總結(jié)可以讓我們更加深入地思考和理解自己在某個領(lǐng)域中所面臨的挑戰(zhàn)和困難。寫總結(jié)時要注意用詞得體,避免使用過于生僻或夸張的詞語,以免影響閱讀。不同類型的總結(jié)有不同的寫作方式,下面是一些典型總結(jié)的案例,供大家參考分析。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇一
(全等三角形是特殊的相似三角形,相似比為1:1)。
(兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)。
(兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)。
4.直角三角形中由斜邊的高形成的三個三角形(母子三角形)。
圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑
4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對角互補。(任意一個外角等于它的內(nèi)對角)
補充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時,所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負(fù)號“-”的數(shù)叫做負(fù)數(shù)。
3.整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
4.人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個點表示數(shù)0,這個點叫做原點。
6.一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。
7.由絕對值的定義可知:
一個正數(shù)的絕對值是它本身;
一個負(fù)數(shù)的絕對值是它的相反數(shù);
0的絕對值是0。
8.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9.兩個負(fù)數(shù),絕對值大的反而小。
10.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負(fù)號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
(3)一個數(shù)同0相加,仍得這個數(shù)。
11.有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。
12.有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
13.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
14.有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值向乘。任何數(shù)同0相乘,都得0。
15.有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
16.一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
17.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
18.一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
19.有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
20.兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇三
1、角的兩種定義:一種是有公共端點的兩條射線所組成的圖形叫做角。
另一種是一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
2.角的平分線。
3、角的度量:度量角的大小,可用“度”作為度量單位。把一個圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4.角的分類:(1)銳角(2)直角(3)鈍角(4)平角(5)周角。
5.相關(guān)的角:
(1)對頂角(2)互為補角(3)互為余角。
6、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的位置關(guān)系。
7、角的性質(zhì)。
(1)對頂角相等(2)同角或等角的余角相等(3)同角或等角的補角相等。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇四
二、角。
1、角的兩種定義:一種是有公共端點的兩條射線所組成的圖形叫做角。
另一種是一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
2.角的平分線。
3、角的度量:度量角的大小,可用“度”作為度量單位。把一個圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4.角的分類:(1)銳角(2)直角(3)鈍角(4)平角(5)周角。
5.相關(guān)的角:
(1)對頂角(2)互為補角(3)互為余角。
6、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的位置關(guān)系。
7、角的性質(zhì)。
(1)對頂角相等(2)同角或等角的余角相等(3)同角或等角的補角相等。
三、相交線。
1、斜線2、兩條直線互相垂直3、垂線,垂足。
4、垂線的性質(zhì)。
(l)過一點有且只有一條直線與己知直線垂直。
(2)垂線段最短。
四、距離。
1、兩點的距。
2、從直線外一點到這條直線的垂線段的長度叫做點到直線的距離。
3、兩條平行線的距離:兩條直線平行,從一條直線上的任意一點向另一條直線引垂線,垂線段的長度,叫做兩條平行線的距離。
五、平行線。
1、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。
說明:也可以說兩條射線或兩條線段平行,這實際上是指它們所在的直線平行。
2、平行線的判定:
(1)同位角相等,兩直線平行。
(2)內(nèi)錯角相等,兩直線平行。
(3)同旁內(nèi)角互補兩直線平行。
3、平行線的性質(zhì)。
(1)兩直線平行,同位角相等。
(2)兩直線平行,內(nèi)錯角相等。
(3)兩直線平行,同旁內(nèi)角互補。
說明:要證明兩條直線平行,用判定公理(或定理)在已知條件中有兩條直線平行時,則應(yīng)用性質(zhì)定理。
4、如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角_________________.
5、如果一個角的兩邊分別垂直于另一個角的兩邊,那么這兩個角_________________.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇五
直角三角形的判定方法:
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么。
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇六
對應(yīng)角相等、對應(yīng)邊成比例的兩個三角形叫做相似三角形。
如果三邊分別對應(yīng)a,b,c和a,b,c:那么:a/a=b/b=c/c。
即三邊邊長對應(yīng)比例相同。
2.相似三角形判定。
對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形。
判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似(aa)。
判定定理2:如果兩個三角形的兩組對應(yīng)邊成比例,并且對應(yīng)的夾角相等,那么這兩個三角形相似(sas)。
判定定理3:如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似(sss)。
判定定理4:兩三角形三邊對應(yīng)平行,則兩三角形相似。
判定定理5:兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。
其他判定:由角度比轉(zhuǎn)化為線段比:h1/h2=sabc。
(3)相似三角形的對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。
(4)相似三角形的周長比等于相似比。
(5)相似三角形的面積比等于相似比的平方。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇七
1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.
1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.
2、自變量變化函數(shù)值也變化的增減變化情況.
3、函數(shù)圖象的最低點和最高點.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇八
(1)任意兩個正數(shù)的和的平方,等于這兩個數(shù)的平方和。
(2)任意兩個正數(shù)的差的平方,等于這兩個數(shù)的平方和,再減去這兩個數(shù)乘積的2倍。
3、平方根。
1正數(shù)有兩個平方根,這兩個平方根互為相反數(shù);。
2零只有一個平方根,它就是零本身;。
3負(fù)數(shù)沒有平方根。
4、實數(shù)。
無限不循環(huán)小數(shù)叫做無理數(shù)。
有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。
5、平方根的運算。
6、算術(shù)平方根的性質(zhì)。
性質(zhì)1一個非負(fù)數(shù)的算術(shù)平方根的平方等于這個數(shù)本身。
性質(zhì)2一個數(shù)的平方的算術(shù)平方根等于這個數(shù)的絕對值。
7、算術(shù)平方根的乘、除運算。
1)算術(shù)平方根的乘法。
sqrt(a)?sqrt(b)=sqrt(ab)(a=0,b=0)。
2算)術(shù)平方根的除法。
sqrt(a)/sqrt(b)=sqrt(a/b)(a=0,b0)。
8‘算術(shù)平方根的加、減運算。
如果幾個平方根化成最簡平方根以后,被開方數(shù)相同,那么這幾個平方根就叫做同類平方根。
9、一元二次方程及其解法。
1)一元二次方程。
只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程。
2)特殊的一元二次方程的解法。
3)一般的一元二次方程的解法——配方法。
用配方法解一元二次方程的一般步驟是:
2、移項把常數(shù)項移至方程右邊,將方程化為x^2+px=-q的形式。
4、有平方根的定義,可知。
(1)當(dāng)p^2/4-q0時,原方程有兩個實數(shù)根;。
(2)當(dāng)p^2/4-q=0,原方程有兩個相等的實數(shù)根(二重根);。
(3)當(dāng)p^2/4-q0,原方程無實根。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇九
本學(xué)期,結(jié)合縣20xx年教學(xué)工作會議精神和學(xué)校工作計劃的要求,以提高教育教學(xué)質(zhì)量為核心,切實減輕學(xué)生負(fù)擔(dān),2017年九年級數(shù)學(xué)下學(xué)期工作計劃范文。努力提高課堂效率,提高教學(xué)質(zhì)量,挖掘?qū)W生潛力,促進(jìn)學(xué)生全面發(fā)展。根據(jù)學(xué)校工作安排,我仍擔(dān)任九年級兩個班級的數(shù)學(xué)教學(xué)工作,結(jié)合學(xué)校的教學(xué)工作計劃,制定了本學(xué)期教學(xué)計劃:
一、基本情況分析。
