最新整式的加減數(shù)學(xué)教案大全(18篇)

字號:

    教案是教師教學(xué)準(zhǔn)備的重要內(nèi)容之一,它是教學(xué)設(shè)計的基礎(chǔ)。教案的內(nèi)容應(yīng)該與教材緊密結(jié)合,突出重點和難點,提高教學(xué)效果。請大家參考下面這些精心準(zhǔn)備的教案樣本,相信會對大家編寫教案有所啟發(fā)。
    整式的加減數(shù)學(xué)教案篇一
    考考你:
    1(1)如圖,用代數(shù)式表示陰影部分的面積s;(2)如果a=2,b=4,求s的值。
    2四川大地震時,某校305位同學(xué)參加了捐款活動,在活動中有的同學(xué)每人捐a元,其余同學(xué)每人捐(a+1)元,(1)你能用代數(shù)式表示他們一共捐款多少元嗎?(2)如果a=5,求一共捐款多少元?(3)如果a=8,求一共捐款多少元?(引入題)。
    二合作交流,探究新知。
    1代數(shù)式的概念。
    根據(jù)上面兩題,請你說說什么叫代數(shù)式的值嗎?
    用_____代替代數(shù)式中的____按照代數(shù)式指明的運算,計算出的______叫作_________.
    溫馨提示:(1)代數(shù)式中字母取不同的值,代數(shù)式的值一般是不同的,因此代數(shù)式的值一定要交待是字母取幾的值。形式:“當(dāng)…時,…=…”,(2)求代數(shù)式的值時,字母的取值一定要使實際問題有意義,當(dāng)代數(shù)式是分式時,字母的取值不能使分母為0,如:
    中的t不能等于0,中的字母x不能等于。
    2怎么求代數(shù)的值。
    做一做:
    1根據(jù)下面給的x的值,你能算出代數(shù)式-2x+9的值嗎?
    (1)x=0.5(2)x=-2,。
    2計算代數(shù)式的值:(1)當(dāng)a=-4,b=3;(2)當(dāng)a=,b=-2。
    第二步:________________________________________________________________)。
    (2)把代數(shù)式中的字母用負(fù)數(shù)代替時,或者用分?jǐn)?shù)代替,且是求冪時,應(yīng)該注意什么?
    (__________________________________)。
    三應(yīng)用遷移,鞏固提高。
    1先化簡再代入求值。
    例1當(dāng)a=-2時,求代數(shù)式的值。
    2整體代入。
    例2已知:,求代數(shù)式的值。
    例3當(dāng)x=-5時,代數(shù)式的值是3,求當(dāng)x=5時,代數(shù)式的值。
    3靈活處理。
    例4已知,則。
    例5已知a+b+c=0,求代數(shù)式(a+b)(b+c)(c+a)+abc的值。
    四,堂練習(xí),鞏固提高。
    p75練習(xí)12。
    五反思小結(jié),拓展提高。
    這一節(jié),我們學(xué)習(xí)了什么?
    整式的加減數(shù)學(xué)教案篇二
    1.會進(jìn)行簡單的整式加、減運算.
    2.能說明整式加、減中每一步運算的算理,逐步發(fā)展有條理的思考和表述的能力.
    【重、難點】。
    會進(jìn)行簡單的整式加、減運算.
    【教學(xué)過程】。
    一、情境創(chuàng)設(shè)。
    1.操作:
    (1)準(zhǔn)備三張如下圖所示的卡片。
    (2)思考:
    用它們拼成各種形狀不同的四邊形,并計算拼成的四邊形的周長.
    二、探索活動。
    活動一:。
    整式的加減數(shù)學(xué)教案篇三
    【學(xué)習(xí)目標(biāo)】:
    1.理解單項式及單項式系數(shù)、次數(shù)的概念。
    2.會準(zhǔn)確迅速地確定一個單項式的系數(shù)和次數(shù)。
    3.初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。
    【重點難點】重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念。
    難點:區(qū)別單項式的系數(shù)和次數(shù)。
    【導(dǎo)學(xué)指導(dǎo)】:
    一.知識鏈接:。
    1.列代數(shù)式。
    (1)若邊長為a的正方體的表面積為________,體積為_____;。
    (3)一輛汽車的速度是v千米/小時,行駛t小時所走的路程是_______千米;。
    (4)設(shè)n是一個數(shù),則它的相反數(shù)是________.
