七年級數(shù)學有理數(shù)的乘方教案設計(通用15篇)

字號:

    教案要注重不同學生的個體差異,提供個性化的學習支持和指導。編寫教案前,教師應該充分了解學生的學情,以便有針對性地進行教學設計。小編為大家收集了一些教案模板,大家可以根據(jù)自己的實際情況進行修改和運用。
    七年級數(shù)學有理數(shù)的乘方教案設計篇一
    學習目標:。
    1、理解加減法統(tǒng)一成加法運算的意義.
    2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.
    3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
    教學方法:講練相結(jié)合。
    教學過程。
    1、一架飛機作特技表演,起飛后的高度變化如下表:
    高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
    記作+4.5千米—3.2千米+1.1千米—1.4千米。
    請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
    2、你是怎么算出來的,方法是。
    1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
    2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
    如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
    =(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。
    =-20+3+5-7再把加號記在腦子里,省略不寫。
    可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
    4、師生完整寫出解題過程。
    1、解決引例中的問題,再比較前面的方法,你的感覺是。
    2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
    3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
    1、小結(jié):說說這節(jié)課的收獲。
    2、p241、2。
    3、計算。
    1)27—18+(—7)—322)。
    五、作業(yè)。
    1、p2552、p26第8題、14題。
    七年級數(shù)學有理數(shù)的乘方教案設計篇二
    難點:有理數(shù)乘方運算的符號法則?
    1?求n個相同因數(shù)的積的運算叫做乘方?
    2?乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?
    一般地,在an中,a取任意有理數(shù),n取正整數(shù)?
    應當注意,乘方是一種運算,冪是乘方運算的結(jié)果?當an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。
    例1計算:
    (1)2,2,2,24;(2)-2,2,3,(-2)4;。
    (3)0,02,03,04?
    教師指出:2就是21,指數(shù)1通常不寫?讓三個學生在黑板上計算?
    引導學生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關(guān)系?
    (1)模向觀察。
    正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?
    (2)縱向觀察。
    互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?
    (3)任何一個數(shù)的偶次冪都是什么數(shù)?
    任何一個數(shù)的偶次冪都是非負數(shù)?
    你能把上述的結(jié)論用數(shù)學符號語言表示嗎?
    當a0時,an0(n是正整數(shù));
    當a。
    當a=0時,an=0(n是正整數(shù))?
    (以上為有理數(shù)乘方運算的符號法則)。
    a2n=(-a)2n(n是正整數(shù));
    =-(-a)2n-1(n是正整數(shù));
    a2n0(a是有理數(shù),n是正整數(shù))?
    例2計算:
    (1)(-3)2,(-3)3,[-(-3)]5;。
    (2)-32,-33,-(-3)5;。
    (3),?
    讓三個學生在黑板上計算?
    課堂練習。
    計算:
    (1),,,-,;
    (2)(-1)20xx,322,-42(-4)2,-23(-2)3;。
    (3)(-1)n-1?
    讓學生回憶,做出小結(jié):
    1?乘方的有關(guān)概念?2?乘方的符號法則?3?括號的作用?
    1?計算下列各式:
    (-3)2;(-2)3;(-4)4;;-0.12;。
    -(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
    2?填表:
    3?a=-3,b=-5,c=4時,求下列各代數(shù)式的值:
    4?當a是負數(shù)時,判斷下列各式是否成立?
    (1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
    5*?平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?