1、.學(xué)生情況本學(xué)期我繼續(xù)擔(dān)任九年級3、4班的數(shù)學(xué)課。通過上學(xué)期的努力,該年級多數(shù)同學(xué)學(xué)習(xí)數(shù)學(xué)的興趣漸濃,學(xué)習(xí)的自覺性明顯提高,學(xué)習(xí)成績在不斷進(jìn)步,但是由于該年級一些學(xué)生數(shù)學(xué)基礎(chǔ)太差,學(xué)生數(shù)學(xué)成績兩極分化的現(xiàn)象沒有顯著改觀,給教學(xué)帶來很大難度。設(shè)法關(guān)注每一個學(xué)生,重視學(xué)生的全面協(xié)調(diào)發(fā)展是教學(xué)的首要任務(wù)。本學(xué)期是初中學(xué)習(xí)的關(guān)鍵時期,教學(xué)任務(wù)非常艱巨。因此,要完成教學(xué)任務(wù),必須緊扣新的數(shù)學(xué)課程標(biāo)準(zhǔn),結(jié)合教學(xué)內(nèi)容和學(xué)生實際,把握好重點、難點,努力把本學(xué)期的任務(wù)圓滿完成。九年級畢業(yè)班總復(fù)習(xí)教學(xué)時間緊,任務(wù)重,要求高,如何提高數(shù)學(xué)總復(fù)習(xí)的質(zhì)量和效益,是每位畢業(yè)班數(shù)學(xué)教師必須面對的問題。
二、結(jié)合畢業(yè)班特點,安排教學(xué)與復(fù)習(xí)。
1.做好畢業(yè)班學(xué)生的思想工作,注意他們的思想動態(tài)。關(guān)心學(xué)生,特別是關(guān)心學(xué)生的身體健康、生理與心理健康,使其能有良好的心理狀態(tài),能坦然面對緊張的學(xué)習(xí)生活,能正確對待中考。
2.做好導(dǎo)優(yōu)輔差工作。對于優(yōu)秀生,鼓勵他們多鉆研提高題,對于基礎(chǔ)較差的學(xué)生,抓好基礎(chǔ)知識。把主要精力放在中等生身上。
3.充分利用課堂45分鐘,提高效率,做到精講多練,課堂教學(xué)倡導(dǎo)學(xué)生自主、合作學(xué)習(xí)、共同探究問題。
三、教學(xué)目標(biāo)。
師生共同努力,使絕大多數(shù)學(xué)生達(dá)到或基本達(dá)到《課標(biāo)》的要求,注重基礎(chǔ)訓(xùn)練,顧及多數(shù)人的水平和接受能力,促進(jìn)全體學(xué)生的全面協(xié)調(diào)發(fā)展。
四、提高教學(xué)質(zhì)量的主要措施。
1.讓數(shù)學(xué)更貼近學(xué)生的生活,工作計劃《2017年九年級數(shù)學(xué)下學(xué)期工作計劃范文》?!靶抡n標(biāo)”強調(diào)在教學(xué)中要引導(dǎo)學(xué)生聯(lián)系自己身邊具體有趣的事物,通過觀察操作,解決問題等豐富的活動,感受數(shù)學(xué)與日常生活的密切聯(lián)系。我覺得這是“新課標(biāo)”的一大特色,所以在今后的數(shù)學(xué)教學(xué)中,我要結(jié)合具體的教學(xué)內(nèi)容,創(chuàng)設(shè)一些學(xué)生感興趣的生活情景,幫助學(xué)生認(rèn)真捕捉“生活現(xiàn)象”,使他們真正體會到生活中處處有數(shù)學(xué),數(shù)學(xué)中處處有生活。
2.激發(fā)學(xué)生的學(xué)習(xí)積極性,切實使學(xué)生成為數(shù)學(xué)學(xué)習(xí)的主人?!靶抡n標(biāo)”提出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者”。也就是落實學(xué)生的主體地位,把課堂還給學(xué)生,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,讓課堂充滿生機與活力。
3.設(shè)計一些新穎的.、獨特的教學(xué)方案,使學(xué)生愛數(shù)學(xué)。通過觀察、實踐,使枯燥的內(nèi)容形象化、興趣化,使學(xué)生體會到數(shù)學(xué)的樂趣,進(jìn)一步認(rèn)識到數(shù)學(xué)學(xué)習(xí)的過程是一個“動手作、動手想和動口說”的過程。
4.充分利用現(xiàn)代教育技術(shù),實現(xiàn)教學(xué)手段的現(xiàn)代化?,F(xiàn)代教育技術(shù)是教育改革與發(fā)展的“制高點”,未來的學(xué)習(xí),工作將是網(wǎng)絡(luò)環(huán)境下的新型的學(xué)習(xí)和工作模式。因此,本學(xué)期我將充分利用學(xué)校的多媒體教學(xué)技術(shù)和網(wǎng)絡(luò)技術(shù),把原本復(fù)雜的知識通過新技術(shù)教學(xué)直觀、簡單、系統(tǒng)的展現(xiàn)在學(xué)生面前。
5.做好教師間的團(tuán)結(jié)協(xié)作,積極向其他教師學(xué)習(xí)。近年來,“教學(xué)之聲相聞,課下不相往來。”的現(xiàn)象愈來不適應(yīng)現(xiàn)代化教學(xué)。反之,備課組、教研組的核心作用越來越受到重視。增強備課組集體教研氛圍,進(jìn)一步發(fā)揮教師的群體優(yōu)勢是提高教學(xué)質(zhì)量的捷徑。我將努力學(xué)習(xí)其他教師的優(yōu)秀教法,提高教學(xué)質(zhì)量。
6.加強復(fù)習(xí)的系統(tǒng)性??倧?fù)習(xí)是本學(xué)期教學(xué)至關(guān)重要的一環(huán),復(fù)習(xí)的好壞直接關(guān)系到同學(xué)們對初中數(shù)學(xué)的理解程度和掌握的質(zhì)量。總復(fù)習(xí)要特別注意教科書的內(nèi)在聯(lián)系性,強調(diào)知識之間的銜接和關(guān)聯(lián),使學(xué)生有綱可舉,有目可循。
7.抓住復(fù)習(xí)的重難點??倧?fù)習(xí)要在普遍撒網(wǎng)的基礎(chǔ)上,突出重點,突破難點,以便起到畫龍點睛的效果。
8.進(jìn)一步培養(yǎng)學(xué)生的綜合和分析能力。隨著初中知識傳授的完結(jié),學(xué)生知識系統(tǒng)的初步形成,培養(yǎng)和提高學(xué)生綜合運用知識和分析問題的能力已到了緊要關(guān)頭,教學(xué)中要特別注意這方面的引導(dǎo)。
五、具體復(fù)習(xí)安排。
1、第一階段復(fù)習(xí)復(fù)習(xí)時間:3月9日—4月9日。
復(fù)習(xí)宗旨:重雙基訓(xùn)練,知識系統(tǒng)化,練習(xí)專題化,專題規(guī)律化。在這一階段的教學(xué)把書中的內(nèi)容進(jìn)行歸納、整理、組塊,使之形成結(jié)構(gòu),使學(xué)生掌握每個章節(jié)的知識點,熟練解答各類基礎(chǔ)題,對每個章節(jié)進(jìn)行測驗,檢測學(xué)生掌握程度。
復(fù)習(xí)內(nèi)容:實數(shù)、代數(shù)式、方程、不等式、函數(shù)、統(tǒng)計與概率、幾何基本概念,相交線和平行線、三角形、四邊形、相似三角形、解直角三角形、圓、圖形的變換、視圖與投影、圖形的展開與折疊。以配套練習(xí)為主,復(fù)習(xí)完每個單元進(jìn)行一次單元測試,重視補缺工作。
2、第二階段復(fù)習(xí)復(fù)習(xí)時間:4月10日—30日。
復(fù)習(xí)宗旨:在第一階段復(fù)習(xí)的基礎(chǔ)上延伸和提高,側(cè)重培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力。重點進(jìn)行專題復(fù)習(xí)及綜合題的訓(xùn)練。針對不斷變化的中考,必須加強考試的動態(tài)研究,以此指導(dǎo)我們的升學(xué)復(fù)習(xí),抓好專題復(fù)習(xí)研究。在課堂教學(xué)上要注意教給學(xué)生的學(xué)法指導(dǎo),讓學(xué)生對知識的掌握和應(yīng)用,做到舉一反三,得心應(yīng)手。
復(fù)習(xí)內(nèi)容:方程型綜合問題、應(yīng)用性的函數(shù)題、不等式應(yīng)用題、統(tǒng)計類的應(yīng)用題、幾何綜合問題、探索性應(yīng)用題、開放題、閱讀理解題、方案設(shè)計、動手操作等,對這些內(nèi)容進(jìn)行專題復(fù)習(xí),以便學(xué)生熟悉、適應(yīng)這類題型。
3、第三階段復(fù)習(xí)。
復(fù)習(xí)時間:5月1日—6月20日。
復(fù)習(xí)宗旨:模擬中考的綜合訓(xùn)練,查漏補缺。
復(fù)習(xí)內(nèi)容:研究歷年的中考題,訓(xùn)練答題技巧、考場心態(tài)、臨場發(fā)揮的能力等。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十
1等腰三角形“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題。
2倍長中線:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形。
3角平分線在三種添輔助線。
4垂直平分線聯(lián)結(jié)線段兩端。
5用“截長法”或“補短法”:遇到有二條線段長之和等于第三條線段的長。
6圖形補全法:有一個角為60度或120度的把該角添線后構(gòu)成等邊三角形。
7角度數(shù)為30、60度的作垂線法:遇到三角形中的一個角為30度或60度,可以從角一邊上一點向角的另一邊作垂線,目的是構(gòu)成30-60-90的特殊直角三角形,然后計算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個角。從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。
8計算數(shù)值法:遇到等腰直角三角形,正方形時,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常計算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個角,從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。
全等三角形問題常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,二個角之間的相等。
1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”法構(gòu)造全等三角形。
2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”法構(gòu)造全等三角形。
3)遇到角平分線在三種添輔助線的方法,(1)可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理.(2)可以在角平分線上的一點作該角平分線的垂線與角的兩邊相交,形成一對全等三角形。(3)可以在該角的兩邊上,距離角的頂點相等長度的.位置上截取二點,然后從這兩點再向角平分線上的某點作邊線,構(gòu)造一對全等三角形。
4)過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”。
5)截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目。
6)已知某線段的垂直平分線,那么可以在垂直平分線上的某點向該線段的兩個端點作連線,出一對全等三角形。
特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十一
1、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。
說明:也可以說兩條射線或兩條線段平行,這實際上是指它們所在的直線平行。
2、平行線的判定:
(1)同位角相等,兩直線平行。
(2)內(nèi)錯角相等,兩直線平行。
(3)同旁內(nèi)角互補兩直線平行。
3、平行線的性質(zhì)。
(1)兩直線平行,同位角相等。
(2)兩直線平行,內(nèi)錯角相等。
(3)兩直線平行,同旁內(nèi)角互補。
說明:要證明兩條直線平行,用判定公理(或定理)在已知條件中有兩條直線平行時,則應(yīng)用性質(zhì)定理。
4、如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角_________________.