    2.請學(xué)生說出所列代數(shù)式的意義。
    3.請學(xué)生觀察所列代數(shù)式包含哪些運算,有何共同運算特征。
    整式的加減數(shù)學(xué)教案篇四
    回顧這節(jié)課的大致過程,回顧知識結(jié)構(gòu)圖;以練習(xí)的形式,對本章的每一個知識點進(jìn)行練習(xí),鞏固提高,在掌握雙基的基礎(chǔ)上,進(jìn)行提高訓(xùn)練,拓展訓(xùn)練,為基礎(chǔ)比較好的同學(xué)在全面掌握的基礎(chǔ)上,進(jìn)行拓展,激發(fā)數(shù)學(xué)學(xué)習(xí)的激情。老師進(jìn)行個別輔導(dǎo)和批改,并搜集同學(xué)們的易錯點、混淆和不懂地方。
    這節(jié)課基本上展示了學(xué)生復(fù)習(xí)知識的過程,在這一過程中,讓學(xué)生體驗了如何由具體到抽象再到具體。整個教學(xué)過程中師生是朋友,是合作者;學(xué)生以自主探究、合作交流為主要學(xué)習(xí)方式,創(chuàng)造一種寬松、平等、快樂的課堂教學(xué)氛圍,這節(jié)課和諧融洽。
    不足及改進(jìn)。
    反思一:練習(xí)講評當(dāng)講則講,不要平均用力。我個人認(rèn)為,在批改過程中,發(fā)現(xiàn)有一半同學(xué)對某題不會的,老師就應(yīng)該集體講評,而出現(xiàn)的問題是個別現(xiàn)象的,就個別輔導(dǎo),即個別問題單獨講,共性問題大家講。
    反思二:相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會。
    課堂上給學(xué)生獨立思考的時間,然后通過學(xué)生講解、合作學(xué)習(xí)、學(xué)生板書與學(xué)生互相點評等多種形式,為學(xué)生提供展示自己聰明才智的機(jī)會,并且在此過程中更利于教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解,以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。課內(nèi)集中講評學(xué)生試題。在老師對練習(xí)集體講評的環(huán)節(jié)中,有一個共同的現(xiàn)象:老師講老師的,學(xué)生做學(xué)生(有的學(xué)生只顧低頭做,不聽老師講解),一但老師講完了,這些同學(xué)中仍有些不懂的,錯過聽講的機(jī)會。結(jié)果是會的就會,不會的還是不會,還有部分同學(xué)只顧抄答案。
    反思三:以后各章的知識點歸納梳理還會堅持讓學(xué)生自己做,老師不要代替包辦,但學(xué)生要聽從老師的指導(dǎo)和建議,讓學(xué)習(xí)有針對性的去小結(jié)歸納。
    整式的加減數(shù)學(xué)教案篇五
    會進(jìn)行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達(dá)能力。
    通過探索規(guī)律的問題,進(jìn)一步體會符號表示的意義,
    通過對整式加減的學(xué)習(xí),深入體會代數(shù)式在實際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學(xué)知識的產(chǎn)生來源于實際生產(chǎn)和生活的需求,反之,它又服務(wù)于實際生活的方方面面.
    重點:整式加減的運算。
    難點:探索規(guī)律的猜想。
    擺第1個“小屋子”需要5枚棋子,擺第2個需要枚棋子,擺第3個需要枚棋子。
    按照這樣的方式繼續(xù)擺下去。
    (1)擺第10個這樣的“小屋子”需要枚棋子。
    (2)擺第n個這樣的`“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。
    例題講解:
    練習(xí):1、計算:
    (1)(11x3-2x2)+2(x3-x2)(2)(3a2+2a-6)-3(a2-1)。
    (3)x-(1-2x+x2)+(-1-x2)(4)(8xy-3x2)-5xy-2(3xy-2x2)。
    2、已知:a=x3-x2-1,b=x2-2,計算:(1)b-a(2)a-3b。
    p11隨堂訓(xùn)練。
    要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運算。
    p12習(xí)題1.3:1(2)、(3)、(6),2。
    整式的加減數(shù)學(xué)教案篇六
    1.使學(xué)生理解單項式及單項系數(shù)、次數(shù)的概念,并會找出單項式的系數(shù)、次數(shù).
