曲線和方程的數(shù)學(xué)教案設(shè)計(jì)范文(13篇)

字號(hào):

    教案應(yīng)該注重培養(yǎng)學(xué)生的綜合能力,提高他們的創(chuàng)新思維和問題解決能力。教案的編寫要注意培養(yǎng)學(xué)生的創(chuàng)新思維和實(shí)踐能力。閱讀這些教案范文可以拓寬我們的教學(xué)思路,提高教學(xué)效果。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇一
    教學(xué)目標(biāo):
    1、借助天平明白等式的含義,并在分類的基礎(chǔ)上充分感受、認(rèn)識(shí)什么是方程。
    2、會(huì)用方程表示數(shù)量關(guān)系。
    3、培養(yǎng)學(xué)生觀察、描述、分類、抽象、概括、應(yīng)用等能力。
    4、感受方程與現(xiàn)實(shí)生活的密切聯(lián)系,體驗(yàn)數(shù)學(xué)活動(dòng)的探索性。
    重點(diǎn):理解方程是含有未知數(shù)的等式;
    難點(diǎn):方程的意義抽象的過程。
    課前談話:滲透平衡和等量(談體驗(yàn))。
    教學(xué)過程:
    一、激情導(dǎo)入。
    出示天平,(見過天平嗎?在那里見過?有什么作用???)根據(jù)天平的狀態(tài)列出不同的式子,(不平衡讓學(xué)生想辦法得出讓天平兩邊平衡)。
    二、探究新知。
    1.對(duì)不同的式子進(jìn)行分類(不要有任何要求)。
    讓學(xué)生先獨(dú)立思考,然后小組合作交流自己的想法。
    2.小組匯報(bào)分類的想法。小組之間在傾聽的過程中逐漸完善自己本組的想法。
    讓小組的代表說說自己組是怎樣分類的?為什么這樣分類?
    3.教師根據(jù)各小組的分類進(jìn)行小結(jié):像這樣的用等號(hào)連接左右兩邊的叫做等式。像這樣的這一類叫方程。板書課題。(在學(xué)生分類的基礎(chǔ)上)。
    4.小組探究“什么是方程?”(先觀察式子,獨(dú)立思考,后小組交流)。
    5.小組匯報(bào)各組的想法。在各組傾聽的基礎(chǔ)上逐漸完善自己的想法。
    6.教師在學(xué)生小組匯報(bào)的基礎(chǔ)上進(jìn)行小結(jié):像這樣,含有未知數(shù)的等式叫方程。
    7.生舉例。
    8、師舉例,讓學(xué)生說哪些是方程哪些不是方程,并說明理由。
    9、通過剛才的幾道算式,讓學(xué)生說說對(duì)方程又有了哪些新的認(rèn)識(shí)?
    10、判斷兩句話:所有的方程都是等式,所有的等式都是方程。
    11、畫圖表示方程與等式之間的關(guān)系。
    三、應(yīng)用練習(xí)。
    1.判斷下列式子是不是方程。
    2.看圖列方程。
    3.根據(jù)題意列方程。
    四、拓展延伸。
    1、談?wù)勛约涸谥R(shí)和情感上的收獲。
    2、送給同學(xué)們一個(gè)方程:天才+x=成功。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇二
    1.小明用天平測(cè)量物體的質(zhì)量(如下圖),已知每個(gè)小砝碼的質(zhì)量為1克,此時(shí)天平處于平衡狀態(tài).若設(shè)大砝碼的質(zhì)量為x克.
    考查說明:本題主要考查等式基本性質(zhì)1.
    答案與解析:根據(jù)等式基本性質(zhì)1:等式兩邊同時(shí)加或減去同一個(gè)數(shù)或式子,結(jié)果仍為等式.
    2.方程3y=。
    兩邊都除以3得y=1。
    改正:________________________________________________.
    考查說明:本題主要考查等式基本性質(zhì)2并熟練運(yùn)用.
    答案與解析:得y=。
    兩邊同時(shí)除以3時(shí),右邊也要除以3,不是乘以3。
    3.當(dāng)x=時(shí),60-5x=0.
    考查說明:本題主要考查利用等式兩條基本性質(zhì)來解簡(jiǎn)單方程.
    答案與解析:12.由原方程和等式性質(zhì)1得5x=60,再由等式性質(zhì)2,兩邊同除以5,得x=12.