5、如果一個角的兩邊分別垂直于另一個角的兩邊,那么這兩個角_________________.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十二
把一個圖形繞某一點o轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個圖形是全等形。
(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標(biāo)系中對稱點的特征(3分)
1、關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點p(x,y)關(guān)于原點的對稱點為p’(―x,―y)
2、關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的坐標(biāo)中,x相等,y的符號相反,即點p(x,y)關(guān)于x軸的對稱點為p’(x,―y)
3、關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點p(x,y)關(guān)于y軸的對稱點為p’(―x,y)
大部分學(xué)生在學(xué)習(xí)中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學(xué)習(xí)數(shù)學(xué)的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的學(xué)生在解答數(shù)學(xué)題的時候始終不能把握解題技巧,也就是說學(xué)生缺乏對待數(shù)學(xué)的舉一反三能力。
還有的學(xué)生在解答數(shù)學(xué)題時效率太低,無法再規(guī)定的時間內(nèi)完成解題,對于初中的考試節(jié)奏還沒辦法適應(yīng)。一些學(xué)生還沒有養(yǎng)成一個總結(jié)歸納的習(xí)慣,不會歸納知識點,不會歸納錯題。這些都是導(dǎo)致學(xué)生學(xué)不好數(shù)學(xué)的原因。
1、一個圖形的面積等于它的各部分面積的和;
2、兩個全等圖形的面積相等;
5、相似三角形的面積比等于相似比的平方;
7、任何一條曲線都可以用一個函數(shù)y=f(x)來表示,那么,這條曲線所圍成的面積就是對x求積分。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十三
1.自變量的取值范圍:
分式分母不為零,偶次根下負(fù)不行;。
零次冪底數(shù)不為零,整式、奇次根全能行.
2.函數(shù)圖象的移動規(guī)律:
若把一次函數(shù)的解析式寫成y=k(x+0)+b,
二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,
則可用下面的口訣。
“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯不了”.
一次函數(shù)是直線,圖象經(jīng)過三象限;。
正比例函數(shù)更簡單,經(jīng)過原點一直線;。
兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;。
k為負(fù)來左下展,變化規(guī)律正相反;。
k的絕對值越大,線離橫軸就越遠(yuǎn).
4.二次函數(shù)的圖象與性質(zhì)的口訣:
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;。
開口、頂點和交點,它們確定圖象現(xiàn);。
開口、大小由a斷,c與y軸來相見;。
b的符號較特別,符號與a相關(guān)聯(lián);。
頂點位置先找見,y軸作為參考線;。
左同右異中為0,牢記心中莫混亂;。
頂點坐標(biāo)最重要,一般式配方它就現(xiàn);。
橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見.
若求對稱軸位置,符號反,一般、頂點、交點式,不同表達(dá)能互換.
5.反比例函數(shù)的圖象與性質(zhì)的口訣:
反比例函數(shù)有特點,雙曲線相背離得遠(yuǎn);。
k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;。
圖在一、三函數(shù)減,兩個分支分別減.
圖在二、四正相反,兩個分支分別增;。
線越長越近軸,永遠(yuǎn)與軸不沾邊.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十四
1.預(yù)習(xí):在課前把老師即將教授的單元內(nèi)容瀏覽一次,并留意不了解的部份。
2.專心聽講:。
(1)新的課程開始有很多新的名詞定義或新的觀念想法,老師的說明講解絕對比同學(xué)們自己看書更清楚,務(wù)必用心聽,切勿自作聰明而自誤。
若老師講到你早先預(yù)習(xí)時不了解的那部份,你就要特別注意。
有些同學(xué)聽老師講解的內(nèi)容較簡單,便以為他全會了,然后分心去做別的事,殊不知漏聽了最精彩最重要的幾句話,那幾句話或許便是日后測驗時答錯的關(guān)鍵所在。
(2)上課時一面聽講就要一面把重點背下來。定義、定理、公式等重點,上課時就要用心記憶,如此,當(dāng)老師舉例時才聽得懂老師要闡述的要義。
待回家后只需花很短的時間,便能將今日所教的課程復(fù)習(xí)完畢。事半而功倍。只可惜大多數(shù)同學(xué)上課像看電影一般,輕松地欣賞老師表演,下了課什麼都不記得,白白浪費一節(jié)課,真可惜。
3.課后練習(xí):。
(1)整理重點。
有數(shù)學(xué)課的當(dāng)天晚上,要把當(dāng)天教的內(nèi)容整理完畢,定義、定理、公式該背的一定要背熟,有些同學(xué)以為數(shù)學(xué)著重推理,不必死背,所以什麼都不背,這觀念并不正確。一般所謂不死背,指的是不死背解法,但是基本的定義、定理、公式是我們解題的工具,沒有記住這些,解題時將不能活用他們,好比醫(yī)師若不將所有的醫(yī)學(xué)知識、用藥知識熟記心中,如何在第一時間救人。很多同學(xué)數(shù)學(xué)考不好,就是沒有把定義認(rèn)識清楚,也沒有把一些重要定理、公式”完整地〃背熟。
(2)適當(dāng)練習(xí)。
重點整理完后,要適當(dāng)練習(xí)。先將老師上課時講解過的例題做一次,然后做課本習(xí)題,行有余力,再做參考書或任課老師所發(fā)的補充試題。遇有難題一時解不出,可先略過,以免浪費時間,待閑暇時再作挑戰(zhàn),若仍解不出再與同學(xué)或老師討論。
(3)練習(xí)時一定要親自動手演算。很多同學(xué)常會在考試時解題解到一半,就接不下去,分析其原因就是他做練習(xí)時是用看的,很多關(guān)鍵步驟忽略掉了。
4.測驗:。
(1)考前要把考試范圍內(nèi)的重點再整理一次,老師特別提示的重要題型一定要注意。
(2)考試時,會做的題目一定要做對,常計算錯誤的同學(xué),盡量把計算速度放慢,移項以及加減乘除都要小心處理,少使用“心算”。
(3)考試時,我們的目的是要得高分,而不是作學(xué)術(shù)研究,所以遇到較難的題目不要硬干,可先跳過,等到試卷中會做的題目都做完后,再利用剩下的時間挑戰(zhàn)難題,如此便能將實力完全表現(xiàn)出來,達(dá)到最完美的演出。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十五
(3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進(jìn)行劃分:
(1)兩組對邊分別平行的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
(4)兩組對角分別相等的四邊形是平行四邊形;
(5)對角線互相平分的四邊形是平行四邊形
常見考法
(1)利用平行四邊形的性質(zhì),求角度、線段長、周長;
(2)求平行四邊形某邊的取值范圍;
(3)考查一些綜合計算問題;
(4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;
(5)利用判定定理證明四邊形是平行四邊形。
(1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯記成對角線相等;
(2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十六
完成作業(yè)前一定要再閱讀一遍教材,認(rèn)真回顧老師在課堂上所講的內(nèi)容,然后再去寫作業(yè)。作業(yè)一定要養(yǎng)成獨立思考的好習(xí)慣,針對一道問題要學(xué)會多從不同的方法,不同的角度入手,多從典型題目中探索多種解題方法,從中得到聯(lián)想和啟發(fā)。
在較短的時間里進(jìn)行知識的鞏固,對知識的理解及運用的效果是最佳的,反之則效果不會明顯,要做到學(xué)而時習(xí)之。
2、反思。
學(xué)生在完成學(xué)習(xí)任務(wù)的基礎(chǔ)上還要進(jìn)行知識的梳理,多樹立數(shù)學(xué)解題的思想,比如分類的思想,整體的思想,方程的思想,數(shù)形結(jié)合的思想,方程的思想函數(shù)的思想等常用的解題思想。同時還要對重點習(xí)題多問幾個為什么,如果把這些題目中所示的已知條件改變、添加一些條件,結(jié)論與條件互換,原來的結(jié)論還存在嗎?只有多多練習(xí)才會做到游刃有余。
3、整理。
對于數(shù)學(xué)學(xué)習(xí)中,如試卷、作業(yè)中出現(xiàn)的錯誤,一定要及時弄懂,分析好自己做錯題目的原因,最好在錯題本中及時記錄下來,每隔一段時間就鞏固一下。在學(xué)習(xí)中絕對不能讓同樣的錯誤出現(xiàn)第二次。
數(shù)學(xué)是人類文化的重要組成部分,良好的數(shù)學(xué)素養(yǎng)是當(dāng)代社會每個公民應(yīng)該具備的基本素養(yǎng)。作為促進(jìn)學(xué)生全面發(fā)展教育的重要組成部分,數(shù)學(xué)教學(xué)既要是學(xué)生掌握現(xiàn)代生活和學(xué)習(xí)中所需要的數(shù)學(xué)知識與技能,更要發(fā)揮數(shù)學(xué)在培養(yǎng)人的思維能力和創(chuàng)造能力。學(xué)習(xí)數(shù)學(xué)要做到有方法、有計劃與合理的安排,只有做到循序漸進(jìn),才會獲得最終的勝利。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十七
初中數(shù)學(xué)教學(xué),注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾何思維能力。初中怎樣學(xué)好數(shù)學(xué)?下面給大家介紹初中數(shù)學(xué)知識點總結(jié)歸納,趕緊來看看吧!