    2.初步培養(yǎng)學(xué)生的觀察分析和歸納概括的能力,使學(xué)生初步認(rèn)識特殊與一般的辯證關(guān)系.
    重點。
    掌握單項式及單項式系數(shù)、次數(shù)的概念,并會找出單項式的系數(shù)、次數(shù).
    難點。
    識別單項式的系數(shù)和次數(shù).
    一、創(chuàng)設(shè)情境,導(dǎo)入新課。
    師:出示圖片.
    青藏鐵路線上,在格爾木到拉薩之間有段很長的凍土地段,列車在凍土地段的行駛速度是100千米/小時,在非凍土地段的行駛速度可以達(dá)到120千米/小時,請根據(jù)這些數(shù)據(jù)回答:
    (2)t小時呢?
    二、推進(jìn)新課。
    (一)用含字母的式子表示數(shù)量關(guān)系.
    師:出示第54頁例1.
    生:解答例1后,討論問題,用字母表示數(shù)有什么意義?
    學(xué)生經(jīng)過討論得出一定的答案,但可能不會太規(guī)范,教師總結(jié).
    師:用字母表示數(shù),在具有某些共性的問題上具有更廣泛的意義,在形式上更簡單,使用上更方便(可考慮補(bǔ)充:像這樣的用運算符號把數(shù)或字母連接起來的式子叫做代數(shù)式.一個數(shù)或表示數(shù)的字母也是代數(shù)式).
    師生共同完成例2,進(jìn)一步體會用字母表示數(shù)的意義.
    鞏固練習(xí):第56頁練習(xí).
    (二)單項式的概念.
    師:出示問題.
    引言與例1中的式子100t,0.8p,mn,a2h,-n這些式子有什么特點?
    生:通過觀察、對比、討論得出,各式都是數(shù)或字母的積.
    師:指出單項式的概念,特別地,單獨的一個數(shù)或字母也是單項式.
    鞏固練習(xí):下列各式是單項式的式子是____________.
    整式的加減數(shù)學(xué)教案篇七
    1.學(xué)習(xí)目標(biāo):
    1)學(xué)生經(jīng)過觀察、合作交流、討論總結(jié)出去括號的法則,并較為牢固地掌握。
    2)能正確且較為熟練地運用去括號法則化簡代數(shù)式。
    2.能力目標(biāo):
    1)培養(yǎng)學(xué)生的觀察、分析、歸納能力。
    2)鍛煉學(xué)生的語言概括能力和表達(dá)能力。
    3)培養(yǎng)學(xué)生的知識分解、知識整合能力。
    3.情感目標(biāo):
    1)讓學(xué)生感受知識的產(chǎn)生、發(fā)展及形成過程,培養(yǎng)其勇于探索的精神。
    2)通過學(xué)生間的相互交流、溝通,培養(yǎng)他們的協(xié)作意識。
    4.重點:去括號法則及其運用。
    難點:括號前面是號,去括號時,應(yīng)如何處理。
    5.教學(xué)過程:
    (1)回顧舊知,承前啟后。
    1.什么叫做同類項?
    2.敘述合并同類項的法則。
    3.若a、b、c均為有理數(shù),請指出以下代數(shù)式中的同類項及其系數(shù),并進(jìn)行合并。
    整式的加減數(shù)學(xué)教案篇八
    教學(xué)目的。
    1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進(jìn)行整式的加減運算。
    2、使學(xué)生掌握整式加減的一般步驟,熟練進(jìn)行整式的加減運算。
    教學(xué)分析。
    難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。
    突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
    教學(xué)過程。
    一、復(fù)習(xí)。
    1、敘述合并同類項法則。
    2、敘述去括號與添括號法則。
    3、化簡:
    y2+(x2+2xy-3y2)-(2x2-xy-2y2)。
    二、新授。
    1、引入。
    整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。
    2、例題。
    例1(p166例1)。
    求單項式5x2y,-2x2y,2xy2,-4xy2的和。
    分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
    解:(略,見教材p166)。
    例2(p166例2)。
    求3x2-6x+5與4x2-7x-6的和。
    解:(3x2-6x+5)+(4x2-7x-6)(每個多項式要加括號)。
    =3x2-6x+5+4x2-7x-6(去括號)。
    =7x2+x-1(合并同類項)。
    例3。(p166例3)。
    求2x2+xy+3y2與x2-xy+2y2的差。
    解:(2x2+xy+3y2)-(x2-xy+2y2)。
    =2x2+xy+3y2-x2+xy-2y2。
    =x2+2xy+y2。
    3、歸納整式加減的一般步驟。
    整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
    三、練習(xí)。
    p167:1,2,3,4。
    補(bǔ):已知:a=5a2-2b2-3c2,b=-3a2+b2+2c2,求2a-3b。
    四、小結(jié)。
    1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。
    2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
    五、作業(yè)。
    1、p169:a:1(3、4),3,5,6,7,8。b:1,2。
    基礎(chǔ)訓(xùn)練同步練習(xí)1。
    教學(xué)目的。
    1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進(jìn)行整式的加減運算。
    2、使學(xué)生掌握整式加減的一般步驟,熟練進(jìn)行整式的加減運算。
    教學(xué)分析。
    難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。
    突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
