多邊形的內(nèi)角和教案(精選19篇)

字號:

    制定教案時,需要考慮學生的實際情況和學習特點,從而更好地實施教學。在教案中,教師應該關(guān)注學生的學習態(tài)度和價值觀培養(yǎng)。以下是一些教學設(shè)計的實例,供大家參考和借鑒。
    多邊形的內(nèi)角和教案篇一
    過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    講解法、練習法、分小組討論法。
    結(jié)合新課程標準及以上的分析,我將我的教學過程設(shè)置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1.導入新知。
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的。
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎(chǔ)。
    2.生成新知。
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此。
    得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個小組來回答他們討論的結(jié)果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
    驗證:七邊形驗證。
    在本環(huán)節(jié)中通過學生自主學習歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3.深化新知。
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求。
    內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
    本環(huán)節(jié)的設(shè)計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4.鞏固提高。
    我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
    5.小結(jié)作業(yè)。
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結(jié)一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    多邊形的內(nèi)角和教案篇二
    知識與技能:掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想。
    重點:多邊形內(nèi)角和定理的探索和應用。
    教學難點:邊形定義的理解;多邊形內(nèi)角和公式的推導;轉(zhuǎn)化的數(shù)學思維方法的滲透.。
    教學過程。
    第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實情境,提出問題,引入新(3分鐘,學生思考問題,入)。
    1.多媒體展示蜂窩,教師結(jié)合圖片讓學生發(fā)現(xiàn)生活中無處不在的多邊形.。
    2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
    第二環(huán)節(jié)概念形成(5分鐘,學生理解定義)。
    第三環(huán)節(jié)實驗探究(12分鐘,學生動手操作,探究內(nèi)角和)。
    (以四人小組為單位展開探究活動)。
    活動一:利用四邊形探索四邊形內(nèi)角和。
    要求:先獨立思考再小組合作交流完成.)。
    (師巡視,了解學生探索進程并適當點撥.)。
    (生思考后交流,把不同的方案在紙上完成.)。
    ……(組間交流,教師展示幾種方法)。
    進而引導學生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進一步提出新的探索活動。
    活動二:探索五邊形內(nèi)角和。
    (要求:獨立思考,自主完成.)。
    第四環(huán)節(jié)思維升華(5分鐘,教師引導學生進行推算)。
    教學過程:
    探索n邊形內(nèi)角和,并試著說明理由。
    (結(jié)合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
    n邊形的內(nèi)角和=(n—2)180°。
    正n邊形的一個內(nèi)角==。
    第五環(huán)節(jié)能力拓展(12分鐘,學生搶答)。
    搶答題:
    1.正八邊形的內(nèi)角和為_______.
    3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
    應用發(fā)散:
    第六環(huán)節(jié)時小結(jié):(3分鐘,學生填表)。
    第七環(huán)節(jié)布置作業(yè):習題4、10。
    b組(中等生)1。
    c組(后三分之一生)1。
    教學反思:
    多邊形的內(nèi)角和教案篇三
    上完這節(jié)課后,自我感覺良好,學生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
    首先我先復習相關(guān)知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標是一致的,都是通過添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學思想方法。在此教學中,只須真正實施民主的開放式教學,創(chuàng)設(shè)平等、民主、寬松的教學氛圍,使師生完全處于平等的地位,學生才能敞開思想,積極參與教學活動,才能最大限度地調(diào)動學生的積極性,激發(fā)他們的學習興趣,引導他們多角度、多方位、多層次地思考問題,使他們有足夠的機會顯示靈性,展現(xiàn)個性。在問題探究、合作交流、形成共識的基礎(chǔ)上,在課堂活動中經(jīng)歷、感悟知識的生成、發(fā)展與變化過程,也只有這樣,才能將創(chuàng)新教育的目標落到實處,讓學生在自主參與學習,解決問題、嘗試到一題多證的方法,體驗到參與的樂趣、合作的價值,并獲得成功的體驗。
    六、案例點評。
    陳老師在本節(jié)課的教學設(shè)計上,內(nèi)容豐富,過程非常具體,設(shè)計也較合理。整節(jié)課以推導多邊形的內(nèi)角和為線索,讓學生經(jīng)歷了提問題、畫圖、判斷、找規(guī)律、猜想出一般性的結(jié)論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學生的主體地位,體現(xiàn)了新的教學理念,也符合初中生的心理特點和年齡特征,因此在教學設(shè)計上是比較好的。
    但是隨堂練習太少而不精,并且沒有梯度,能否可以設(shè)計一些具有一定難度的練習,使不同的學生得到不同層次的發(fā)展,為學有余力的學生提供更大的學習和發(fā)展空間。另外,關(guān)于多邊形的內(nèi)角和的推導不必要一一講解,只要引導學生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學生課后思考。
    多邊形的內(nèi)角和教案篇四
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的`數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
    教學目標:
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;。
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學重點:
    教學難點:
    四邊形的概念。
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)。
    練習:
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.