    4.方程的解是(36,48中選填一個(gè))。
    考查說明:本題考查的知識(shí)點(diǎn)是方程的解的概念,使得等號(hào)成立即可.
    答案與解析:36.方程的解使等式兩邊相等,把兩個(gè)數(shù)代入驗(yàn)算即可.
    5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.
    考查說明:本題主要考查根據(jù)題意找等量關(guān)系,從而列出方程.
    答案與解析:55-x=29+x.等量關(guān)系為:抽調(diào)后,三班人數(shù)=八班人數(shù),關(guān)鍵要理解三班少了x人的同時(shí),八班多了x人.
    二、選擇題。
    6.下列方程中,是一元一次方程的是()。
    a、
    b、
    c、
    d、
    考查說明:本題主要考查一元一次方程的概念.
    答案與解析:a.a和b都需要化簡(jiǎn)后再判斷,c明顯是二元的,d分母中含未知數(shù),不是整式方程.
    7.根據(jù)下列條件能列出方程的是()。
    a.一個(gè)數(shù)的'與另一個(gè)數(shù)的的和。
    b.與1的差的4倍是8。
    c.和的60%。
    d.甲的3倍與乙的差的2倍。
    考查說明:本題考查的知識(shí)點(diǎn)是方程與代數(shù)式的區(qū)別.
    答案與解析:b.其余幾個(gè)答案都不能列出等號(hào).
    三、解答題。
    考查說明:本題考查的知識(shí)點(diǎn)是列一元一次方程解應(yīng)用題,并會(huì)利用等式性質(zhì)解簡(jiǎn)單的一元一次方程.本題等量關(guān)系為:教師票價(jià)+學(xué)生票價(jià)=910.
    答案與解析:設(shè):學(xué)生有x人,根據(jù)題意。
    列出方程得70+70x×=910,
    解方程得70x×=840,
    即35x=840,
    所以x=24.
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇三
    1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡(jiǎn)單問題中的數(shù)量關(guān)系列出一元二次方程。
    2、過程與方法:學(xué)生通過觀察與模仿,建立起對(duì)一元二次方程的感性認(rèn)識(shí),獲得對(duì)代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
    3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
    重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
    (一)導(dǎo)入新課。
    生:老師,這是雷鋒叔叔。
    生:是的老師。
    生:想。
    師:同學(xué)們也都很樂于助人,好那我們看一看這個(gè)問題是什么,然后帶著這個(gè)問題開始我們今天的學(xué)習(xí)一元二次方程。
    (二)新課教學(xué)。
    師:我們來看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡(jiǎn)單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。
    (下去巡視)。
    (三)小結(jié)作業(yè)。
    師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
    xx。
    xx。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇四
    3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。
    和難點(diǎn)。
    課堂設(shè)計(jì)。
    一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。
    為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題。
    例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
    (首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
    解法1:(4+2)÷(3-1)=3.
    答:某數(shù)為3.
    (其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
    解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
    解之,得x=3.
    答:某數(shù)為3.
    縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們運(yùn)用一元一次方程解應(yīng)用題的目的之一。
    我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系。因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程。
    本節(jié)課,我們就通過實(shí)例來說明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
    二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟。
    師生共同分析:
    1.本題中給出的已知量和未知量各是什么?
    2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)。
    上述分析過程可列表如下:
    x-15%x=42500,
    所以x=50000.
    答:原來有50000千克面粉。
    (還有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)。
    (2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿。
    依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
    (2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系。(這是關(guān)鍵一步);
    (4)求出所列方程的解;
    (5)檢驗(yàn)后明確地、完整地寫出答案。這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義。
    (仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥。解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤。并嚴(yán)格規(guī)范書寫格式)。
    解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得。
    3x+9=5x-(5-4),
    解這個(gè)方程:2x=10,
    所以x=5.
    其蘋果數(shù)為3×5+9=24.
    答:第一小組有5名同學(xué),共摘蘋果24個(gè)。
    學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
    (設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)。
    三、課堂練習(xí)。
    2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元。求1978年末的儲(chǔ)蓄存款。
    3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
    四、師生共同小結(jié)。
    首先,讓學(xué)生回答如下問題:
    1.本節(jié)課了哪些內(nèi)容?