    教學(xué)過程。
    一、復(fù)習(xí)。
    1、敘述合并同類項法則。
    2、敘述去括號與添括號法則。
    3、化簡:
    y2+(x2+2xy-3y2)-(2x2-xy-2y2)。
    二、新授。
    1、引入。
    整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。
    2、例題。
    例1(p166例1)。
    求單項式5x2y,-2x2y,2xy2,-4xy2的和。
    分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
    解:(略,見教材p166)。
    例2(p166例2)。
    求3x2-6x+5與4x2-7x-6的和。
    解:(3x2-6x+5)+(4x2-7x-6)(每個多項式要加括號)。
    =3x2-6x+5+4x2-7x-6(去括號)。
    =7x2+x-1(合并同類項)。
    例3。(p166例3)。
    求2x2+xy+3y2與x2-xy+2y2的差。
    解:(2x2+xy+3y2)-(x2-xy+2y2)。
    =2x2+xy+3y2-x2+xy-2y2。
    =x2+2xy+y2。
    3、歸納整式加減的一般步驟。
    整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
    三、練習(xí)。
    p167:1,2,3,4。
    補(bǔ):已知:a=5a2-2b2-3c2,b=-3a2+b2+2c2,求2a-3b。
    四、小結(jié)。
    1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。
    2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
    五、作業(yè)。
    1、p169:a:1(3、4),3,5,6,7,8。b:1,2。
    基礎(chǔ)訓(xùn)練同步練習(xí)1。
    教學(xué)目的。
    1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進(jìn)行整式的加減運算。
    2、使學(xué)生掌握整式加減的一般步驟,熟練進(jìn)行整式的加減運算。
    教學(xué)分析。
    難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。
    突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
    教學(xué)過程。
    一、復(fù)習(xí)。
    1、敘述合并同類項法則。
    2、敘述去括號與添括號法則。
    3、化簡:
    y2+(x2+2xy-3y2)-(2x2-xy-2y2)。
    二、新授。
    1、引入。
    整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。
    2、例題。
    例1(p166例1)。
    求單項式5x2y,-2x2y,2xy2,-4xy2的和。
    分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
    解:(略,見教材p166)。
    例2(p166例2)。
    求3x2-6x+5與4x2-7x-6的和。
    解:(3x2-6x+5)+(4x2-7x-6)(每個多項式要加括號)。
    =3x2-6x+5+4x2-7x-6(去括號)。
    =7x2+x-1(合并同類項)。
    例3。(p166例3)。
    求2x2+xy+3y2與x2-xy+2y2的差。
    解:(2x2+xy+3y2)-(x2-xy+2y2)。
    =2x2+xy+3y2-x2+xy-2y2。
    =x2+2xy+y2。
    3、歸納整式加減的一般步驟。
    整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
    三、練習(xí)。
    p167:1,2,3,4。
    補(bǔ):已知:a=5a2-2b2-3c2,b=-3a2+b2+2c2,求2a-3b。
    四、小結(jié)。
    1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。
    2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
    五、作業(yè)。
    1、p169:a:1(3、4),3,5,6,7,8。b:1,2。
    基礎(chǔ)訓(xùn)練同步練習(xí)1。
    教學(xué)目的。
    1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進(jìn)行整式的加減運算。
    2、使學(xué)生掌握整式加減的一般步驟,熟練進(jìn)行整式的加減運算。
    教學(xué)分析。
    難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。
    突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
    教學(xué)過程。
    整式的加減數(shù)學(xué)教案篇九
    二.教案。
    1.學(xué)習(xí)目標(biāo):
    1)學(xué)生經(jīng)過觀察、合作交流、討論總結(jié)出去括號的法則,并較為牢固地掌握。
    2)能正確且較為熟練地運用去括號法則化簡代數(shù)式。
    2.能力目標(biāo):
    1)培養(yǎng)學(xué)生的觀察、分析、歸納能力。
    2)鍛煉學(xué)生的語言概括能力和表達(dá)能力。
    3)培養(yǎng)學(xué)生的知識分解、知識整合能力。
    3.情感目標(biāo):
    1)讓學(xué)生感受知識的產(chǎn)生、發(fā)展及形成過程,培養(yǎng)其勇于探索的精神。
    2)通過學(xué)生間的相互交流、溝通,培養(yǎng)他們的協(xié)作意識。
    4.重點:去括號法則及其運用。
    難點:括號前面是號,去括號時,應(yīng)如何處理。
    5.教學(xué)過程:
    (1)回顧舊知,承前啟后。
    1.什么叫做同類項?