    6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
    七年級數(shù)學有理數(shù)的乘方教案設計篇三
    3.進一步感悟“轉(zhuǎn)化”的思想。
    把有理數(shù)的加減法混合運算統(tǒng)一為加法運算。
    省略負數(shù)前面的加號的有理數(shù)加法,運用運算律交換加數(shù)位置時,符號不變。
    根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運算可以統(tǒng)一為加法運算。
    1、完成下列計算:
    (1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
    歸納:根據(jù)有理數(shù)的減法法則,有理數(shù)的`加減混合運算可以統(tǒng)一為運算;
    省略負數(shù)前面的加號和()后的形式是______________________;
    展示交流。
    1、把下列運算統(tǒng)一成加法運算:
    2、將下列有理數(shù)加法運算中,加號省略:
    (1)12+(-8)=________________;
    3、將下列運算先統(tǒng)一成加法,再省略加號:
    =___[]______________________。
    4、仿照本p37例6,完成下列計算:
    盤點收獲。
    個案補充。
    1.計算:
    本p39習題2。5第6題(1)、(3)、(5),第7題。
    七年級數(shù)學有理數(shù)的乘方教案設計篇四
    這節(jié)課的內(nèi)容是一元一次方程第一課時。課后,我對本節(jié)課從四方面進行了如下反思:
    一:對選擇引例的反思。
    在小學學生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學生認識到方程是更方便、更有力的數(shù)學工具,又要讓學生體驗到從算術(shù)方法到代數(shù)方法是數(shù)學的進步,這些目標的實現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學生很少有利用方程解應用題的經(jīng)歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術(shù)到方程的進步呢?幾乎翻閱了所有的有關(guān)資料,無獨有偶,在新課標教案126頁的一道數(shù)學名題“啊哈,它的全部,它的一半,其和等于19?!弊屛已矍耙涣?,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數(shù)學組經(jīng)驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現(xiàn)出從算術(shù)到方程的進步,因為題很簡單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優(yōu)越性,后面學習中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創(chuàng)新又能激發(fā)學生的興趣,既符合學生的已有經(jīng)驗和知識水平,又符合學生的認知規(guī)律。
    二:對選題的反思。
    我在備課中【活動3】最初選用的題是:
    修改后的題是:
    判斷下列各式是方程的有:
    (1)(2)(3)(4)(5)。
    考慮到學生初對方程概念的研究,不在數(shù)字上人為的設置障礙,因為是否是方程與數(shù)字的大小根本無關(guān),于是把數(shù)字全部統(tǒng)一成了6、2、8三個數(shù),利于學生從未知數(shù)和等號的角度進一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強,容易分散學生對概念本質(zhì)的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質(zhì)。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質(zhì)的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個數(shù)、未知數(shù)的次數(shù)等均無關(guān)。
    三:對課堂實踐的反思。
    本節(jié)課的設計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結(jié)。
    當環(huán)節(jié)進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發(fā)現(xiàn)學生在黑板上寫的全部都是未知數(shù)在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現(xiàn)的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數(shù)的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數(shù)的方程來彌補設計上的不足時,我忽然發(fā)現(xiàn)最后一排的一位男生已經(jīng)高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經(jīng)高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數(shù)和等號就ok了,與未知數(shù)的位置無關(guān)!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜。”
    四:教后整體反思。
    成功之處:
    1.引例、練習題的選擇都很恰當。
    2.思路清晰,重點突出,注意到了學生的自主探索,節(jié)奏把握較好。
    3.數(shù)學文化的滲透比較自然。
    4.“寫一個或幾個一元一次方程”此環(huán)節(jié)的設計體現(xiàn)了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。
    5.語言簡練,教態(tài)大方,師生互動比較熱烈,充分調(diào)動了學生的積極性。
    6.板書設計較為合理。本節(jié)課的主要內(nèi)容都以提煉的方式呈現(xiàn)出來。
    不足之處:
    1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。
    2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。
    3.授課語言仍需加強錘煉。
    這節(jié)課的準備和每個環(huán)節(jié)的設計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!
    七年級數(shù)學有理數(shù)的乘方教案設計篇五
    本節(jié)課的重難點都是從實際于問題中尋找相等關(guān)系,從而列方程解決實際問題,為了更好地突出重點、突破點,在教學過程中著力體現(xiàn)以下幾方面的特點:
    1、突出問題的應用意識。首先用一個學生感興趣的突出問題引入課題,然后運用算術(shù)方法給出答案,在各環(huán)節(jié)的安排上都設計成一個個問題,引導學生能圍繞問題開展思考、討論,進行學習。
    2、體現(xiàn)學生的主體意識。始終把學生放在主體地位,讓學生通過對列算式與列方程的比較,分別歸納出它們的特點,從感受到從算術(shù)方法到代數(shù)方法是數(shù)學的進步。通過學生之間的合作與交流,得了出問題的不同解答方法,讓學生對這節(jié)課的學習內(nèi)容、方法、注意點等進行歸納。
    3、體現(xiàn)學生思維的層次性。首先引導學生嘗試用算術(shù)方法解決問題,然后逐步引導學生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程。在尋找相等關(guān)系,設未知數(shù)及練習和作業(yè)的布置等環(huán)節(jié)中,都注意了學生思維的層次性。
    4、滲透建模的思想。把實際問題中的數(shù)量關(guān)系用方程的形式表示出來,就是建立一種數(shù)學模型,有意識地按設未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出數(shù)學模型的能力。
    從當堂練習和作業(yè)情況來看,收到了很好的教學效果,絕大部分學生都能根據(jù)實際問題準確地建立數(shù)學模型,但也有少數(shù)幾個學生存在一定的問題,不能很好地列出方程。
    【拓展閱讀】。
    七年級數(shù)學有理數(shù)的乘方教案設計篇六
    1.小明用天平測量物體的質(zhì)量(如下圖),已知每個小砝碼的質(zhì)量為1克,此時天平處于平衡狀態(tài).若設大砝碼的質(zhì)量為x克.