    多邊形的內(nèi)角和教案篇五
    完成《多邊形的內(nèi)角和》教學之后,學生很自然地就會想到對于多邊形的情況如何。為了體現(xiàn)課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設(shè)計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:
    (1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。
    (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設(shè)置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。
    (3)在小組交流過程中學生的發(fā)言過分地注重于探索的結(jié)果,而忽視了學生探索過程的展示。同時教師有些總結(jié)性的話,限制了學生的思維,不能最大限度的'發(fā)揮學生自主探究的能力。
    (4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現(xiàn)較為一般的學生有此創(chuàng)意時,教師就應大加贊揚,從而也能激發(fā)課堂氣氛。
    將本文的word文檔下載到電腦,方便收藏和打印。
    多邊形的內(nèi)角和教案篇六
    教學目標。
    知識與技能。
    掌握多邊形內(nèi)角和公式及外角和定理,并能應用.
    過程與方法。
    2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神.
    情感態(tài)度價值觀。
    通過猜想、推理等數(shù)學活動,感受數(shù)學充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習數(shù)學的熱情.
    重點。
    多邊形的內(nèi)角和教案篇七
    二、教學目標。
    2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習熱情。
    三、教學重、難點。
    難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?
    在獨立探索的基礎(chǔ)上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。
    接下來,教師在方法二的基礎(chǔ)上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關(guān)注:(1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180o的和是540o。
    方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結(jié)果得540o。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
    思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實際應用,優(yōu)勢互補。
    (2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結(jié):
    2、運用轉(zhuǎn)化思想解決數(shù)學問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    多邊形的內(nèi)角和教案篇八
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內(nèi)角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內(nèi)角和》。
    教學目標:
    1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學重點:
    四邊形的內(nèi)角和定理.
    教學難點:
    四邊形的概念
    教學過程:
    (一)復習
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理
    定理:四邊形的內(nèi)角和等于 .
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應用、反思
    例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
    求證:(1) ;(2)
    證明:(1) (四邊形的內(nèi)角和等于 ),
    練習:
    1.課本124頁3題.
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè): 課本130頁 2、3、4題.
    多邊形的內(nèi)角和教案篇九
    難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
    在獨立探索的基礎(chǔ)上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
    接下來,教師在方法二的基礎(chǔ)上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關(guān)注:(1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180?的和是540?。
    方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結(jié)果得540?。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結(jié)果得540?。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結(jié)果得540?。
    師:你真聰明!做到了學以致用。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實際應用,優(yōu)勢互補。
    (2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結(jié):
    2、運用轉(zhuǎn)化思想解決數(shù)學問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    八、教學反思:
    1、教的轉(zhuǎn)變。
    本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
    2、學的轉(zhuǎn)變。
    學生的角色從學會轉(zhuǎn)變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉(zhuǎn)變。
    整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
    多邊形的內(nèi)角和教案篇十
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內(nèi)角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內(nèi)角和》。
    教學目標:
    1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
    4.講解四邊形的`有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學重點:
    教學難點:
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    練習:
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.