    2.敘述合并同類項的法則。
    3.若a、b、c均為有理數(shù),請指出以下代數(shù)式中的同類項及其系數(shù),并進(jìn)行合并。
    整式的加減數(shù)學(xué)教案篇十
    1、掌握合并同類項的法則,能進(jìn)行同類項的合并。
    2、會利用合并同類項將整式化簡。
    過程與方法
    通過類比數(shù)的運算律得出合并同類項的法則,在教學(xué)中滲透“類比”的數(shù)學(xué)思想。
    情感態(tài)度與價值觀
    1、通過參與合并同類項法則的探究活動,提高學(xué)習(xí)數(shù)學(xué)的興趣。
    2、培養(yǎng)學(xué)生合作交流的意識和探索精神。
    重點
    合并同類項法則。
    難點
    合并同類項法則的應(yīng)用。
    學(xué)生在上一節(jié)學(xué)習(xí)了同類項的概念,這為本節(jié)學(xué)習(xí)奠定了一定的基礎(chǔ),但合并同類項牽扯到抽象的字母,學(xué)生難于把握,因此一定要搞清楚字母與數(shù)的關(guān)系。
    問題設(shè)計師生活動備注
    情景創(chuàng)設(shè)
    問題1:青藏鐵路上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度可以達(dá)到100千米/時,在非凍土地段的行駛速度可以達(dá)到120米/時,請根據(jù)這些數(shù)據(jù)回答下列問題:
    學(xué)生思考并回答:
    100+252
    在具體情境中用整式表示問題中的數(shù)量關(guān)系,利用實際問題吸引學(xué)生的注意力。
    問題2:式子100+252能化簡嗎?依據(jù)是什么?
    提出問題2,讓學(xué)生帶著這個問題來解決探究1、
    [學(xué)生]獨立完成探究1中的(1),并對(2)進(jìn)行分組討論、
    在探究1的基礎(chǔ)上,以原有的關(guān)于數(shù)的運算律的知識,開展探究2、
    觀察多項式中各項的特點,得出合并同類項的概念、
    合并同類項:把多項式中的同類項合并成一項、
    類比數(shù)的運算,探究得出合并同類項的法則、
    通過對探究1和探究2的探討,引出同類項的概念、合并同類項概念、
    問題2是本節(jié)內(nèi)容的核心,讓學(xué)生在探究的過程中體會用字母表示數(shù)的意義,培養(yǎng)學(xué)生的抽象概括能力,在小組合作中體會交流的重要性和必要性。
    注意:
    1、學(xué)生在活動中是否參與到討論中
    2、學(xué)生對概念的理解和掌握情況以及對合并同類項法則的總結(jié)情況
    整式的加減數(shù)學(xué)教案篇十一
    (1)使學(xué)生在掌握合并同類項的基礎(chǔ)上,掌握去括號法則。
    (2)正確地進(jìn)行簡單的整式加減運算。
    培養(yǎng)學(xué)生基本的運算技巧和能力。
    使學(xué)生逐漸形成事物變化、相互聯(lián)系和相互轉(zhuǎn)化的觀點,并在學(xué)習(xí)中培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣、獨立思考、勇于探索的精神。
    重點去括號法則。教學(xué)。
    難點正確運用去括號法則,減少運算中的符號錯誤。
    多媒體。
    你出生于8月份,你家有3口人。
    2、猜數(shù)游戲的數(shù)學(xué)原理常常與代數(shù)式的運算有關(guān)。
    3、知識梳理。
    -2x+3y-4z共有項,其中第三項是:。
    1、寫出2a2b的`一個同類項:
    2、已知4a2b3與a2mbn-1是同類項,則m=____,n=_____.