    考查說明:本題主要考查等式基本性質(zhì)1.
    答案與解析:根據(jù)等式基本性質(zhì)1:等式兩邊同時加或減去同一個數(shù)或式子,結(jié)果仍為等式.
    2.方程3y=。
    兩邊都除以3得y=1。
    改正:________________________________________________.
    考查說明:本題主要考查等式基本性質(zhì)2并熟練運用.
    答案與解析:得y=。
    兩邊同時除以3時,右邊也要除以3,不是乘以3。
    3.當x=時,60-5x=0.
    考查說明:本題主要考查利用等式兩條基本性質(zhì)來解簡單方程.
    答案與解析:12.由原方程和等式性質(zhì)1得5x=60,再由等式性質(zhì)2,兩邊同除以5,得x=12.
    4.方程的解是(36,48中選填一個)。
    考查說明:本題考查的知識點是方程的解的概念,使得等號成立即可.
    答案與解析:36.方程的解使等式兩邊相等,把兩個數(shù)代入驗算即可.
    5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.
    考查說明:本題主要考查根據(jù)題意找等量關(guān)系,從而列出方程.
    答案與解析:55-x=29+x.等量關(guān)系為:抽調(diào)后,三班人數(shù)=八班人數(shù),關(guān)鍵要理解三班少了x人的同時,八班多了x人.
    二、選擇題。
    6.下列方程中,是一元一次方程的是()。
    a、
    b、
    c、
    d、
    考查說明:本題主要考查一元一次方程的概念.
    答案與解析:a.a和b都需要化簡后再判斷,c明顯是二元的,d分母中含未知數(shù),不是整式方程.
    7.根據(jù)下列條件能列出方程的是()。
    a.一個數(shù)的'與另一個數(shù)的的和。
    b.與1的差的4倍是8。
    c.和的60%。
    d.甲的3倍與乙的差的2倍。
    考查說明:本題考查的知識點是方程與代數(shù)式的區(qū)別.
    答案與解析:b.其余幾個答案都不能列出等號.
    三、解答題。
    考查說明:本題考查的知識點是列一元一次方程解應用題,并會利用等式性質(zhì)解簡單的一元一次方程.本題等量關(guān)系為:教師票價+學生票價=910.
    答案與解析:設:學生有x人,根據(jù)題意。
    列出方程得70+70x×=910,
    解方程得70x×=840,
    即35x=840,
    所以x=24.
    七年級數(shù)學有理數(shù)的乘方教案設計篇七
    (1)正確理解乘方、冪、指數(shù)、底數(shù)等概念.
    (2)會進行有理數(shù)乘方的運算.
    2.過程與方法。
    通過對乘方意義的理解,培養(yǎng)學生觀察、比較、分析、歸納、概括的能力,滲透轉(zhuǎn)化思想.
    3.情感態(tài)度與價值觀。
    培養(yǎng)探索精神,體驗小組交流、合作學習的重要性.
    重、難點與關(guān)鍵。
    1.重點:正確理解乘方的意義,掌握乘方運算法則.
    2.難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算.
    3.關(guān)鍵:弄清底數(shù)、指數(shù)、冪等概念,注意區(qū)別-an與(-a)n的意義.
    教學過程。
    一、復習提問。
    1.幾個不等于零的有理數(shù)相乘,積的符號是怎樣確定的?