    多邊形的內(nèi)角和教案篇十一
    《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
    有幸與實驗小學趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農(nóng)村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來進行多邊形的內(nèi)角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
    1,以經(jīng)驗為基礎(chǔ),讓學生得到不同的發(fā)展。
    基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎(chǔ)上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
    2,勇于放手,培養(yǎng)學生自學的能力。
    在一開始設(shè)計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內(nèi)角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
    3,細節(jié)入手,培養(yǎng)學生良好習慣。
    小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
    “授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
    多邊形的內(nèi)角和教案篇十二
    其次注重讓學生在學習活動中領(lǐng)悟數(shù)學思想方法。數(shù)學的思想方法比有限的數(shù)學知識更為重要。學生在探索多邊形內(nèi)角和的過程中先把多邊形轉(zhuǎn)化成三角形.進而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領(lǐng)會數(shù)學思想方法,真正理解和掌握數(shù)學的知識、技能,增強空間觀念及數(shù)學思考能力培養(yǎng),并獲得數(shù)學活動經(jīng)驗。同時,恰當?shù)氖褂谜n件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。同時也加大了練習量,有助于學生知識可鞏固和提高。
    整節(jié)課學生的情緒飽滿,思維活躍,在教師適當?shù)囊龑?,學生能夠合作交流和自主探究,成功的探索出了多邊形的.內(nèi)角和公式,較好的完成了本節(jié)課的教學目標。
    不足之處:
    1.本節(jié)課給學生提供的探究思考與交流的時間比較充足,但展示交流的機會不夠充分,并且個別學生沒有很好的融入課堂,游離于課本之外。
    2.本節(jié)課學生小組活動的準備、具體實施、歸納交流、評價等環(huán)節(jié)設(shè)計不夠完善。
    3、練習不夠多樣化。
    多邊形的內(nèi)角和教案篇十三
    4、培養(yǎng)學生合作、表達等能力情感。
    教學重點與難點:多邊形內(nèi)角和與外角和特點是重點。
    利用化歸思想歸納多邊形內(nèi)角和與外角和特點是難點。
    教學過程:
    一、創(chuàng)設(shè)情境。
    師出示一個三角形,問:這是什么圖形?它是怎樣定義的?
    生:三條線段首尾順次連接而成的圖形。
    師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?
    這些圖形我們都叫做多邊形。
    師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:
    我們叫做凹多邊形,不在我們今天的研究范圍之內(nèi)。
    二、探究新知。
    1、?確立研究范圍。
    生1:它的角。
    師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內(nèi)角和與外角和)。
    多邊形的內(nèi)角和教案篇十四
    本節(jié)課從復習舊知入手,在引課時提問三角形的相關(guān)知識,讓學生在思想上對本節(jié)課產(chǎn)生興趣,并且會覺得知識點不是很難,提高學生的學習興趣,同時加強了數(shù)學與實際生活的聯(lián)系,讓學生感到數(shù)學離自己很近,激發(fā)了學生的求知欲,創(chuàng)設(shè)了良好的教學氛圍。
    其次注重讓學生在學習活動中領(lǐng)悟數(shù)學思想方法。數(shù)學的思想方法比有限的數(shù)學知識更為重要。學生在探索多邊形內(nèi)角和的過程中先把多邊形轉(zhuǎn)化成三角形、進而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領(lǐng)會數(shù)學思想方法,真正理解和掌握數(shù)學的知識、技能,增強空間觀念及數(shù)學思考能力培養(yǎng),并獲得數(shù)學活動經(jīng)驗。同時,恰當?shù)氖褂谜n件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。同時也加大了練習量,有助于學生知識可鞏固和提高。
    整節(jié)課學生的情緒飽滿,思維活躍,在教師適當?shù)囊龑?,學生能夠合作交流和自主探究,成功的探索出了多邊形的內(nèi)角和公式,較好的完成了本節(jié)課的教學目標。
    不足之處:
    1、本節(jié)課給學生提供的探究思考與交流的時間比較充足,但展示交流的機會不夠充分,并且個別學生沒有很好的融入課堂,游離于課本之外。
    2、本節(jié)課學生小組活動的準備、具體實施、歸納交流、評價等環(huán)節(jié)設(shè)計不夠完善。
    3、練習不夠多樣化。
    多邊形的內(nèi)角和教案篇十五
    尊敬的各位領(lǐng)導:
    老師大家好!