    如圖4-7,要計算這個圖形的面積,你有幾種不同的方法?請計算結(jié)果。
    2、用分配律計算:
    (1)+(a-b+c)。
    (2)-(a-b+c)。
    3、代數(shù)式運算的去括號法則:
    4、順口溜。
    去括號,看符號。
    是+號,不變號。
    是-號,全變號。
    5、辯一辯:指出下列各式是否正確?如果錯誤,請指出原因.
    (1)a-(b-c+d)=a-b+c+d。
    (2)-(a-b)+(-c+d)=a+b-c-d。
    (3)a-3(b-2c)=a-3b+2c。
    (4)x-2(-y-3z+1)=x-2y+6z。
    6.注意:(1)去括號時應(yīng)將括號前面的符號連同括號一起去掉.
    (3)若括號前面是數(shù)字因數(shù)時,.應(yīng)乘以括號里的每一項,不要漏乘.
    7:練一練。
    整式的加減數(shù)學(xué)教案篇十二
    【知識與技能】。
    在具體情境中認(rèn)識同類項,通過對具體問題的分析及運用分配律,了解合并同類項的法則,學(xué)會進(jìn)行同類項的合并。
    【過程與方法】。
    經(jīng)歷觀察、類比、思考、探索、交流等教學(xué)活動,培養(yǎng)創(chuàng)新意識和合作精神。
    【情感態(tài)度與價值觀】。
    在整式加減的學(xué)習(xí)中培養(yǎng)學(xué)生合作交流、勇于探索的學(xué)習(xí)習(xí)慣,發(fā)展學(xué)生的符號感。
    【重點】。
    學(xué)會進(jìn)行整式的加減法運算,并能說明其中的.算理;經(jīng)歷字母表示數(shù)量關(guān)系的過程,發(fā)展符號感。
    【難點】。
    靈活的列出算式和去括號。
    通過例題的分析總結(jié):合并同類項。
    1.同類項的系數(shù)相加;。
    2.字母和字母的指數(shù)不變。
    (五)小結(jié)作業(yè)。
    作業(yè):課本習(xí)題,預(yù)習(xí)下節(jié)課學(xué)習(xí)的知識。
    整式的加減數(shù)學(xué)教案篇十三
    能根據(jù)題意列出式子:會進(jìn)行整式加減運算,并能說明其中的算理。
    經(jīng)歷用字母表示實際問題中的數(shù)量關(guān)系的過程,發(fā)展符號感,提高運算能力及綜合運用知識進(jìn)行分析、解決問題的能力。
    培養(yǎng)學(xué)生積極探索的學(xué)習(xí)態(tài)度,發(fā)展學(xué)生有條理地思考及代數(shù)表達(dá)能力,體會整式的應(yīng)用價值。
    教學(xué)重、難點與關(guān)鍵
    1.重點:列式表示實際問題中的數(shù)量關(guān)系,會進(jìn)行整式加減運算。
    2.難點:列式表示問題中的數(shù)量關(guān)系,去掉括號前是負(fù)因數(shù)的括號。
    3.關(guān)鍵:明確問題中的數(shù)量關(guān)系,熟練掌握去括號規(guī)律。
    教具準(zhǔn)備:投影儀。
    1.多項式中具有什么特點的項可以合并,怎樣合并?
    2.如何去括號,它的依據(jù)是什么?