    3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
    依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
    (2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
    五、作業(yè)。
    1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
    2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇五
    活動(dòng)3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程應(yīng)注意的事項(xiàng);歸納一元一次方程解法的一般步驟·活動(dòng)4小結(jié)總結(jié)本節(jié)收獲活動(dòng)1、創(chuàng)設(shè)問題情境:引言:這件珍貴的文物是紙莎草文書,是古代埃及人用象形文字寫在一種特殊的草上的著作,至今已有3700多年的歷史了·在文書中記載了許多有關(guān)數(shù)學(xué)的問題·問題一個(gè)數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。(1)能不能用方程解決這個(gè)問題?(2)能嘗試解這個(gè)方程嗎?(3)不同的解法有什么各自的特點(diǎn)?設(shè)計(jì)意圖:1、利用列方程、解方程解決實(shí)際問題,再一次讓學(xué)生感受方程的優(yōu)越性,提高學(xué)生主動(dòng)使用方程的意識(shí)·2、經(jīng)過對(duì)同一方程不同解法到去分母能夠使解方程的過程更加便捷,明白為什么要去分母,這是"去分母"這一步驟的必要性;同時(shí),讓學(xué)生認(rèn)同"去分母"是科學(xué)的、可行的,明確為什么能去分母·這樣,學(xué)生就會(huì)自覺參與探索去分母的一般做法的活動(dòng),從而發(fā)現(xiàn)"方程兩邊同時(shí)乘以所有分母的最小公倍數(shù)"這一方法·也首次由學(xué)生自行突破了難點(diǎn)。3、通過交流,讓學(xué)生用自己的語言清楚地表達(dá)解決問題的過程,提高學(xué)生的語言表達(dá)能力·活動(dòng)2下面方程可以怎樣求解?觀察方程,回答教師提出的問題并對(duì)學(xué)生的回答進(jìn)行總結(jié):先去分母·怎樣去分母?解去掉分母后的這個(gè)方程歸納總結(jié)去分母的方法:在方程兩邊同時(shí)乘以所有分母的最小公倍數(shù);依據(jù)是等式的性質(zhì)2,即"等式兩邊同時(shí)乘同一個(gè)數(shù),結(jié)果仍相等·"呈現(xiàn)不同學(xué)生的解題過程,選取學(xué)生在去分母過程中出現(xiàn)的典型錯(cuò)誤,引導(dǎo)全體學(xué)生共同分析錯(cuò)誤的原因,發(fā)現(xiàn)去分母的易錯(cuò)點(diǎn)·鞏固了學(xué)生對(duì)解方程的透徹理解。這樣做的目的不僅培養(yǎng)了學(xué)生的學(xué)習(xí)自主性和團(tuán)體協(xié)作精神,還對(duì)與重、難點(diǎn)知識(shí)的突破起到了一定的促進(jìn)作用。通過對(duì)錯(cuò)例的辨析,加深學(xué)生對(duì)"去分母"的認(rèn)識(shí),避免解方程時(shí)出現(xiàn)類似錯(cuò)誤·去掉分母后,方程即轉(zhuǎn)化為熟悉的形式,新舊知識(shí)自然銜接,使學(xué)生體會(huì)到,只要把新問題想辦法合理轉(zhuǎn)化為熟悉的知識(shí),問題就能得以解決通過在解方程過程中"去分母"這一步驟體會(huì)轉(zhuǎn)化思想·活動(dòng)3解方程設(shè)計(jì)意圖:用實(shí)踐來加深對(duì)"去分母"的方法解一元一次方程的認(rèn)識(shí)·結(jié)合本題思考,能總結(jié)解這種方程的一般操作過程嗎?鞏固所學(xué)的一元一次方程的解法,同時(shí)說明解方程的步驟是程序化的,但不能生搬硬套,每個(gè)步驟要不要使用、何時(shí)使用都應(yīng)視方程的特征而定·了解對(duì)方程的每一次變形都是為了將方程最終化歸為的形式·解題時(shí)應(yīng)根據(jù)題目特點(diǎn),合理選擇解題步驟·小結(jié)活動(dòng)4總結(jié)(1)學(xué)生能否總結(jié)本節(jié)的知識(shí),是否理解去分母的作用、依據(jù),是否掌握去分母的具體做法;(2)學(xué)生是否掌握了一元一次方程解法的一般步驟;(3)學(xué)生是否能準(zhǔn)確表達(dá)自己的觀點(diǎn)·最后復(fù)習(xí)、鞏固本節(jié)的知識(shí),學(xué)會(huì)總結(jié)反思·四。評(píng)價(jià)分析數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同參與發(fā)展的過程。本節(jié)課的評(píng)價(jià)要讓學(xué)生體會(huì)到參與學(xué)習(xí)、與人合作的重要性,獲得成績(jī)的喜悅,從而激發(fā)性的學(xué)習(xí)動(dòng)力。