有理數(shù)的加法運算。
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對值的大小。
有理數(shù)的減法運算。
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運算符號法則。
同號得正異號負(fù),一項為零積是零。
合并同類項。
說起合并同類項,法則千萬不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號法則。
去括號或添括號,關(guān)鍵要看連接號。
擴(kuò)號前面是正號,去添括號不變號。
括號前面是負(fù)號,去添括號都變號。
解方程。
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式。
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項,完全平方不是它。
完全平方公式。
二數(shù)和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
完全平方公式。
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
解一元一次方程。
先去分母再括號,移項變號要記牢。
同類各項去合并,系數(shù)化“1”還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程。
先去分母再括號,移項合并同類項。
系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。
因式分解與乘法。
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解。
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負(fù)號。
同正則正負(fù)就負(fù),異則需添冪符號。
因式分解。
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)。
因式分解。
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項添項去重組。
對癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項式的因式分解。
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例。
兩數(shù)相除也叫比,兩比相等叫比例。
外項積等內(nèi)項積,等積可化八比例。
分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。
同時交換內(nèi)外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。
解比例。
外項積等內(nèi)項積,列出方程并解之。
求比值。
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例。
商定變量成正比,積定變量成反比。
正比例與反比例。
變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。
判斷四數(shù)成比例。
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
判斷四式成比例。
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項。
成比例的四項中,外項相同會遇到。
有時內(nèi)項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內(nèi)項會相同,比例中項出現(xiàn)了。
同數(shù)平方等異積,比例中項無處逃。
根式與無理式。
表示方根代數(shù)式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區(qū)分它們有標(biāo)志。
被開方式有字母,又可稱為無理式。
求定義域。
求定義域有講究,四項原則須留意。
負(fù)數(shù)不能開平方,分母為零無意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關(guān),四項原則須注意。
負(fù)數(shù)不能開平方,分母為零無意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式。
先去分母再括號,移項合并同類項。
系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號,移項別忘要變號。
同類各項去合并,系數(shù)化“1”注意了。
同乘除正無防礙,同乘除負(fù)也變號。
解一元一次不等式組。
大于頭來小于尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對取較小)。
敬老院以老為榮,(同大就要取較大)。
軍營里沒老沒少。(大小小大就是它)。
大大小小解集空。(小小大大哪有哇)。
解一元二次不等式。
首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負(fù),曲線橫軸有交點。
a正開口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點數(shù)之間。
方程若無實數(shù)根,口上大零解為全。
小于零將沒有解,開口向下正相反。
用平方差公式因式分解。
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。
用完全平方公式因式分解。
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。
兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。
兩邊若負(fù)中間正,底差平方相反數(shù)。
用公式法解一元二次方程。
要用公式解方程,首先化成一般式。
調(diào)整系數(shù)隨其后,使其成為最簡比。
確定參數(shù)abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規(guī)配方法解一元二次方程。
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時多練習(xí)。
用間接配方法解一元二次方程。
已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢。
【注】恒等式。
解一元二次方程。
方程沒有一次項,直接開方最理想。
如果缺少常數(shù)項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別。
判斷正比例函數(shù),檢驗當(dāng)分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實數(shù)都要有。
正比例函數(shù)的圖象與性質(zhì)。
正比函數(shù)圖直線,經(jīng)過和原點。
k正一三負(fù)二四,變化趨勢記心間。
k正左低右邊高,同大同小向爬山。
k負(fù)左高右邊低,一大另小下山巒。
一次函數(shù)。
一次函數(shù)圖直線,經(jīng)過點。
k正左低右邊高,越走越高向爬山。
k負(fù)左高右邊低,越來越低很明顯。
k稱斜率b截距,截距為零變正函。
反比例函數(shù)。
反比函數(shù)雙曲線,經(jīng)過點。
k正一三負(fù)二四,兩軸是它漸近線。
k正左高右邊低,一三象限滑下山。
k負(fù)左低右邊高,二四象限如爬山。
二次函數(shù)。
二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實數(shù)定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調(diào)正相反。
a定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點后連線,平移規(guī)律記心間。
左加右減括號內(nèi),號外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實數(shù)。
a定開口及大小,開口向上是正數(shù)。
絕對值大開口小,開口向下a負(fù)數(shù)。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標(biāo)最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點后連線,三點大致定全圖。
若要平移也不難,先畫基礎(chǔ)拋物線,
頂點移到新位置,開口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線。
直線、射線與線段。
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。
角
一點出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補角。
一點出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補角和平角。
證等積或比例線段。
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特征。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無不勝。
解無理方程。
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負(fù)擔(dān)。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程。
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗根,原留增舍別含糊。
列方程解應(yīng)用題。
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗準(zhǔn)且合題意,問求同一才作答。
添加輔助線。
學(xué)習(xí)幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯(lián)系看。
兩點間距離公式。
同軸兩點求距離,大減小數(shù)就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標(biāo)差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定。
任意一個四邊形,三個直角成矩形;。
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;。
兩對角線若相等,理所當(dāng)然為矩形。
菱形的判定。
任意一個四邊形,四邊相等成菱形;。
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;。
兩對角線若垂直,順理成章為菱形。
概念課。
要重視教學(xué)過程,要積極體驗知識產(chǎn)生、發(fā)展的過程,要把知識的來龍去脈搞清楚,認(rèn)識知識發(fā)生的過程,理解公式、定理、法則的推導(dǎo)過程,改變死記硬背的方法,這樣我們就能從知識形成、發(fā)展過程當(dāng)中,理解到學(xué)會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習(xí)題課。
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學(xué)、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認(rèn)真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進(jìn)”,也就是把一個比較復(fù)雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規(guī)律,然后再來一個飛躍,進(jìn)一步升華,就能湊成一個大題,即退中求進(jìn)了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。
復(fù)習(xí)課。
在數(shù)學(xué)學(xué)習(xí)過程中,要有一個清醒的復(fù)習(xí)意識,逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個反思性學(xué)習(xí)過程。要反思對所學(xué)習(xí)的知識、技能有沒有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結(jié)為這些基本問題;要反思自己的錯誤,找出產(chǎn)生錯誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經(jīng)常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到中考時你的數(shù)學(xué)就沒有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識的運用過程中進(jìn)行,通過運用,達(dá)到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十八
相似比:相似多邊形對應(yīng)邊的比值。
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么兩個三角形相似。