    例1.(1)求多項式2x-3y與5x+4y的和。
    (2)求多項式8a-7b與4a-5b的差。
    整式的加減數(shù)學(xué)教案篇十四
    知識與技能:1.理解同類項的概念,并能正確辨別同類項。
    2.掌握合并同類項的法則,能進(jìn)行同類項的合并。
    3.會利用合并同類項將整式化簡。
    過程與方法:1.探索在具體情境中用整式表示事物之間的數(shù)量關(guān)系,發(fā)展學(xué)生的抽象概括能力。
    2.通過類比數(shù)的運算律得出合并同類項的法則,在教學(xué)中滲透類比的`數(shù)學(xué)思想。
    情感、態(tài)度與價值觀:1.通過參與同類項、合并同類項法則的探究活動,提高學(xué)習(xí)數(shù)學(xué)的興趣。
    2.培養(yǎng)學(xué)生合作交流的意識和探索精神。
    重點:合并同類項法則。
    難點:對同類項概念的理解以及合并同類項法則的應(yīng)用。
    四課時第一課時)。
    通過實際問題引出同類項和合并同類項概念的探討,在學(xué)習(xí)過程中,讓學(xué)生自己經(jīng)歷探索與交流的活動,自主得到同類項的概念,并利用數(shù)的分配律觀察并歸納出合并同類項的法則。
    討論及探究式教學(xué)方法。
    整式的加減數(shù)學(xué)教案篇十五
    1)學(xué)生經(jīng)過觀察、合作交流、討論總結(jié)出去括號的法則,并較為牢固地掌握。
    2)能正確且較為熟練地運用去括號法則化簡代數(shù)式。
    1)培養(yǎng)學(xué)生的觀察、分析、歸納能力。
    2)鍛煉學(xué)生的語言概括能力和表達(dá)能力。
    3)培養(yǎng)學(xué)生的知識分解、知識整合能力。
    1)讓學(xué)生感受知識的產(chǎn)生、發(fā)展及形成過程,培養(yǎng)其勇于探索的精神。
    2)通過學(xué)生間的相互交流、溝通,培養(yǎng)他們的協(xié)作意識。
    難點:括號前面是號,去括號時,應(yīng)如何處理。
    (1)回顧舊知,承前啟后。
    1、什么叫做同類項?
    2、敘述合并同類項的法則。
    3、若a、b、c均為有理數(shù),請指出以下代數(shù)式中的同類項及其系數(shù),并進(jìn)行合并。
    整式的加減數(shù)學(xué)教案篇十六
    生:對。
    師:那我們來玩猜數(shù)游戲,看誰最先猜出老師手中的數(shù)。
    師:比800大得多,比一千三小一些的數(shù)是多少?生:1000。
    生:……。
    生:1200。
    師:正確!恭喜你,回答正確。你好厲害!
    接著,生在老師的提示下依次猜出3600、650、80。
    2、說數(shù)的組成,導(dǎo)入新課。
    師:誰來說說這些數(shù)的組成?
    生:1200由1個千2個百組成。
    師:這位同學(xué)的回答不但正確,而且非常完整。誰來說其他各數(shù)的組成?
    ……。
    師:剛才這幾位同學(xué)證明了自己是個聰明的孩子,同時老師發(fā)現(xiàn)他們還是勇敢的孩子。因為當(dāng)老師提出問題時,他總是在第一時間舉起他們高高的小手!利用數(shù)的組成規(guī)律,可以口算整百整千數(shù)的加減法。(板書課題:整百整千數(shù)加減法)。
    二、交流探究。
    1、教學(xué)例9。
    師:近年來,在黨的關(guān)懷下,我們的生活有了很大的提高,瞧昨天我村的王大爺,上街買了一臺電視機(jī)1000元,一臺電冰箱元(板書:電視機(jī)1000元,電冰箱2000元)。
    師:你們看到這兩個信息,能提出什么數(shù)學(xué)問題呢?
    師:請說說你提出的問題。
    生:電視機(jī)和電冰箱一共要多少元?
    生:電冰箱比電視機(jī)貴多少元?
    師:同學(xué)們提出了這么有價值的問題。你們能解決嗎?
    學(xué)生嘗試解決第一個問題。
    1000+2000=。
    師:怎樣計算1000+2000等于多少呢?大家算一算,然后與同桌交流算法。
    ……。
    師:請位同學(xué)說說是怎么算的。
    生:1個千加2個千是3個千,3個千是3000.
    生:從1+2=3想出1000+2000=3000.
    生:從100+200=300想出1000+2000=3000.
    師:同學(xué)們可真會動腦筋,想出了這么多的方法,有的同學(xué)用數(shù)的組成規(guī)律來算,還有的同學(xué)更聰明,由1+2=3想出了1000+2000=3000.這么多方法.你喜歡哪種方法?)。
    生:我喜歡第一種方法,因為它比較不會弄錯。
    生:我喜歡第二各方法,因為它很簡便,可以很快得出答案。
    生:……。
    師:另外一個問題你能解決嗎?請大家列式計算,然后同桌交流。
    2、教學(xué)例10。
    生嘗試,師與有困難同學(xué)交流。
    師:誰來說說,你的怎樣算的?