在這節(jié)的數(shù)學(xué)課,如要獲得最直接、真實(shí)的反饋,就要盡量讓學(xué)生多說、多思考,對(duì)于學(xué)生提出的問題和解決問題的方法,教師都要給予鼓勵(lì)和引導(dǎo),并隨時(shí)觀察解決,評(píng)價(jià)應(yīng)充分考慮到每個(gè)學(xué)生的差異,這節(jié)課通過現(xiàn)代化的技術(shù)的運(yùn)用,節(jié)省出盡可能多的時(shí)間,提出挑戰(zhàn)性的問題,讓學(xué)生通過開放式的數(shù)學(xué)討論提高學(xué)生學(xué)習(xí)的興趣,在交流中獲益。通過隨堂練習(xí)和作業(yè)來激勵(lì)其學(xué)習(xí)。同時(shí)做練習(xí)時(shí),將評(píng)價(jià)及時(shí)反饋給學(xué)生,樹立學(xué)習(xí)數(shù)學(xué)的自信心,促進(jìn)學(xué)生的進(jìn)一步發(fā)展。并在課后作成長(zhǎng)記錄,使學(xué)生比較全面了解自己的學(xué)習(xí)過程,特別感受自己的不斷成長(zhǎng)和進(jìn)步,為下一步教學(xué)提供重要依據(jù)。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇六
    一、教學(xué)目標(biāo):
    1、通過對(duì)多種實(shí)際問題的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義。
    2、通過觀察,歸納的概念。
    3、積累活動(dòng)經(jīng)驗(yàn)。
    二、重點(diǎn)和難點(diǎn)。
    歸納的概念。
    感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義。
    三、教學(xué)過程。
    1、課前訓(xùn)練一。
    (1)如果||=9,則=;如果2=9,則=。
    (2)在數(shù)軸上距離原點(diǎn)4個(gè)單位長(zhǎng)度的數(shù)為。
    (3)下列關(guān)于相反數(shù)的說法不正確的是()。
    a、兩個(gè)相反數(shù)只有符號(hào)不同,并且它們到原點(diǎn)的距離相等。
    b、互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等。
    c、0的相反數(shù)是0。
    d、互為相反數(shù)的兩個(gè)數(shù)的和為0(字母表示為、互為相反數(shù)則)。
    e、有理數(shù)的相反數(shù)一定比0小。
    (4)乘積為1的兩個(gè)數(shù)互為倒數(shù),如:
    (5)如果,則()。
    a、,互為倒數(shù)b、,互為相反數(shù)c、,都是0d、,至少有一個(gè)為0。
    (6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長(zhǎng)高約為12厘米,問大約經(jīng)過幾周后樹苗長(zhǎng)高到1米?設(shè)大約經(jīng)過周后樹苗長(zhǎng)高到1米,依題意得方程()。
    a、b、c、d、00。
    2、由課本p149卡通圖畫引入新課。
    3、分組討論p149兩個(gè)練習(xí)。
    4、p150:某長(zhǎng)方形的足球場(chǎng)的周長(zhǎng)為310米,長(zhǎng)與寬的差為25米,求這個(gè)足球場(chǎng)的長(zhǎng)與寬各是多少米?設(shè)這個(gè)足球場(chǎng)的寬為米,那么長(zhǎng)為(+25)米,依題意可列得方程為:()。
    課本的寬為3厘米,長(zhǎng)比寬多4厘米,則課本的面積為平方厘米。
    解:設(shè)每個(gè)練習(xí)本要元,則每個(gè)筆記本要元,依題意可列得方程:
    6、歸納方程、的概念。
    7、隨堂練習(xí)po151。
    8、達(dá)標(biāo)測(cè)試。
    (1)下列式子中,屬于方程的是()。
    a、b、c、d、
    (2)下列方程中,屬于的是()。
    a、b、c、d、
    解:設(shè)甲隊(duì)勝了場(chǎng),則平了場(chǎng),依題意可列得方程:
    解得=。
    答:甲隊(duì)勝了場(chǎng),平了場(chǎng)。
    (4)根據(jù)條件“一個(gè)數(shù)比它的一半大2”可列得方程為。
    (5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為。
    p151習(xí)題5.1。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇七
    教材的地位和作用。
    “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對(duì)全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識(shí)到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!