3相似三角形的周長和面積。
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十九
2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)。
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形。
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的'一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二十
1、配方法;所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成—個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。
2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學(xué)課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。
3、換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、構(gòu)造法;在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起—座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
5、反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結(jié)論只有一種,另一種是相反的結(jié)論有無數(shù)種。前者需要把相反的結(jié)論推翻,后者只要舉出一個反例,就達(dá)到了證明的目的。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二十一
都說興趣是最好的老師,最重要的是要對數(shù)學(xué)有興趣,如果厭煩它,是怎么也提不高的。
(二)、理解能力。
數(shù)學(xué)是理科,理解能力很重要,沒有理解能力,你的數(shù)學(xué)乃至所有理科的學(xué)習(xí)將舉步難行。而理解能力的培養(yǎng)很難,你必須嘗試去理解一些對你很難的哲學(xué)理論和相對抽象的數(shù)學(xué)模型。最簡單的培養(yǎng)也十分艱辛,需要做到對于一道中等難度的題,看到輔助線能在1分鐘以內(nèi)反應(yīng)出其做法。其次,對老師所講的題不僅要懂,而且還要揣摩老師做題時的具體心路歷程,這才是為什么很多人數(shù)學(xué)學(xué)得好的基礎(chǔ)能力。
(三)、勤奮。
我見過很多很努力但仍學(xué)不好理科的同學(xué)。數(shù)學(xué)考試的令人無語之處在于只要你認(rèn)真按老師的要求學(xué)習(xí)很容易及格,但要想考上145分靠老師的那點練習(xí)則遠(yuǎn)遠(yuǎn)不夠。即使是對于差生來說,學(xué)習(xí)仍然有簡單易行的方法。掌握正確的方法,才能勤奮有所獲。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二十二
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇一
(全等三角形是特殊的相似三角形,相似比為1:1)。
(兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)。
(兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)。
4.直角三角形中由斜邊的高形成的三個三角形(母子三角形)。
圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑
4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對角互補。(任意一個外角等于它的內(nèi)對角)
補充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時,所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負(fù)號“-”的數(shù)叫做負(fù)數(shù)。
3.整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
4.人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個點表示數(shù)0,這個點叫做原點。
6.一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。
7.由絕對值的定義可知:
一個正數(shù)的絕對值是它本身;
一個負(fù)數(shù)的絕對值是它的相反數(shù);
0的絕對值是0。
8.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9.兩個負(fù)數(shù),絕對值大的反而小。
10.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負(fù)號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
(3)一個數(shù)同0相加,仍得這個數(shù)。
11.有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。
12.有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
13.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
14.有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值向乘。任何數(shù)同0相乘,都得0。
15.有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
16.一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
17.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
18.一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
19.有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
20.兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇三
1、角的兩種定義:一種是有公共端點的兩條射線所組成的圖形叫做角。
另一種是一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
2.角的平分線。
3、角的度量:度量角的大小,可用“度”作為度量單位。把一個圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4.角的分類:(1)銳角(2)直角(3)鈍角(4)平角(5)周角。
5.相關(guān)的角:
(1)對頂角(2)互為補角(3)互為余角。
6、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的位置關(guān)系。
7、角的性質(zhì)。
(1)對頂角相等(2)同角或等角的余角相等(3)同角或等角的補角相等。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇四
二、角。
1、角的兩種定義:一種是有公共端點的兩條射線所組成的圖形叫做角。
另一種是一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
2.角的平分線。
3、角的度量:度量角的大小,可用“度”作為度量單位。把一個圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4.角的分類:(1)銳角(2)直角(3)鈍角(4)平角(5)周角。
5.相關(guān)的角:
(1)對頂角(2)互為補角(3)互為余角。
6、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的位置關(guān)系。
7、角的性質(zhì)。
(1)對頂角相等(2)同角或等角的余角相等(3)同角或等角的補角相等。
三、相交線。
1、斜線2、兩條直線互相垂直3、垂線,垂足。
4、垂線的性質(zhì)。
(l)過一點有且只有一條直線與己知直線垂直。
(2)垂線段最短。
四、距離。
1、兩點的距。
2、從直線外一點到這條直線的垂線段的長度叫做點到直線的距離。
3、兩條平行線的距離:兩條直線平行,從一條直線上的任意一點向另一條直線引垂線,垂線段的長度,叫做兩條平行線的距離。
五、平行線。
1、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。
說明:也可以說兩條射線或兩條線段平行,這實際上是指它們所在的直線平行。
2、平行線的判定:
(1)同位角相等,兩直線平行。
(2)內(nèi)錯角相等,兩直線平行。
(3)同旁內(nèi)角互補兩直線平行。
3、平行線的性質(zhì)。
(1)兩直線平行,同位角相等。
(2)兩直線平行,內(nèi)錯角相等。
(3)兩直線平行,同旁內(nèi)角互補。
說明:要證明兩條直線平行,用判定公理(或定理)在已知條件中有兩條直線平行時,則應(yīng)用性質(zhì)定理。
4、如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角_________________.
5、如果一個角的兩邊分別垂直于另一個角的兩邊,那么這兩個角_________________.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇五
直角三角形的判定方法:
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么。
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇六
對應(yīng)角相等、對應(yīng)邊成比例的兩個三角形叫做相似三角形。
如果三邊分別對應(yīng)a,b,c和a,b,c:那么:a/a=b/b=c/c。
即三邊邊長對應(yīng)比例相同。
2.相似三角形判定。
對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形。
判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似(aa)。
判定定理2:如果兩個三角形的兩組對應(yīng)邊成比例,并且對應(yīng)的夾角相等,那么這兩個三角形相似(sas)。
判定定理3:如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似(sss)。
判定定理4:兩三角形三邊對應(yīng)平行,則兩三角形相似。
判定定理5:兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。
其他判定:由角度比轉(zhuǎn)化為線段比:h1/h2=sabc。
(3)相似三角形的對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。
(4)相似三角形的周長比等于相似比。
(5)相似三角形的面積比等于相似比的平方。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇七
1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.
1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.
2、自變量變化函數(shù)值也變化的增減變化情況.
3、函數(shù)圖象的最低點和最高點.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇八
(1)任意兩個正數(shù)的和的平方,等于這兩個數(shù)的平方和。
(2)任意兩個正數(shù)的差的平方,等于這兩個數(shù)的平方和,再減去這兩個數(shù)乘積的2倍。
3、平方根。
1正數(shù)有兩個平方根,這兩個平方根互為相反數(shù);。
2零只有一個平方根,它就是零本身;。
3負(fù)數(shù)沒有平方根。
4、實數(shù)。
無限不循環(huán)小數(shù)叫做無理數(shù)。
有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。
5、平方根的運算。
6、算術(shù)平方根的性質(zhì)。
性質(zhì)1一個非負(fù)數(shù)的算術(shù)平方根的平方等于這個數(shù)本身。
性質(zhì)2一個數(shù)的平方的算術(shù)平方根等于這個數(shù)的絕對值。
7、算術(shù)平方根的乘、除運算。
1)算術(shù)平方根的乘法。
sqrt(a)?sqrt(b)=sqrt(ab)(a=0,b=0)。
2算)術(shù)平方根的除法。
sqrt(a)/sqrt(b)=sqrt(a/b)(a=0,b0)。
8‘算術(shù)平方根的加、減運算。
如果幾個平方根化成最簡平方根以后,被開方數(shù)相同,那么這幾個平方根就叫做同類平方根。
9、一元二次方程及其解法。
1)一元二次方程。
只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程。
2)特殊的一元二次方程的解法。