    生:8+5=13,80+50=130。
    生:8個十加5個十是13個十,80+50=130。
    生:80+50=80+20+30=130。
    生:13個十減去5個十是8個十.8個十是80.
    師:他想的方法和別人不同,你們想對他說點什么呀?
    生:他很棒!
    師:你們太了不起了,想出了這么多方法來解決這些問題,現(xiàn)在請同學(xué)們看課本.把它們補(bǔ)充完整,如果有問題可以提出來。
    ……。
    3、你是怎樣想的。
    師:看書本,p81下面小精靈聰聰還有兩個題目想考考你,趕快來展示你的本領(lǐng)吧!
    900+600=。
    同桌說說計算方法。
    師:計算整百、整千數(shù)的加減法,可以用不同的方法。你覺得啊一種最新簡單就用哪一種。
    整式的加減數(shù)學(xué)教案篇十七
    生:一元的分一起,五角的一起,一角的一起等等。
    師:這樣是不是就比放在一塊數(shù)方便多了,我們現(xiàn)在用的這個叫什么方法?
    生:分類!
    (板書:a3-2a4a33a)
    生:略
    師:利用同樣的方法,給下列單項式分類
    (出示小黑板)
    板書分出的類別
    師:我們?yōu)槭裁匆@樣分類?是不是因為它們有共同點?那共同點是什么?
    生:相同字母,且相同字母的指數(shù)也相同。
    生:略
    師:看課本p63中間(讀出定義)學(xué)生畫下來
    練習(xí)同類項,老師在黑板上給出一個單項式,學(xué)生自己寫兩個以上的同類項,然后找?guī)讉€學(xué)生讀出自己寫的,大家評論!
    師:大家思考一下這些同類項之間可以進(jìn)行加減運算嗎?
    板書1硬幣+3硬幣=4硬幣
    師:我們現(xiàn)在試一下把硬幣換成字母會是什么效果
    1x+3x=4x
    師:怎么計算的?
    生:(1+3)x
    師:1x+3x=(1+3)x這種形式我們是不是似曾相識呢?
    分配律?。ê唵蔚脑僬f一下分配律,反過來就是把兩個或幾個加數(shù)的共同因素提取出來)
    猜想合并同類項的定義,然后看課本p63下面,定義畫下來
    試做題7x2+2x+7+3x-8x2-6
    師:我們前面學(xué)習(xí)過的交換律、分配律、結(jié)合律在這里可以用嗎?
    師:因為多項式中的字母表示的是數(shù),所以我們也可以運用交換律,結(jié)合律、分配率把多項式中的同類項合并。
    開始做題,做完題之后
    注意:
    (1)合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分的系數(shù)不變
    (2)指出計算結(jié)果按某字母降冪(升冪)的形式排列
    (3)一找,二搬,三并,四計算
    講解例題1
    練習(xí)題第一題(學(xué)生寫上黑板)
    糾錯(小黑板)
    1、什么是同類項?
    2、幾個常數(shù)項是不是同類項?
    3、同類項與系數(shù)有關(guān)嗎?
    4、什么叫合并同類項?
    5、合并同類項的步驟是什么?
    p69習(xí)題1.2第一題
    整式的加減數(shù)學(xué)教案篇十八
    去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡。
    區(qū)別單項式的系數(shù)和次數(shù);
    區(qū)別多項式的次數(shù)和單項式的次數(shù);
    括號前面是“—”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤。
    1、單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨的一個數(shù)字或字母也是單項式)。
    3、多項式:幾個單項式的和叫多項式。
    4、多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。
    5、常數(shù)項:不含字母的項叫做常數(shù)項。
    6、多項式的排列。
    (1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
    (2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
    7、多項式的排列時注意:
    (1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。
    (2)有兩個或兩個以上字母的多項式,排列時,要注意:
    a、先確認(rèn)按照哪個字母的指數(shù)來排列。
    b、確定按這個字母向里排列,還是向外排列。
    (3)整式:
    單項式和多項式統(tǒng)稱為整式。
    多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。
    9、同類項:所含字母相同,并且相同字母的次數(shù)也分別相同的項叫做同類項。
    10、合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。