    根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。
    二、教學(xué)目標(biāo)。
    根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:
    知識(shí)目標(biāo):
    1、了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;
    2、初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;
    3、學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;
    4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。
    能力目標(biāo):
    1、通過直線方程的引入,加強(qiáng)學(xué)生對(duì)方程的解和曲線上的點(diǎn)的一一對(duì)應(yīng)關(guān)系的認(rèn)識(shí);
    3、能用所學(xué)知識(shí)理解新的概念,并能運(yùn)用概念解決實(shí)際問題,從中體會(huì)轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識(shí)。
    情感目標(biāo):
    1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;
    2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。
    三、重難點(diǎn)突破。
    “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對(duì)定義中為什么要規(guī)定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識(shí)的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對(duì)概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識(shí),又決定用集合相等的概念來解釋曲線和方程的對(duì)應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
    怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯(cuò)誤,通常在由已知曲線建立方程的時(shí)候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計(jì)了三種層次的問題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的.方程。通過這些例題讓學(xué)生再一次體會(huì)“二者”缺一不可。
    四、學(xué)情分析。
    此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)之間建立了一一對(duì)應(yīng)關(guān)系,已有了用方程(有時(shí)以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(shí)(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個(gè)變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對(duì)學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時(shí)容易產(chǎn)生的問題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時(shí)各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會(huì),要求學(xué)生能答出曲線和方程間必須滿足兩個(gè)關(guān)系時(shí)才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區(qū)別。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇八
    3、能解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)。
    2、用解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)。
    1、做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近。
    先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問題多聽多問。
    自主學(xué)習(xí)部分:
    問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
    (3)在一次函數(shù)y=5-x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?
    (5)由以上的探究過程,你發(fā)現(xiàn)了什么?
    問題2.
    (3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。
    合作探究:
    1、用做圖像的方法解方程組。
    2、用解方程的方法求直線y=4-2x與直線y=2x-12交點(diǎn)。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇九
    在小學(xué)數(shù)學(xué)教學(xué)中,列方程解應(yīng)用題是難點(diǎn)。這一部分內(nèi)容融入了等式的性質(zhì),利用四則運(yùn)算各部分的關(guān)系,有助于對(duì)所學(xué)的算術(shù)知識(shí)進(jìn)行鞏固和加深理解,初步滲透代數(shù)的思想,然而在這一部分教學(xué)中存在一定的難點(diǎn)。
    一、審清題意:
    審題,理解題意。即全面分析題目中的已知量、未知量及二者之間的關(guān)系。特別要把牽涉到的一些概念術(shù)語弄清,如同向,相向,增加到,增加了等。
    二、確立未知數(shù):
    三、尋找等量關(guān)系:
    “含有未知數(shù)的等式稱為方程”因而是“等式”是列方程比不可少的條件。所以尋找等量關(guān)系是解題的關(guān)鍵。常見的等量關(guān)系有以下幾種:
    1、總量相等;2、成倍數(shù)相等;3、按公式相等;
    小學(xué)常用數(shù)量關(guān)系總結(jié):
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇十
    預(yù)設(shè)5:
    解:設(shè)海洋面積為x億平方千米。那么陸地面積可以表示為實(shí)際問題與方程教學(xué)設(shè)計(jì)億平方千米。
    地球表面積-海洋面積=陸地面積。
    預(yù)設(shè):第一種方法最好,解方程的過程最簡(jiǎn)單。
    師:同學(xué)們你們簡(jiǎn)直太聰明了,想出來這么多解決這道題目的方法,不過我們要在這么多的方法之中選擇最優(yōu)的做法,一般遇到這類求兩個(gè)未知量的題目,我們要設(shè)一倍量為x,再利用題目中的等量關(guān)系來解決問題。
    師:接下來請(qǐng)同學(xué)們思考,列方程解決實(shí)際問題一般需要哪幾個(gè)步驟呢?