3)一般的一元二次方程的解法——配方法。
用配方法解一元二次方程的一般步驟是:
2、移項把常數(shù)項移至方程右邊,將方程化為x^2+px=-q的形式。
4、有平方根的定義,可知。
(1)當(dāng)p^2/4-q0時,原方程有兩個實數(shù)根;。
(2)當(dāng)p^2/4-q=0,原方程有兩個相等的實數(shù)根(二重根);。
(3)當(dāng)p^2/4-q0,原方程無實根。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇九
本學(xué)期,結(jié)合縣20xx年教學(xué)工作會議精神和學(xué)校工作計劃的要求,以提高教育教學(xué)質(zhì)量為核心,切實減輕學(xué)生負(fù)擔(dān),2017年九年級數(shù)學(xué)下學(xué)期工作計劃范文。努力提高課堂效率,提高教學(xué)質(zhì)量,挖掘?qū)W生潛力,促進(jìn)學(xué)生全面發(fā)展。根據(jù)學(xué)校工作安排,我仍擔(dān)任九年級兩個班級的數(shù)學(xué)教學(xué)工作,結(jié)合學(xué)校的教學(xué)工作計劃,制定了本學(xué)期教學(xué)計劃:
一、基本情況分析。
1、.學(xué)生情況本學(xué)期我繼續(xù)擔(dān)任九年級3、4班的數(shù)學(xué)課。通過上學(xué)期的努力,該年級多數(shù)同學(xué)學(xué)習(xí)數(shù)學(xué)的興趣漸濃,學(xué)習(xí)的自覺性明顯提高,學(xué)習(xí)成績在不斷進(jìn)步,但是由于該年級一些學(xué)生數(shù)學(xué)基礎(chǔ)太差,學(xué)生數(shù)學(xué)成績兩極分化的現(xiàn)象沒有顯著改觀,給教學(xué)帶來很大難度。設(shè)法關(guān)注每一個學(xué)生,重視學(xué)生的全面協(xié)調(diào)發(fā)展是教學(xué)的首要任務(wù)。本學(xué)期是初中學(xué)習(xí)的關(guān)鍵時期,教學(xué)任務(wù)非常艱巨。因此,要完成教學(xué)任務(wù),必須緊扣新的數(shù)學(xué)課程標(biāo)準(zhǔn),結(jié)合教學(xué)內(nèi)容和學(xué)生實際,把握好重點、難點,努力把本學(xué)期的任務(wù)圓滿完成。九年級畢業(yè)班總復(fù)習(xí)教學(xué)時間緊,任務(wù)重,要求高,如何提高數(shù)學(xué)總復(fù)習(xí)的質(zhì)量和效益,是每位畢業(yè)班數(shù)學(xué)教師必須面對的問題。
二、結(jié)合畢業(yè)班特點,安排教學(xué)與復(fù)習(xí)。
1.做好畢業(yè)班學(xué)生的思想工作,注意他們的思想動態(tài)。關(guān)心學(xué)生,特別是關(guān)心學(xué)生的身體健康、生理與心理健康,使其能有良好的心理狀態(tài),能坦然面對緊張的學(xué)習(xí)生活,能正確對待中考。
2.做好導(dǎo)優(yōu)輔差工作。對于優(yōu)秀生,鼓勵他們多鉆研提高題,對于基礎(chǔ)較差的學(xué)生,抓好基礎(chǔ)知識。把主要精力放在中等生身上。
3.充分利用課堂45分鐘,提高效率,做到精講多練,課堂教學(xué)倡導(dǎo)學(xué)生自主、合作學(xué)習(xí)、共同探究問題。
三、教學(xué)目標(biāo)。
師生共同努力,使絕大多數(shù)學(xué)生達(dá)到或基本達(dá)到《課標(biāo)》的要求,注重基礎(chǔ)訓(xùn)練,顧及多數(shù)人的水平和接受能力,促進(jìn)全體學(xué)生的全面協(xié)調(diào)發(fā)展。
四、提高教學(xué)質(zhì)量的主要措施。
1.讓數(shù)學(xué)更貼近學(xué)生的生活,工作計劃《2017年九年級數(shù)學(xué)下學(xué)期工作計劃范文》?!靶抡n標(biāo)”強調(diào)在教學(xué)中要引導(dǎo)學(xué)生聯(lián)系自己身邊具體有趣的事物,通過觀察操作,解決問題等豐富的活動,感受數(shù)學(xué)與日常生活的密切聯(lián)系。我覺得這是“新課標(biāo)”的一大特色,所以在今后的數(shù)學(xué)教學(xué)中,我要結(jié)合具體的教學(xué)內(nèi)容,創(chuàng)設(shè)一些學(xué)生感興趣的生活情景,幫助學(xué)生認(rèn)真捕捉“生活現(xiàn)象”,使他們真正體會到生活中處處有數(shù)學(xué),數(shù)學(xué)中處處有生活。
2.激發(fā)學(xué)生的學(xué)習(xí)積極性,切實使學(xué)生成為數(shù)學(xué)學(xué)習(xí)的主人?!靶抡n標(biāo)”提出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者”。也就是落實學(xué)生的主體地位,把課堂還給學(xué)生,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,讓課堂充滿生機與活力。
3.設(shè)計一些新穎的.、獨特的教學(xué)方案,使學(xué)生愛數(shù)學(xué)。通過觀察、實踐,使枯燥的內(nèi)容形象化、興趣化,使學(xué)生體會到數(shù)學(xué)的樂趣,進(jìn)一步認(rèn)識到數(shù)學(xué)學(xué)習(xí)的過程是一個“動手作、動手想和動口說”的過程。
4.充分利用現(xiàn)代教育技術(shù),實現(xiàn)教學(xué)手段的現(xiàn)代化?,F(xiàn)代教育技術(shù)是教育改革與發(fā)展的“制高點”,未來的學(xué)習(xí),工作將是網(wǎng)絡(luò)環(huán)境下的新型的學(xué)習(xí)和工作模式。因此,本學(xué)期我將充分利用學(xué)校的多媒體教學(xué)技術(shù)和網(wǎng)絡(luò)技術(shù),把原本復(fù)雜的知識通過新技術(shù)教學(xué)直觀、簡單、系統(tǒng)的展現(xiàn)在學(xué)生面前。
5.做好教師間的團(tuán)結(jié)協(xié)作,積極向其他教師學(xué)習(xí)。近年來,“教學(xué)之聲相聞,課下不相往來。”的現(xiàn)象愈來不適應(yīng)現(xiàn)代化教學(xué)。反之,備課組、教研組的核心作用越來越受到重視。增強備課組集體教研氛圍,進(jìn)一步發(fā)揮教師的群體優(yōu)勢是提高教學(xué)質(zhì)量的捷徑。我將努力學(xué)習(xí)其他教師的優(yōu)秀教法,提高教學(xué)質(zhì)量。
6.加強復(fù)習(xí)的系統(tǒng)性??倧?fù)習(xí)是本學(xué)期教學(xué)至關(guān)重要的一環(huán),復(fù)習(xí)的好壞直接關(guān)系到同學(xué)們對初中數(shù)學(xué)的理解程度和掌握的質(zhì)量。總復(fù)習(xí)要特別注意教科書的內(nèi)在聯(lián)系性,強調(diào)知識之間的銜接和關(guān)聯(lián),使學(xué)生有綱可舉,有目可循。
7.抓住復(fù)習(xí)的重難點??倧?fù)習(xí)要在普遍撒網(wǎng)的基礎(chǔ)上,突出重點,突破難點,以便起到畫龍點睛的效果。
8.進(jìn)一步培養(yǎng)學(xué)生的綜合和分析能力。隨著初中知識傳授的完結(jié),學(xué)生知識系統(tǒng)的初步形成,培養(yǎng)和提高學(xué)生綜合運用知識和分析問題的能力已到了緊要關(guān)頭,教學(xué)中要特別注意這方面的引導(dǎo)。
五、具體復(fù)習(xí)安排。
1、第一階段復(fù)習(xí)復(fù)習(xí)時間:3月9日—4月9日。
復(fù)習(xí)宗旨:重雙基訓(xùn)練,知識系統(tǒng)化,練習(xí)專題化,專題規(guī)律化。在這一階段的教學(xué)把書中的內(nèi)容進(jìn)行歸納、整理、組塊,使之形成結(jié)構(gòu),使學(xué)生掌握每個章節(jié)的知識點,熟練解答各類基礎(chǔ)題,對每個章節(jié)進(jìn)行測驗,檢測學(xué)生掌握程度。
復(fù)習(xí)內(nèi)容:實數(shù)、代數(shù)式、方程、不等式、函數(shù)、統(tǒng)計與概率、幾何基本概念,相交線和平行線、三角形、四邊形、相似三角形、解直角三角形、圓、圖形的變換、視圖與投影、圖形的展開與折疊。以配套練習(xí)為主,復(fù)習(xí)完每個單元進(jìn)行一次單元測試,重視補缺工作。
2、第二階段復(fù)習(xí)復(fù)習(xí)時間:4月10日—30日。
復(fù)習(xí)宗旨:在第一階段復(fù)習(xí)的基礎(chǔ)上延伸和提高,側(cè)重培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力。重點進(jìn)行專題復(fù)習(xí)及綜合題的訓(xùn)練。針對不斷變化的中考,必須加強考試的動態(tài)研究,以此指導(dǎo)我們的升學(xué)復(fù)習(xí),抓好專題復(fù)習(xí)研究。在課堂教學(xué)上要注意教給學(xué)生的學(xué)法指導(dǎo),讓學(xué)生對知識的掌握和應(yīng)用,做到舉一反三,得心應(yīng)手。
復(fù)習(xí)內(nèi)容:方程型綜合問題、應(yīng)用性的函數(shù)題、不等式應(yīng)用題、統(tǒng)計類的應(yīng)用題、幾何綜合問題、探索性應(yīng)用題、開放題、閱讀理解題、方案設(shè)計、動手操作等,對這些內(nèi)容進(jìn)行專題復(fù)習(xí),以便學(xué)生熟悉、適應(yīng)這類題型。
3、第三階段復(fù)習(xí)。
復(fù)習(xí)時間:5月1日—6月20日。
復(fù)習(xí)宗旨:模擬中考的綜合訓(xùn)練,查漏補缺。
復(fù)習(xí)內(nèi)容:研究歷年的中考題,訓(xùn)練答題技巧、考場心態(tài)、臨場發(fā)揮的能力等。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十
1等腰三角形“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題。
2倍長中線:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形。
3角平分線在三種添輔助線。
4垂直平分線聯(lián)結(jié)線段兩端。
5用“截長法”或“補短法”:遇到有二條線段長之和等于第三條線段的長。
6圖形補全法:有一個角為60度或120度的把該角添線后構(gòu)成等邊三角形。
7角度數(shù)為30、60度的作垂線法:遇到三角形中的一個角為30度或60度,可以從角一邊上一點向角的另一邊作垂線,目的是構(gòu)成30-60-90的特殊直角三角形,然后計算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個角。從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。
8計算數(shù)值法:遇到等腰直角三角形,正方形時,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常計算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個角,從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。
全等三角形問題常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,二個角之間的相等。
1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”法構(gòu)造全等三角形。
2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”法構(gòu)造全等三角形。
3)遇到角平分線在三種添輔助線的方法,(1)可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理.(2)可以在角平分線上的一點作該角平分線的垂線與角的兩邊相交,形成一對全等三角形。(3)可以在該角的兩邊上,距離角的頂點相等長度的.位置上截取二點,然后從這兩點再向角平分線上的某點作邊線,構(gòu)造一對全等三角形。
4)過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”。
5)截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目。
6)已知某線段的垂直平分線,那么可以在垂直平分線上的某點向該線段的兩個端點作連線,出一對全等三角形。
特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十一
1、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。
說明:也可以說兩條射線或兩條線段平行,這實際上是指它們所在的直線平行。
2、平行線的判定:
(1)同位角相等,兩直線平行。
(2)內(nèi)錯角相等,兩直線平行。
(3)同旁內(nèi)角互補兩直線平行。
3、平行線的性質(zhì)。
(1)兩直線平行,同位角相等。
(2)兩直線平行,內(nèi)錯角相等。
(3)兩直線平行,同旁內(nèi)角互補。
說明:要證明兩條直線平行,用判定公理(或定理)在已知條件中有兩條直線平行時,則應(yīng)用性質(zhì)定理。
4、如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角_________________.