    答:幾個不等于零的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)確定,當負因數(shù)的個數(shù)為奇數(shù)時,積為負;當負因數(shù)的個數(shù)為偶數(shù)時,積為正.值觀:體驗小組交流,合作學習的重要性。
    七年級數(shù)學有理數(shù)的乘方教案設計篇八
    1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數(shù)學“建?!蹦芰Φ呐囵B(yǎng)。為后面學習打下基礎(chǔ)。
    3、在課堂的第二個環(huán)節(jié)中,通過實際問題的'引入,讓學生動起腦來,階梯型問題的設置使得一些后進生也投入到課堂中來,體現(xiàn)了差異性的教學。在學生慢慢列出方程的同時其實也培養(yǎng)了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優(yōu)點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發(fā)學生參與數(shù)學的興趣,在列完方程的最后讓學生歸納出列方程解應用題的基本步驟。使學生加深對知識的掌握也培養(yǎng)了他們的語言組織能力以及學會標準的數(shù)學用語。
    二、從教學方法反思。
    本節(jié)課本著“尊重差異”為基礎(chǔ),先“引導發(fā)現(xiàn)”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應用題的基礎(chǔ),抓住基礎(chǔ)知識再去發(fā)展他們的邏輯思維能力對后進生是十分重要的。
    三、從學生反饋反思。
    這堂課學生能積極思考,認真學習,課后作業(yè)都能及時完成。作業(yè)質(zhì)量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數(shù)量關(guān)系去列方程。
    七年級數(shù)學有理數(shù)的乘方教案設計篇九
    要想盡最大可能的發(fā)揮出課堂45分鐘的效益,需要從許多方面去準備,去思考,比如對教學重點和難點的突破,對課堂的組織對突發(fā)事件的應對以及對學生實際情況的了解等等。要想上好一節(jié)課需要付出很多的精力。復習課并不是單純的讓學生去重復練習,更重要的是使學生在鞏固基礎(chǔ)的前提下,分析問題解決問題的能力得到提高。
    七年級數(shù)學有理數(shù)的乘方教案設計篇十
    本節(jié)是在學習有理數(shù)加.減.乘.除.乘方的基礎(chǔ)上。引入了有理數(shù)的混合運算,學生通過討論、理解有理數(shù)混合運算順序,掌握有理數(shù)混合運算.它是有理數(shù)運算的推廣和延續(xù)。
    本節(jié)課的重點是能熟練的按照有理數(shù)的運算順序進行混合運算。難點是在正確運算的基礎(chǔ)上,適當?shù)倪\用運算律簡化運算。首先,我先復習了運算律,既是對上節(jié)的復習,又對這節(jié)學習作鋪墊。又通過詳細分析了例題,小組討論。學生自主學習,使他們更明確了運算順序,進行有理數(shù)運算,培養(yǎng)了學生自主探究的習慣。第三,在例題的講解中穿插了讓學生自己動手鍛煉的過程.及時的反饋學習情況.最后,通過“算24點”游戲,創(chuàng)設良好的氛圍,讓學生動腦動手動口,不僅可以提高學生學習興趣,訓練學生的'思維,還可以培養(yǎng)學生的數(shù)學運算能力和數(shù)學表達能力.
    課后的專家的對教學過程和課堂的學生的學習效果進行了肯定,同時也提出了建議,希望根據(jù)學生的實際情況,將例題的難度降低,讓學生能更好的適應.
    本次活動,無論是課上,還是課后的研討,老師們都表現(xiàn)出高度的熱情,整個研討過程都呈現(xiàn)出濃厚的氛圍。通過本次活動,鍛煉和提高了我們的教學能力,相信通過堅持不懈地實踐,我們教師的專業(yè)成長步伐會更快!
    七年級數(shù)學有理數(shù)的乘方教案設計篇十一
    1.1正數(shù)和負數(shù)(2)。
    教學目標:
    教學重點:
    深化對正負數(shù)概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復習引入:
    學生思考并討論.
    (數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
    二、講解新課。
    度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結(jié)。
    引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設計:
    七年級數(shù)學有理數(shù)的乘方教案設計篇十二
    學習過程:
    一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
    1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
    2.加法的交換律:
    兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.