    由我為大家介紹我們工作坊團隊成員共同設(shè)計的《多邊形的內(nèi)角和》一課。我將從教材思考、學生調(diào)研、教學目標完善、教學過程設(shè)計等方面進行匯報。
    《多邊形的內(nèi)角和》是冀教版小學數(shù)學四年級下冊第九單元探索樂園的第1課時,本單元要求是“在問題探索中,促進數(shù)學思維發(fā)展”。實現(xiàn)“不同的人在數(shù)學上得到不同的發(fā)展”是《數(shù)學課程標準》的基本理念,“發(fā)展合情推理和演繹推理能力”“清晰地表達自己的想法”“學會獨立思考、體會數(shù)學的基本思想和思維方式”是課程標準關(guān)于數(shù)學思考方面的具體要求。
    教材安排了兩個例題,一是探究多邊形邊數(shù)與分割的三角形個數(shù)的規(guī)律,二在分割三角形的基礎(chǔ)上探索多邊形內(nèi)角和。為了促進學生思考的連續(xù)性與有序性,我們將教材中的兩個例題進行有機結(jié)合,在充分研究四邊形五邊形內(nèi)角和方法的基礎(chǔ)上提出如何得出任意多邊形內(nèi)角和問題,為發(fā)展學生的數(shù)學思維提供素材、創(chuàng)造探索的空間,讓學生充分體會“畫線段—分割三角形—求內(nèi)角和”這樣一個連續(xù)推理歸納得出規(guī)律的活動。
    學生在本冊第四單元認識了三角形、知道三角形內(nèi)角和等于180度,會用字母表示數(shù)、字母表示數(shù)量關(guān)系的基礎(chǔ)上進行學習的。我們團隊的成員對所在學校四年級同學進行了調(diào)研,發(fā)現(xiàn)他們對于數(shù)學問題具有“猜想”的意識,但是缺乏理性的思考。他們愿意自己動手嘗試探索研究問題,但是對于探索之后有序思考、歸納總結(jié)認識還不夠全面。
    有了以上分析,我們在尊重教材的基礎(chǔ)上,確定了本節(jié)課教學目標,并對“過程與方法”目標進行了完善補充。
    知識與技能:探索并了解多邊形的邊數(shù)與分割成的三角形個數(shù),以及內(nèi)角和之間隱含的規(guī)律;能運用多邊形的內(nèi)角和知識解決相關(guān)問題。
    過程與方法:學生經(jīng)歷探索的全過程,積累探索和發(fā)現(xiàn)數(shù)學規(guī)律的經(jīng)驗,讓學生嘗試從不同的角度尋求解決問題的方法,體會從特殊到一般的認識問題的方法,發(fā)展理性思考。
    教學難點:字母表達式的總結(jié)
    教學準備:教師準備三角形、四邊形、五邊形、六邊形圖片,裁紙刀,課件。
    學生學具準備四邊形、五邊形等多邊形圖片模型,三角板。
    教學過程共分為四個環(huán)節(jié)。
    教學過程:
    一、創(chuàng)設(shè)情境,回顧三角形知識---注重知識的“生長點”
    同學們請看這是什么圖形?你了解它嗎?你能向大家介紹三角形哪些知識?(這樣設(shè)計意圖是注尊重學生已有知識經(jīng)驗,體會數(shù)學知識的內(nèi)在聯(lián)系,重點認識三角形內(nèi)角的含義及三角形內(nèi)角和是180度的特點)
    我們知道了三角形內(nèi)角和是180度,那么四邊形,五邊形的內(nèi)角和是多少度呢?這節(jié)課我們就一起來研究。
    二、自主合作,探究新知—注重“數(shù)學算法的優(yōu)化”共設(shè)計了三個探究活動。
    1、四邊形內(nèi)角和
    (1)有同學愿意猜想四邊形內(nèi)角和嗎?猜想也要有根據(jù),你能說說你的根據(jù)嗎?(引導學生體會理性思考)
    有沒有同學一看到四邊形就馬上想到360度呢?你是根據(jù)哪個圖形直接想到的?(讓學生借助已有的長方形、正方形知識進行理性推理,打通新舊知識之間聯(lián)系)
    我們通過計算長方形、正方形的內(nèi)角和是360度,是不是能說明所有四邊形內(nèi)角和都是360度?(引導學生體會這是一種“假設(shè)”因為它是特殊圖形中做的成“猜想”)
    我們需要研究怎樣的圖形才能發(fā)現(xiàn)它們一般的特征和規(guī)律?(任意四邊形)
    (2)小組活動,利用學具中的任意四邊形想辦法計算內(nèi)角和。師巡視(注意學生不同的方法)
    (3)學生匯報。可能有計算法,引導學生起名字“量角求和法”
    撕角法,起名字“拼角求和法”。
    切割法1,起名字“一分為二求和法”(學生演示這種方法時,教師幫忙切割,強調(diào)弄清楚四個內(nèi)角怎樣變成六個角,分成了幾個三角形,一是畫了一條線段,二是分成了二個三角形)
    歸納總結(jié):四邊形內(nèi)角和是360度。(通過不同的個性方法,驗證四邊形內(nèi)角和,進一步認識內(nèi)角含義,感受不同算法的好處)
    2、五邊形內(nèi)角和
    今天的研究我們就停在這里嗎?根據(jù)經(jīng)驗,我們要向什么挑戰(zhàn)?(五邊形)你能猜想它是多少度嗎?請你選擇一種方法,證實你的猜想。
    總結(jié):看來數(shù)學的方法有很多,但是有的方法有局限性,有的方法只適合三角形和四邊形,量角有誤差,拼角法有的會超過360度,而第三種看起來最簡便。我們稱之為“優(yōu)化法”
    列出算式:180x3=540度(學生不僅在計算度數(shù)上有了經(jīng)驗,而且在計算方法上也有了經(jīng)驗)
    利用這種最優(yōu)的方法,同桌同學互相說一說,四邊形和五邊形各畫了幾條線段,分割成幾個三角形,怎樣求內(nèi)角和?(設(shè)計意圖是讓學生對探究過程進行歸納整理,為進一步有序的研究其他圖形指明研究方向。)