5、如果一個角的兩邊分別垂直于另一個角的兩邊,那么這兩個角_________________.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十二
把一個圖形繞某一點o轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個圖形是全等形。
(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標(biāo)系中對稱點的特征(3分)
1、關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點p(x,y)關(guān)于原點的對稱點為p’(―x,―y)
2、關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的坐標(biāo)中,x相等,y的符號相反,即點p(x,y)關(guān)于x軸的對稱點為p’(x,―y)
3、關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點p(x,y)關(guān)于y軸的對稱點為p’(―x,y)
大部分學(xué)生在學(xué)習(xí)中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學(xué)習(xí)數(shù)學(xué)的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的學(xué)生在解答數(shù)學(xué)題的時候始終不能把握解題技巧,也就是說學(xué)生缺乏對待數(shù)學(xué)的舉一反三能力。
還有的學(xué)生在解答數(shù)學(xué)題時效率太低,無法再規(guī)定的時間內(nèi)完成解題,對于初中的考試節(jié)奏還沒辦法適應(yīng)。一些學(xué)生還沒有養(yǎng)成一個總結(jié)歸納的習(xí)慣,不會歸納知識點,不會歸納錯題。這些都是導(dǎo)致學(xué)生學(xué)不好數(shù)學(xué)的原因。
1、一個圖形的面積等于它的各部分面積的和;
2、兩個全等圖形的面積相等;
5、相似三角形的面積比等于相似比的平方;
7、任何一條曲線都可以用一個函數(shù)y=f(x)來表示,那么,這條曲線所圍成的面積就是對x求積分。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十三
1.自變量的取值范圍:
分式分母不為零,偶次根下負(fù)不行;。
零次冪底數(shù)不為零,整式、奇次根全能行.
2.函數(shù)圖象的移動規(guī)律:
若把一次函數(shù)的解析式寫成y=k(x+0)+b,
二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,
則可用下面的口訣。
“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯不了”.
一次函數(shù)是直線,圖象經(jīng)過三象限;。
正比例函數(shù)更簡單,經(jīng)過原點一直線;。
兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;。
k為負(fù)來左下展,變化規(guī)律正相反;。
k的絕對值越大,線離橫軸就越遠(yuǎn).
4.二次函數(shù)的圖象與性質(zhì)的口訣:
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;。
開口、頂點和交點,它們確定圖象現(xiàn);。
開口、大小由a斷,c與y軸來相見;。
b的符號較特別,符號與a相關(guān)聯(lián);。
頂點位置先找見,y軸作為參考線;。
左同右異中為0,牢記心中莫混亂;。
頂點坐標(biāo)最重要,一般式配方它就現(xiàn);。
橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見.
若求對稱軸位置,符號反,一般、頂點、交點式,不同表達(dá)能互換.
5.反比例函數(shù)的圖象與性質(zhì)的口訣:
反比例函數(shù)有特點,雙曲線相背離得遠(yuǎn);。
k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;。
圖在一、三函數(shù)減,兩個分支分別減.
圖在二、四正相反,兩個分支分別增;。
線越長越近軸,永遠(yuǎn)與軸不沾邊.
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十四
1.預(yù)習(xí):在課前把老師即將教授的單元內(nèi)容瀏覽一次,并留意不了解的部份。
2.專心聽講:。
(1)新的課程開始有很多新的名詞定義或新的觀念想法,老師的說明講解絕對比同學(xué)們自己看書更清楚,務(wù)必用心聽,切勿自作聰明而自誤。
若老師講到你早先預(yù)習(xí)時不了解的那部份,你就要特別注意。
有些同學(xué)聽老師講解的內(nèi)容較簡單,便以為他全會了,然后分心去做別的事,殊不知漏聽了最精彩最重要的幾句話,那幾句話或許便是日后測驗時答錯的關(guān)鍵所在。
(2)上課時一面聽講就要一面把重點背下來。定義、定理、公式等重點,上課時就要用心記憶,如此,當(dāng)老師舉例時才聽得懂老師要闡述的要義。
待回家后只需花很短的時間,便能將今日所教的課程復(fù)習(xí)完畢。事半而功倍。只可惜大多數(shù)同學(xué)上課像看電影一般,輕松地欣賞老師表演,下了課什麼都不記得,白白浪費一節(jié)課,真可惜。
3.課后練習(xí):。
(1)整理重點。
有數(shù)學(xué)課的當(dāng)天晚上,要把當(dāng)天教的內(nèi)容整理完畢,定義、定理、公式該背的一定要背熟,有些同學(xué)以為數(shù)學(xué)著重推理,不必死背,所以什麼都不背,這觀念并不正確。一般所謂不死背,指的是不死背解法,但是基本的定義、定理、公式是我們解題的工具,沒有記住這些,解題時將不能活用他們,好比醫(yī)師若不將所有的醫(yī)學(xué)知識、用藥知識熟記心中,如何在第一時間救人。很多同學(xué)數(shù)學(xué)考不好,就是沒有把定義認(rèn)識清楚,也沒有把一些重要定理、公式”完整地〃背熟。
(2)適當(dāng)練習(xí)。
重點整理完后,要適當(dāng)練習(xí)。先將老師上課時講解過的例題做一次,然后做課本習(xí)題,行有余力,再做參考書或任課老師所發(fā)的補充試題。遇有難題一時解不出,可先略過,以免浪費時間,待閑暇時再作挑戰(zhàn),若仍解不出再與同學(xué)或老師討論。
(3)練習(xí)時一定要親自動手演算。很多同學(xué)常會在考試時解題解到一半,就接不下去,分析其原因就是他做練習(xí)時是用看的,很多關(guān)鍵步驟忽略掉了。
4.測驗:。
(1)考前要把考試范圍內(nèi)的重點再整理一次,老師特別提示的重要題型一定要注意。
(2)考試時,會做的題目一定要做對,常計算錯誤的同學(xué),盡量把計算速度放慢,移項以及加減乘除都要小心處理,少使用“心算”。
(3)考試時,我們的目的是要得高分,而不是作學(xué)術(shù)研究,所以遇到較難的題目不要硬干,可先跳過,等到試卷中會做的題目都做完后,再利用剩下的時間挑戰(zhàn)難題,如此便能將實力完全表現(xiàn)出來,達(dá)到最完美的演出。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十五
(3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進(jìn)行劃分:
(1)兩組對邊分別平行的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
(4)兩組對角分別相等的四邊形是平行四邊形;
(5)對角線互相平分的四邊形是平行四邊形
常見考法
(1)利用平行四邊形的性質(zhì),求角度、線段長、周長;
(2)求平行四邊形某邊的取值范圍;
(3)考查一些綜合計算問題;
(4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;
(5)利用判定定理證明四邊形是平行四邊形。
(1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯記成對角線相等;
(2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十六
完成作業(yè)前一定要再閱讀一遍教材,認(rèn)真回顧老師在課堂上所講的內(nèi)容,然后再去寫作業(yè)。作業(yè)一定要養(yǎng)成獨立思考的好習(xí)慣,針對一道問題要學(xué)會多從不同的方法,不同的角度入手,多從典型題目中探索多種解題方法,從中得到聯(lián)想和啟發(fā)。
在較短的時間里進(jìn)行知識的鞏固,對知識的理解及運用的效果是最佳的,反之則效果不會明顯,要做到學(xué)而時習(xí)之。
2、反思。
學(xué)生在完成學(xué)習(xí)任務(wù)的基礎(chǔ)上還要進(jìn)行知識的梳理,多樹立數(shù)學(xué)解題的思想,比如分類的思想,整體的思想,方程的思想,數(shù)形結(jié)合的思想,方程的思想函數(shù)的思想等常用的解題思想。同時還要對重點習(xí)題多問幾個為什么,如果把這些題目中所示的已知條件改變、添加一些條件,結(jié)論與條件互換,原來的結(jié)論還存在嗎?只有多多練習(xí)才會做到游刃有余。
3、整理。
對于數(shù)學(xué)學(xué)習(xí)中,如試卷、作業(yè)中出現(xiàn)的錯誤,一定要及時弄懂,分析好自己做錯題目的原因,最好在錯題本中及時記錄下來,每隔一段時間就鞏固一下。在學(xué)習(xí)中絕對不能讓同樣的錯誤出現(xiàn)第二次。
數(shù)學(xué)是人類文化的重要組成部分,良好的數(shù)學(xué)素養(yǎng)是當(dāng)代社會每個公民應(yīng)該具備的基本素養(yǎng)。作為促進(jìn)學(xué)生全面發(fā)展教育的重要組成部分,數(shù)學(xué)教學(xué)既要是學(xué)生掌握現(xiàn)代生活和學(xué)習(xí)中所需要的數(shù)學(xué)知識與技能,更要發(fā)揮數(shù)學(xué)在培養(yǎng)人的思維能力和創(chuàng)造能力。學(xué)習(xí)數(shù)學(xué)要做到有方法、有計劃與合理的安排,只有做到循序漸進(jìn),才會獲得最終的勝利。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十七
初中數(shù)學(xué)教學(xué),注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾何思維能力。初中怎樣學(xué)好數(shù)學(xué)?下面給大家介紹初中數(shù)學(xué)知識點總結(jié)歸納,趕緊來看看吧!