    (3)總結(jié)方法。
    1、設(shè)(找出未知數(shù),用字母x表示)。
    2、找(找出題目中的等量關(guān)系)。
    3、列(根據(jù)等量關(guān)系列出方程)。
    4、解(運(yùn)用等式的性質(zhì)解方程)。
    5、驗(yàn)(將解出的結(jié)果代入方程檢驗(yàn))。
    6、答(完整地寫好答話)。
    三、鞏固練習(xí)。
    1、果園里蘋果樹和梨樹一共300棵,梨樹是蘋果樹的5倍,蘋果樹和梨樹各有多少棵。下列說法正確的是()。
    a、解:設(shè)梨樹為x棵,則蘋果樹為5x棵。
    b、解:設(shè)蘋果樹為x棵,則梨樹為5x棵。
    通過這道題目的練習(xí),使學(xué)生更深一步掌握設(shè)兩個(gè)未知量的方法。
    2、找出下列各題中的等量關(guān)系。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇十一
    學(xué)生在解方程的基礎(chǔ)上進(jìn)一步學(xué)習(xí)用方程解決實(shí)際問題,通過我的教學(xué)實(shí)踐和教學(xué)反思,我覺得“重視關(guān)鍵句分析訓(xùn)練,讓學(xué)生感悟方程的思想?!?BR>    解決實(shí)際問題首先要引導(dǎo)學(xué)生分析題目的條件和問題,找出題目中的關(guān)鍵句,根據(jù)關(guān)鍵句找出題目中的直接的相等關(guān)系,這樣可以便于學(xué)生列出方程,解答問題。由于我知道我們現(xiàn)在的.數(shù)學(xué)課堂教學(xué)對(duì)等量關(guān)系式的訓(xùn)練不夠重視,于是我課前談話中用了很多時(shí)間對(duì)等量關(guān)系式的寫法進(jìn)行了訓(xùn)練。先從倍數(shù)關(guān)系,再到相差關(guān)系,然后兩種關(guān)系合并,要求學(xué)生分別寫出等量關(guān)系式,為本節(jié)課的教學(xué)打下良好的基礎(chǔ)。為了突出根據(jù)關(guān)鍵句寫等量關(guān)系式,我出示例題后,直接問:“三句話中你覺得哪一句最重要,為什么?”讓學(xué)生根據(jù)“的東北虎只數(shù)比的3倍還多100只,寫出三種等量關(guān)系,有三種關(guān)系式就對(duì)應(yīng)著三種解法,哪一種關(guān)系式最容易想到。讓學(xué)生感受到要提高正確率,我們可以從最容易的入手,學(xué)生已經(jīng)掌握了“求一個(gè)數(shù)比另一個(gè)數(shù)的幾倍多幾(或少幾)”的實(shí)際問題,我們就要引導(dǎo)學(xué)生,充分利用已有的知識(shí)經(jīng)驗(yàn)解決新的問題。學(xué)生是學(xué)習(xí)的主體,出示問題后讓學(xué)生嘗試解決問題,教師通過巡視,充分了解學(xué)生的困難以及想法,然后才能很好的組織交流。為了使學(xué)生認(rèn)識(shí)到方程的思想,我故意讓學(xué)生先交流用倒推策略解決問題,當(dāng)交流完列式后讓學(xué)生說出每一步所表示的意識(shí)時(shí),學(xué)生感到困難,再次問學(xué)生用倒推策略解決時(shí),還可能出現(xiàn)什么錯(cuò)誤,這樣從兩個(gè)方面讓學(xué)生認(rèn)識(shí)到用倒推策略解決的不足,才能更好的讓學(xué)生主動(dòng)愿意來學(xué)習(xí)用方程來解。方法的優(yōu)劣是比較出來的,當(dāng)然也是因人而異的。方程為什么要寫設(shè)語,方程是怎樣列出來的,把未知轉(zhuǎn)化為已知條件,才能更好的利用我們最容易想到的等量關(guān)系式列出方程才能大大提高正確率。解完例題再次比較總結(jié),列方程是怎樣想的,而倒推策略是怎樣想的。然后再總結(jié)列方程解決問題的一般步驟,只有讓學(xué)生充分感受到方程的作用和價(jià)值,學(xué)生才會(huì)自愿用列方程來解決新的問題。
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇十二
    1.教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn).
    教學(xué)目標(biāo):
    (1)了解方程的解的概念.
    (2)體驗(yàn)對(duì)方程解的估算,會(huì)檢驗(yàn)一個(gè)數(shù)是不是某個(gè)一元方程的解.
    (3)滲透對(duì)應(yīng)思想.
    重點(diǎn):方程解的意義,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.
    難點(diǎn):方程解的意義,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.