    3.加法的結(jié)合律:
    七年級數(shù)學有理數(shù)的乘方教案設計篇十三
    2.培養(yǎng)學生觀察、分析、歸納及運算能力。
    三、教學重點。
    四、教學難點。
    五、教學用具。
    三角尺、小黑板、小卡片。
    六、課時安排。
    1課時。
    七、教學過程。
    (一)、從學生原有認知結(jié)構(gòu)提出問題。
    1.計算:
    (1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
    2.化簡下列各式符號:
    (1)-(-6);(2)-(+8);(3)+(-7);。
    (4)+(+4);(5)-(-9);(6)-(+3).
    3.填空:
    (1)______+6=20;(2)20+______=17;。
    (3)______+(-2)=-20;(4)(-20)+______=-6.
    在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。
    (二)、師生共同研究有理數(shù)減法法則。
    問題1(1)(+10)-(+3)=______;。
    (2)(+10)+(-3)=______.
    教師引導學生發(fā)現(xiàn):兩式的結(jié)果相同,(更多內(nèi)容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
    (2)(+10)+(+3)=______.
    (2)的結(jié)果是多少?
    于是,(+10)-(-3)=(+10)+(+3).
    至此,教師引導學生歸納出有理數(shù)減法法則:
    減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。
    教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃?;二是減數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。
    (三)、運用舉例變式練習。
    例1計算:
    (1)(-3)-(-5);(2)0-7.
    例2計算:
    (1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
    通過計算上面一組有理數(shù)減法算式,引導學生發(fā)現(xiàn):
    在小學里學習的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。
    閱讀課本63頁例3。
    (四)、小結(jié)。
    1.教師指導學生閱讀教材后強調(diào)指出:
    由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。
    2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。
    (五)、課堂練習。
    1.計算:
    (1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
    2.計算:
    3.計算:
    (1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
    (4)(-5.9)-(-6.1);。
    (5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
    利用有理數(shù)減法解下列問題。
    八、布置課后作業(yè):
    課本習題2.6知識技能的2、3、4和問題解決1。
    九、板書設計。
    2.5有理數(shù)的減法。
    (一)知識回顧(三)例題解析(五)課堂小結(jié)。
    例1、例2、例3。
    (二)觀察發(fā)現(xiàn)(四)課堂練習練習設計。
    十、課后反思。
    七年級數(shù)學有理數(shù)的乘方教案設計篇十四
    1.1正數(shù)和負數(shù)(2)。
    教學目標:
    教學重點:
    深化對正負數(shù)概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復習引入:
    學生思考并討論.
    (數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
    二、講解新課。
    度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結(jié)。
    引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設計:
    將本文的word文檔下載到電腦,方便收藏和打印。
    七年級數(shù)學有理數(shù)的乘方教案設計篇十五
    1,掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;。
    2,了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;。
    3,體驗分類是數(shù)學上的常用處理問題的方法。
    教學難點正確理解分類的標準和按照一定的標準進行分類。
    知識重點正確理解有理數(shù)的概念。
    教學過程(師生活動)設計理念。
    探索新知在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).
    問題1:觀察黑板上的9個數(shù),并給它們進行分類.
    學生思考討論和交流分類的情況.
    學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵.
    例如,
    對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù),,.??…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))。
    通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.
    按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.
    看書了解有理數(shù)名稱的由來.
    “統(tǒng)稱”是指“合起來總的名稱”的意思.
    學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。
    有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會。
    練一練1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
    2,教科書第10頁練習.
    此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
    數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號.
    思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
    也可以教師說出一些數(shù),讓學生進行判斷。
    集合的概念不必深入展開。
    創(chuàng)新探究問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
    教學時,要讓學生總結(jié)已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇В鸩降玫饺缦碌姆诸惐怼?BR>    有理數(shù)這個分類可視學生的程度確定是否有必要教學。
    小結(jié)與作業(yè)。
    課堂小結(jié)到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
    本課作業(yè)1,必做題:教科書第18頁習題1.2第1題。
    2,教師自行準備。
    本課教育評注(課堂設計理念,實際教學效果及改進設想)。
    1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概。
    念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進。
    行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視.關(guān)于分類標準與分。
    類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
    2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。
    3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。