    現(xiàn)在我們就來看一看其他圖形是不是也有這樣的規(guī)律?
    3、六邊形、七邊形內(nèi)角和
    小組合作,自己完成探究過程,填寫表格。
    學生匯報,總結(jié)畫出的線段數(shù)和三角形個數(shù)之間聯(lián)系。
    三、歸納總結(jié),形成規(guī)律---注重字母表達式的推理
    通過大家的研究,找到了規(guī)律,請問10邊形,能畫幾條線段,分成幾個三角形?
    90邊形?100邊形?n邊形呢?(老師說我們研究三角形的個數(shù),怎么去找邊數(shù)的呢?學生說分割出的三角形的個數(shù)跟邊數(shù)有關(guān)。那一千邊形形,n邊形呢?n-2得到的是什么?得到分成的三角形的個數(shù)。)
    師:今天你學到了什么?在今天的研究中哪些知識或研究的過程給你留下了深刻的印象?師:今天我們所研究的多邊形都是凸多邊形,還有一種多邊形,它們叫做凹多邊形,你能不能運用今天的研究方法,探究凹多邊形的內(nèi)角和嗎?老師期待你在課后的研究成果。(設(shè)計意圖是不僅讓學生對本節(jié)課知識進行總結(jié),也對數(shù)學的思想方法進行回顧,鼓勵學生利用這些思想方法向類似數(shù)學問題挑戰(zhàn),以達到學以致用的目的。)
    以上是我們對這節(jié)課的粗淺設(shè)計,懇請大家給予批評指正,謝謝!
    多邊形的內(nèi)角和教案篇十六
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設(shè)計了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    學生上節(jié)課剛剛學完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計成一節(jié)探索活動課是切實可行的。
    【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    【教學重點】多邊形內(nèi)角和及外角和定理
    【教學難點】轉(zhuǎn)化的數(shù)學思維方法
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
    整個教學過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y(jié),讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    5,分組競賽,升華情感
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學生所需掌握的知識目標:即多邊形內(nèi)角和與外角和定理
    本節(jié)課在知識上由簡單到復雜,學生經(jīng)歷質(zhì)疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
    多邊形的內(nèi)角和教案篇十七
    教學目標?。
    知識技能。
    通過探究,歸納出???。
    數(shù)學思考。
    1、?通過測量、類比、推理等數(shù)學活動,探索的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
    2、?通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時。
    時讓學生體會從特殊到一般的認識問題的方法。
    3、?通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過度到。
    論證幾何。
    解決問題。
    通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
    情感態(tài)度。
    通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
    重點。
    難點。
    在探索時,如何把多邊形轉(zhuǎn)化成三角形。
    知識聯(lián)系。
    多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準備。
    知識背景。
    對多邊形在生活中有所認識。
    學習興趣。
    通過探究過程更能激發(fā)學生學習的興趣。
    教學工具。
    三角板和幾何畫板。
    教學流程設(shè)計。
    活動流程圖。
    活動內(nèi)容和目的。
    活動一,教師和學生任意畫幾個多邊形,用量角器測其內(nèi)角和。
    活動四、探索任意公式。
    活動六、小結(jié)和布置作業(yè)?。
    通過分組測量,得出這幾個。
    通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。
    通過類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學生的推理能力。
    通過畫正八邊形體會和應用。
    梳理所學知識,達到鞏固發(fā)展和提高的目的。
    教學過程?設(shè)計。
    問題與情景。
    師生行為。
    設(shè)計意圖。
    設(shè)計情景:什么是正多邊形?