    2.例、習(xí)題的意圖。
    本節(jié)課重點(diǎn)是了解方程的解的意義.通過實(shí)際問題中對(duì)所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產(chǎn)生尋求方程解法的需求,為后面的學(xué)習(xí)做好鋪墊.
    例1是通過實(shí)際問題列出方程,根據(jù)(1)題未知數(shù)的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學(xué)生親身體驗(yàn)什么是方程的解,也為例2檢驗(yàn)一個(gè)數(shù)值是不是方程的解做好鋪墊.對(duì)第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學(xué)習(xí)解方程奠定了積極的心理儲(chǔ)備.
    例2是根據(jù)方程的解的意義,使學(xué)生會(huì)檢驗(yàn)一個(gè)數(shù)值是不是方程的解,這一點(diǎn)應(yīng)切實(shí)使學(xué)生掌握.
    3.認(rèn)知難點(diǎn)與突破方法。
    難點(diǎn)是方程解的意義和檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學(xué)會(huì)檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.抓住關(guān)鍵字“等號(hào)左右兩邊相等”,檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解,要分別計(jì)算方程的左右兩邊,若其值相等,則這個(gè)未知數(shù)是方程的解,若不相等,則不是方程的解.
    二、新課引入。
    復(fù)習(xí):
    1.什么是一元一次方程?
    2.練習(xí):當(dāng),,時(shí),求式子的值.
    答案:,,.
    通過練習(xí)2強(qiáng)調(diào)求式子的值的一般步驟,其中易錯(cuò)易混的地方,如代入的值是負(fù)數(shù),應(yīng)加上括號(hào),數(shù)與數(shù)相乘時(shí)應(yīng)恢復(fù)乘號(hào),運(yùn)算關(guān)系不能混淆等.
    三、例題講解。
    例1教材p69中例1。
    分析:三個(gè)題目中的相等關(guān)系分別是:
    (1)計(jì)算機(jī)已使用的時(shí)間+繼續(xù)使用的時(shí)間=規(guī)定的檢修時(shí)間.
    (2)2(長(zhǎng)+寬)=周長(zhǎng).
    (3)女生人數(shù)—男生人數(shù)=.
    分析:方程中等號(hào)左邊有未知數(shù),估算的值代入方程應(yīng)使等號(hào)左邊的值等于等號(hào)右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數(shù),不妨讓,,……分別代入方程算一算.
    由計(jì)算結(jié)果可以看到,每一個(gè)的允許值都使代數(shù)式有一個(gè)確定的數(shù)值,為方便起見,可以列一個(gè)表格:
    1234567…185021502300245026002750…從表中發(fā)現(xiàn):當(dāng)時(shí),的值是,也就是,當(dāng)時(shí),方程中等號(hào)的左邊:.等號(hào)的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數(shù)的值為5.所以,方程的解就是.
    教材p71中的小云朵,可以多選幾個(gè)情況來說明,以加強(qiáng)對(duì)方程解得意義的理解.
    從表中你還能發(fā)現(xiàn)哪個(gè)方程的解?(引導(dǎo)學(xué)生得出)如方程的解是;方程的解是等等,使學(xué)生進(jìn)一步體會(huì)方程解的概念.
    方程解的意義:使方程中等號(hào)左右兩邊相等的未知數(shù)的值,叫做方程的解.
    由于這兩個(gè)方程估算其解有一定的困難,數(shù)不整齊,或方程比較復(fù)雜,出現(xiàn)矛盾沖突,引導(dǎo)學(xué)生得出:學(xué)習(xí)解方程的方法十分必要.
    怎樣檢驗(yàn)一個(gè)數(shù)是否是方程的解呢?
    曲線和方程的數(shù)學(xué)教案設(shè)計(jì)篇十三
    本節(jié)課的重難點(diǎn)在于設(shè)未知數(shù)和找等量關(guān)系,通過這兩道題的練習(xí),為第三道題的變式練習(xí)做準(zhǔn)備。
    3.養(yǎng)殖場(chǎng)有白兔和黑兔,白兔的只數(shù)是黑兔的4倍。
    (1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
    (2)白兔比黑兔多138只,白兔和黑兔各有多少只?
    請(qǐng)同學(xué)們先獨(dú)立完成第一問,然后我們進(jìn)行交流。
    第二問請(qǐng)大家認(rèn)真思考,觀察與第一問的區(qū)別,獨(dú)立完成后,進(jìn)行交流。
    四、課堂小結(jié)。
    通過本節(jié)課的學(xué)習(xí):