有理數(shù)的加法運算。
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對值的大小。
有理數(shù)的減法運算。
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運算符號法則。
同號得正異號負(fù),一項為零積是零。
合并同類項。
說起合并同類項,法則千萬不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號法則。
去括號或添括號,關(guān)鍵要看連接號。
擴(kuò)號前面是正號,去添括號不變號。
括號前面是負(fù)號,去添括號都變號。
解方程。
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式。
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項,完全平方不是它。
完全平方公式。
二數(shù)和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
完全平方公式。
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
解一元一次方程。
先去分母再括號,移項變號要記牢。
同類各項去合并,系數(shù)化“1”還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程。
先去分母再括號,移項合并同類項。
系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。
因式分解與乘法。
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解。
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負(fù)號。
同正則正負(fù)就負(fù),異則需添冪符號。
因式分解。
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)。
因式分解。
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項添項去重組。
對癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項式的因式分解。
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例。
兩數(shù)相除也叫比,兩比相等叫比例。
外項積等內(nèi)項積,等積可化八比例。
分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。
同時交換內(nèi)外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。
解比例。
外項積等內(nèi)項積,列出方程并解之。
求比值。
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例。
商定變量成正比,積定變量成反比。
正比例與反比例。
變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。
判斷四數(shù)成比例。
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
判斷四式成比例。
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項。
成比例的四項中,外項相同會遇到。
有時內(nèi)項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內(nèi)項會相同,比例中項出現(xiàn)了。
同數(shù)平方等異積,比例中項無處逃。
根式與無理式。
表示方根代數(shù)式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區(qū)分它們有標(biāo)志。
被開方式有字母,又可稱為無理式。
求定義域。
求定義域有講究,四項原則須留意。
負(fù)數(shù)不能開平方,分母為零無意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關(guān),四項原則須注意。
負(fù)數(shù)不能開平方,分母為零無意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式。
先去分母再括號,移項合并同類項。
系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號,移項別忘要變號。
同類各項去合并,系數(shù)化“1”注意了。
同乘除正無防礙,同乘除負(fù)也變號。
解一元一次不等式組。
大于頭來小于尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對取較小)。
敬老院以老為榮,(同大就要取較大)。
軍營里沒老沒少。(大小小大就是它)。
大大小小解集空。(小小大大哪有哇)。
解一元二次不等式。
首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負(fù),曲線橫軸有交點。
a正開口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點數(shù)之間。
方程若無實數(shù)根,口上大零解為全。
小于零將沒有解,開口向下正相反。
用平方差公式因式分解。
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。
用完全平方公式因式分解。
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。
兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。
兩邊若負(fù)中間正,底差平方相反數(shù)。
用公式法解一元二次方程。
要用公式解方程,首先化成一般式。
調(diào)整系數(shù)隨其后,使其成為最簡比。
確定參數(shù)abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規(guī)配方法解一元二次方程。
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時多練習(xí)。
用間接配方法解一元二次方程。
已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢。
【注】恒等式。
解一元二次方程。
方程沒有一次項,直接開方最理想。
如果缺少常數(shù)項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別。
判斷正比例函數(shù),檢驗當(dāng)分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實數(shù)都要有。
正比例函數(shù)的圖象與性質(zhì)。
正比函數(shù)圖直線,經(jīng)過和原點。
k正一三負(fù)二四,變化趨勢記心間。
k正左低右邊高,同大同小向爬山。
k負(fù)左高右邊低,一大另小下山巒。
一次函數(shù)。
一次函數(shù)圖直線,經(jīng)過點。
k正左低右邊高,越走越高向爬山。
k負(fù)左高右邊低,越來越低很明顯。
k稱斜率b截距,截距為零變正函。
反比例函數(shù)。
反比函數(shù)雙曲線,經(jīng)過點。
k正一三負(fù)二四,兩軸是它漸近線。
k正左高右邊低,一三象限滑下山。
k負(fù)左低右邊高,二四象限如爬山。
二次函數(shù)。
二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實數(shù)定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調(diào)正相反。
a定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點后連線,平移規(guī)律記心間。
左加右減括號內(nèi),號外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實數(shù)。
a定開口及大小,開口向上是正數(shù)。
絕對值大開口小,開口向下a負(fù)數(shù)。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標(biāo)最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點后連線,三點大致定全圖。
若要平移也不難,先畫基礎(chǔ)拋物線,
頂點移到新位置,開口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線。
直線、射線與線段。
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。
角
一點出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補角。
一點出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補角和平角。
證等積或比例線段。
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特征。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無不勝。
解無理方程。
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負(fù)擔(dān)。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程。
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗根,原留增舍別含糊。
列方程解應(yīng)用題。
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗準(zhǔn)且合題意,問求同一才作答。
添加輔助線。
學(xué)習(xí)幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯(lián)系看。
兩點間距離公式。
同軸兩點求距離,大減小數(shù)就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標(biāo)差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定。
任意一個四邊形,三個直角成矩形;。
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;。
兩對角線若相等,理所當(dāng)然為矩形。
菱形的判定。
任意一個四邊形,四邊相等成菱形;。
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;。
兩對角線若垂直,順理成章為菱形。
概念課。
要重視教學(xué)過程,要積極體驗知識產(chǎn)生、發(fā)展的過程,要把知識的來龍去脈搞清楚,認(rèn)識知識發(fā)生的過程,理解公式、定理、法則的推導(dǎo)過程,改變死記硬背的方法,這樣我們就能從知識形成、發(fā)展過程當(dāng)中,理解到學(xué)會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習(xí)題課。
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學(xué)、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認(rèn)真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進(jìn)”,也就是把一個比較復(fù)雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規(guī)律,然后再來一個飛躍,進(jìn)一步升華,就能湊成一個大題,即退中求進(jìn)了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。
復(fù)習(xí)課。
在數(shù)學(xué)學(xué)習(xí)過程中,要有一個清醒的復(fù)習(xí)意識,逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個反思性學(xué)習(xí)過程。要反思對所學(xué)習(xí)的知識、技能有沒有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結(jié)為這些基本問題;要反思自己的錯誤,找出產(chǎn)生錯誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經(jīng)常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到中考時你的數(shù)學(xué)就沒有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識的運用過程中進(jìn)行,通過運用,達(dá)到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十八
相似比:相似多邊形對應(yīng)邊的比值。
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么兩個三角形相似。
3相似三角形的周長和面積。
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇十九
2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)。
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形。
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的'一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二十
1、配方法;所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成—個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。
2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學(xué)課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。
3、換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、構(gòu)造法;在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起—座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
5、反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結(jié)論只有一種,另一種是相反的結(jié)論有無數(shù)種。前者需要把相反的結(jié)論推翻,后者只要舉出一個反例,就達(dá)到了證明的目的。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二十一
都說興趣是最好的老師,最重要的是要對數(shù)學(xué)有興趣,如果厭煩它,是怎么也提不高的。
(二)、理解能力。
數(shù)學(xué)是理科,理解能力很重要,沒有理解能力,你的數(shù)學(xué)乃至所有理科的學(xué)習(xí)將舉步難行。而理解能力的培養(yǎng)很難,你必須嘗試去理解一些對你很難的哲學(xué)理論和相對抽象的數(shù)學(xué)模型。最簡單的培養(yǎng)也十分艱辛,需要做到對于一道中等難度的題,看到輔助線能在1分鐘以內(nèi)反應(yīng)出其做法。其次,對老師所講的題不僅要懂,而且還要揣摩老師做題時的具體心路歷程,這才是為什么很多人數(shù)學(xué)學(xué)得好的基礎(chǔ)能力。
(三)、勤奮。
我見過很多很努力但仍學(xué)不好理科的同學(xué)。數(shù)學(xué)考試的令人無語之處在于只要你認(rèn)真按老師的要求學(xué)習(xí)很容易及格,但要想考上145分靠老師的那點練習(xí)則遠(yuǎn)遠(yuǎn)不夠。即使是對于差生來說,學(xué)習(xí)仍然有簡單易行的方法。掌握正確的方法,才能勤奮有所獲。
個人初中數(shù)學(xué)知識點總結(jié)三角形篇二十二
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。