    正八邊形有什么特點?
    你會畫邊長為3cm的正八邊形嗎?
    學生思考并回答問題。
    學生不會畫八邊形,畫八邊形需要知道它的每一個內(nèi)角,怎么就能知道八邊形的每一個內(nèi)角,就是今天要解決的問題,以此來激發(fā)學生的學習興趣和求知欲。
    活動1、
    在練習本畫出任意四邊形,五邊星,六邊形,七邊形。
    通過測量猜想每一個,感受數(shù)學的可實驗性,感受數(shù)學由特殊到一般的研究思想。
    活動2(重點)(難點)。
    學生在練習本上把一個四邊形分割成幾個三角形,教師在黑板上畫幾個四邊形,叫幾個學生來分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點。
    通過分割及推理,培養(yǎng)學生用推理論證來說明數(shù)學結(jié)論的能力,同時也培養(yǎng)學生比較和歸納的能力。
    通過分割及推理,進一步培養(yǎng)學生的解決問題和推理的能力。
    活動4、探索任意。
    把活動2和3中的結(jié)論寫下來,進行對比分析,進一步猜想和推導任意,教師作總結(jié)性的結(jié)論,并且用動畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。
    活動5、畫一個邊長為3cm的八邊形。
    讓學生在練習本上畫一個邊長為3cm的八邊形,教師進行評價和展示。
    活動6、小結(jié)和布置作業(yè)?。
    師生共同回顧本節(jié)所學過的內(nèi)容。
    多邊形的內(nèi)角和教案篇十八
    《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
    有幸與實驗小學趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農(nóng)村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來進行多邊形的內(nèi)角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
    1,以經(jīng)驗為基礎(chǔ),讓學生得到不同的發(fā)展。
    基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎(chǔ)上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
    2,勇于放手,培養(yǎng)學生自學的能力。
    在一開始設(shè)計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內(nèi)角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
    3,細節(jié)入手,培養(yǎng)學生良好習慣。
    小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
    “授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
    多邊形的內(nèi)角和教案篇十九
    課件要具有可教性。制作多媒體課件的目的是優(yōu)化課堂教學結(jié)構(gòu),提高課堂教學效率,既要有利于教師的教,又要有利于學生的學,所以制作的課件要與課堂內(nèi)容有密切聯(lián)系,具有教導積極向上意義。
    [教學目標]。
    1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念.。
    2.區(qū)別凸多邊形與凹多邊形.。
    [教學重點、難點]。
    1.重點:
    (1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.。
    (2)區(qū)別凸多邊形和凹多邊形.。
    2.難點:
    [教學過程]。
    一、新課講授。
    投影:圖形見課本p84圖7.3一l.。
    你能從投影里找出幾個由一些線段圍成的圖形嗎?
    上面三圖中讓同學邊看、邊議.。
    在同學議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?
    (1)它們在同一平面內(nèi).。
    (2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.。
    這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
    提問:三角形的定義.。
    你能仿照三角形的定義給多邊形定義嗎?
    1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形.。
    如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)。
    2.多邊形的邊、頂點、內(nèi)角和外角.。
    連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.。
    讓學生畫出五邊形的所有對角線.。
    4.凸多邊形與凹多邊形。
    看投影:圖形見課本p85.7.3?6.。
    5.正多邊形。
    由正方形的特征出發(fā),得出正多邊形的概念.。
    各個角都相等,各條邊都相等的多邊形叫做正多邊形.。
    二、課堂練習。
    課本p86練習1.2.。
    三、課堂小結(jié)。
    引導學生總結(jié)本節(jié)課的相關(guān)概念.。
    四、課后作業(yè)。
    課本p90第1題.。
    備用題:
    一、.。
    1.由四條線段首尾順次相接組成的圖形叫四邊形.()。
    2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()。
    3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側(cè),叫做四邊形.()。
    4.在同一平面內(nèi),四條線段首尾順次連接組成的圖形叫四邊形.()。