從眾多的等量關系中找出最佳思路,使學生學會從多種角度思考問題,培養(yǎng)學生思維的靈活性。
曲線和方程的數(shù)學教案設計篇十
一、運用簡便方法使計算更簡單。
二、解決生活中的.問題。
1、學校買來一批籃球和足球。買來籃球12只,共用a元,買來足球b只,每只25元。
籃球的單價比足球貴多少元?當a=576時,籃球的單價比足球貴多少元?
買這批籃球和足球共用了多少元?當a=1200,b=80時籃球和足球共用了多少元?
曲線和方程的數(shù)學教案設計篇十一
“用字母表示數(shù)”是(北師大版)義務教育課程標準實驗教科書數(shù)學四年級下冊第85~86頁的學習內容,它是學習代數(shù)知識的基礎。四年級的學生在以往的數(shù)學學習中,接觸到的都是具體的'數(shù),而現(xiàn)在要學會用字母即抽象的符號來代表具體情境中的數(shù)量,用含有字母的式子來表示簡單的數(shù)量關系,這是從具體形象思維到抽象邏輯思維的一次過渡,也是思維的一次飛躍。對四年級學生來說,本課內容較為抽象,教學有一定難度。本節(jié)課從設想到實踐,有很多體會,而我感受最深的是有機整合學習材料,追求教學的實效性。“用字母表示數(shù)”是學生學習代數(shù)知識的入門內容。
為上好這節(jié)展示課,我認真學習了“課標”中關于這一部分的目標要求,并查閱了不同版本實驗教材中這部分內容的編寫。在充分比較的基礎上,發(fā)現(xiàn)各版本實驗教材與“老教材”都有很大的不同?!袄辖滩摹狈浅娬{知識技能的。目標,而各版本實驗教材則是更加重視讓學生經歷探索用字母表示數(shù)的過程,體會字母表示數(shù)的意義和作用。特別是北師大版實驗教材中編入的“青蛙兒歌”、“年齡問題”和“擺三角形”三個材料都非常有利于學生反復體會用字母表示數(shù)的需要?;谝陨险J識,我決定依據(jù)北師大版教材,選擇這三個典型材料教學。但考慮到教學內容的邏輯結構和對目標的整體把握,適當進行了擴充和調整。把教材上“推想淘氣和媽媽年齡”的活動改為“推想同學和老師的年齡”,這樣更貼近學生實際,更有親和力和感染力,更能激發(fā)學生的學習興趣。在整合學習材料時,考慮的不是新、奇、異的素材,而是重視創(chuàng)設富有思考性的情境,有利于學生有效地經歷用字母表示數(shù)的過程。為此,在教學設計中,我利用“青蛙兒歌”引出課題展開新課的教學,引導學生用字母表示數(shù),體會字母的作用;將教學重點放在“推想同學和老師的年齡”和“擺三角形”這兩個環(huán)節(jié),使學生自然地萌生出用字母表示數(shù)的需要,并滲透歸納猜想、數(shù)形結合等數(shù)學思想方法,從而落實了教學目標。我把“含有字母的式子里乘號的簡寫與略寫”這項內容讓學生自己看書學習,在反饋檢查時,學生對自學內容掌握得也很好。通過對學習材料的有機整合,明晰了課堂教學主線,收到了很好的實效。
曲線和方程的數(shù)學教案設計篇十二
1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數(shù)學“建模”能力的培養(yǎng)。為后面學習打下基礎。
3、在課堂的第二個環(huán)節(jié)中,通過實際問題的'引入,讓學生動起腦來,階梯型問題的設置使得一些后進生也投入到課堂中來,體現(xiàn)了差異性的教學。在學生慢慢列出方程的同時其實也培養(yǎng)了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優(yōu)點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發(fā)學生參與數(shù)學的興趣,在列完方程的最后讓學生歸納出列方程解應用題的基本步驟。使學生加深對知識的掌握也培養(yǎng)了他們的語言組織能力以及學會標準的數(shù)學用語。
二、從教學方法反思。
本節(jié)課本著“尊重差異”為基礎,先“引導發(fā)現(xiàn)”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應用題的基礎,抓住基礎知識再去發(fā)展他們的邏輯思維能力對后進生是十分重要的。
三、從學生反饋反思。
這堂課學生能積極思考,認真學習,課后作業(yè)都能及時完成。作業(yè)質量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數(shù)量關系去列方程。
曲線和方程的數(shù)學教案設計篇十三
1.教學目標、重點、難點.
教學目標:
(1)了解方程的解的概念.
(2)體驗對方程解的估算,會檢驗一個數(shù)是不是某個一元方程的解.
(3)滲透對應思想.
重點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
難點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
2.例、習題的意圖。
本節(jié)課重點是了解方程的解的意義.通過實際問題中對所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產生尋求方程解法的需求,為后面的學習做好鋪墊.
例1是通過實際問題列出方程,根據(jù)(1)題未知數(shù)的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學生親身體驗什么是方程的解,也為例2檢驗一個數(shù)值是不是方程的解做好鋪墊.對第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學習解方程奠定了積極的心理儲備.
例2是根據(jù)方程的解的意義,使學生會檢驗一個數(shù)值是不是方程的解,這一點應切實使學生掌握.
3.認知難點與突破方法。
難點是方程解的意義和檢驗一個數(shù)是不是一個一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學會檢驗一個數(shù)是不是一個一元方程的解.抓住關鍵字“等號左右兩邊相等”,檢驗一個數(shù)是不是一個一元方程的解,要分別計算方程的左右兩邊,若其值相等,則這個未知數(shù)是方程的解,若不相等,則不是方程的解.
二、新課引入。
復習:
1.什么是一元一次方程?
2.練習:當,,時,求式子的值.
答案:,,.
通過練習2強調求式子的值的一般步驟,其中易錯易混的地方,如代入的值是負數(shù),應加上括號,數(shù)與數(shù)相乘時應恢復乘號,運算關系不能混淆等.
三、例題講解。
例1教材p69中例1。
分析:三個題目中的相等關系分別是:
(1)計算機已使用的時間+繼續(xù)使用的時間=規(guī)定的檢修時間.
(2)2(長+寬)=周長.
(3)女生人數(shù)—男生人數(shù)=.
分析:方程中等號左邊有未知數(shù),估算的值代入方程應使等號左邊的值等于等號右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數(shù),不妨讓,,……分別代入方程算一算.
由計算結果可以看到,每一個的允許值都使代數(shù)式有一個確定的數(shù)值,為方便起見,可以列一個表格:
1234567…185021502300245026002750…從表中發(fā)現(xiàn):當時,的值是,也就是,當時,方程中等號的左邊:.等號的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數(shù)的值為5.所以,方程的解就是.
教材p71中的小云朵,可以多選幾個情況來說明,以加強對方程解得意義的理解.
從表中你還能發(fā)現(xiàn)哪個方程的解?(引導學生得出)如方程的解是;方程的解是等等,使學生進一步體會方程解的概念.
方程解的意義:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
由于這兩個方程估算其解有一定的困難,數(shù)不整齊,或方程比較復雜,出現(xiàn)矛盾沖突,引導學生得出:學習解方程的方法十分必要.
怎樣檢驗一個數(shù)是否是方程的解呢?
曲線和方程的數(shù)學教案設計篇十四
在小學數(shù)學教學中,列方程解應用題是難點。這一部分內容融入了等式的性質,利用四則運算各部分的關系,有助于對所學的算術知識進行鞏固和加深理解,初步滲透代數(shù)的思想,然而在這一部分教學中存在一定的難點。
一、審清題意:
審題,理解題意。即全面分析題目中的已知量、未知量及二者之間的關系。特別要把牽涉到的一些概念術語弄清,如同向,相向,增加到,增加了等。
二、確立未知數(shù):
三、尋找等量關系:
“含有未知數(shù)的等式稱為方程”因而是“等式”是列方程比不可少的條件。所以尋找等量關系是解題的關鍵。常見的等量關系有以下幾種:
1、總量相等;2、成倍數(shù)相等;3、按公式相等;
小學常用數(shù)量關系總結: