教案可以作為教學的指導和評價依據(jù),幫助教師提高教學質(zhì)量。編寫教案時要注意培養(yǎng)學生的學習興趣和主動性。通過學習這些教案范文,可以進一步了解教學設計的原則和方法。
平方差公式教學教案篇一
本節(jié)課是圍繞“引導學生有效預習”的課題設計的,通過預設的問題引發(fā)學生思考,在學生的預習基礎上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
讓學生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認識,有助于讓學生在應用平方差公式行分解因式時注意到它的前提條件;通過例題練習的鞏固,讓學生把握教材,吃透教材,讓學生更加熟練、準確,起到強化、鞏固的作用,讓學生領(lǐng)會換元的思想,達到初步發(fā)展學生綜合應用的能力。
本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應用,它是解高次方程的基礎,在教材中具有重要的地位。在教材的處理上以學生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎上充分認識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學生學會合情推理的能力,同時也培養(yǎng)了學生愛思考,善交流的良好學習慣。
(一)知識與技能。
2.掌握提公因式法、平方差公式分解因式的綜合應用。
(二)過程與方法。
1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達能力。
3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學生的化歸思想。
4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通過活動4,讓學生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
(三)情感與態(tài)度。
1.通過探究平方差公式,讓學生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
平方差公式教學教案篇二
一、教學目標:
1、使學生理解和掌握平方差公式,并會用公式進行計算;
2、注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應用數(shù)學的意識;
3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
二、重點、難點:
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
三、教學方法。
以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
四、教學過程。
(一)創(chuàng)設問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設疑激發(fā)學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質(zhì)能應用公式,要注意分清a、b。
(學生回答,教師總結(jié))。
(六)作業(yè)。
p106習題1—5題。
七、板書設計:
教學反思。
通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
平方差公式教學教案篇三
指導學生用語言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個公式叫做平方差公式。
指導學生發(fā)現(xiàn)公式的特點:
1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個二項式的積,在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。
2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。
提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。
平方差公式教學教案篇四
3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
(一)創(chuàng)設問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設疑激發(fā)學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質(zhì)能應用公式,要注意分清a、b。
(學生回答,教師總結(jié))。
(六)作業(yè)。
p106習題1—5題。
教學反思。
通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
平方差公式教學教案篇五
《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標。為此,我作了如下努力:
1、把數(shù)學問題“蘊藏”在游戲中。
導入新課,是課堂教學的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學方式的運用。
把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現(xiàn)從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學生的主體地位上。
這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教學教案篇六
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
幫助學生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應由易到難逐步安排學習這方面的內(nèi)容。
平方差公式教學教案篇七
2.經(jīng)歷探索平方差公式的過程,認識“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認識規(guī)律和數(shù)學發(fā)現(xiàn)方法,平方差公式第一課時教學反思。
重點:公式的理解與正確運用(考點:此公式很關(guān)鍵,一定要搞清楚特征,在以后的學習中還繼續(xù)應用)。
難點:公式的理解與正確運用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
學生分組討論,交流,小組長回答問題。
師生共同總結(jié)歸納:
即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
(1)一組完全相同的項;
(2)一組互為相反數(shù)的項。
2.例題。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式應用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
兩個學生板演,其余學生在練習本上自己獨立完成。
老師巡視,輔導學困生。
1.計算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
師生共同分析:此題特征,兩次利用平方差公式,教學反思《平方差公式第一課時教學反思》。
學生在練習本上獨立完成,同桌互相檢查。
2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
學生分組討論交流,獨立完成運算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、運用公式要注意的.問題:
(2)公式中的a、b可以代表什么?
一、檢測導入。
二、例題展示。
三、拓展延伸。
四、達標堂測。
五、歸納小結(jié)。
即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
六、布置作業(yè)。
p21:習題1.91、2。
平方差公式教學教案篇八
我參與了學校組織的“同課異構(gòu)”活動,授課內(nèi)容是《乘法公式——平方差公式(一課時)》。
上學期末我恰好在任縣二中參加了一次關(guān)于教材研究的會議,當時河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學一般有六個環(huán)節(jié):引入;形成;明確表述;辨析;鞏固應用;歸納提升。新課標也要求我們在教學中不只是傳授學生基本的知識技能,還要以培養(yǎng)學生的數(shù)學能力及合作探究的意識為目標。為此,我在設計本節(jié)課的教學環(huán)節(jié)時充分考慮學生的認知規(guī)律,并以培養(yǎng)學生的數(shù)學素質(zhì),了解運用數(shù)學思想方法,增強學生的合作探究意識為宗旨。
我的教學流程是按照“引入——猜想——證明——辨析——應用——歸納——檢測”的順序進行的,非常符合學生的認知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:
1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學生們自己去探究不同的方法。事實證明,學生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學生留下了充足的思考和討論時間,真正激發(fā)了學生的思維。
2.通過設置一個“找朋友”的小游戲來辨析公式,調(diào)動了學生的積極性,活躍了課堂氣氛,因此,游戲過后學生對公式的結(jié)構(gòu)特征也有了更深刻的了解。
3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認識公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學思想,最后是感受到數(shù)學運算的一種簡捷美,將本節(jié)課升華到了一個新的高度。
當然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學生練習時,為了抓緊時間完成進度沒有把學生的出錯點講透講細;游戲環(huán)節(jié)參與學生有些少,應讓更多的同學動起來;當堂檢測的題目應該設置上分值和檢測時間,讓學生限時完成,然后可以根據(jù)學生得分了解本節(jié)課的學習效果,以便下節(jié)課再有針對性的進行講解和練習查漏補缺。
通過這次“同課異構(gòu)”活動,我感覺自己在教學環(huán)節(jié)設計、課件制作和使用、導學案的規(guī)范書寫等各方面都有了提高,通過各位領(lǐng)導和老師的點評,我也有了更多的收獲,相信可以為我今后的教學所用。
平方差公式教學教案篇九
導入新課,是課堂教學的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現(xiàn)從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學生的主體地位上。
這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教學教案篇十
學生已經(jīng)掌握了多項式與多項式相乘,但是對于某些特殊的多項式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應用十分廣泛,也是本章重點內(nèi)容之一。
平方差公式是第一個乘法公式,教學時,我是這樣引入新課的,先計算下列各題,看誰做的又對又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學生的好勝心并為進一步探索新知搭建好有力的平臺,然后我又讓學生討論交流上面幾個等式左、右兩邊各有什么特點,你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個規(guī)律嗎?給學生充分的觀察、分析、討論交流的時間,老師應及時的給與必要的指導、鼓勵和由衷的贊美,這一點我做的還很不夠,今后要多多注意。
然后我有設計了這樣一道題:下列多項式乘法中可以用平方差公式計算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學生理解公式的特征,掌握公式的。特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應由易到難逐步安排學習這方面的內(nèi)容。
平方差公式教學教案篇十一
2.注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
教學過程設計。
我們已經(jīng)學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發(fā)表自己的見解.教師根據(jù)學生的回答,引導學生進一步思考:
(當乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數(shù)的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎上,讓學生用語言敘述公式.
二、運用舉例變式練習。
例1計算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么.
例2計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導學生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據(jù)學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應用平方差公式,寫出結(jié)果.解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷.因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應用平方差公式,就能比較簡捷地得到答案.
課堂練習。
1.口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教師巡視學生練習情況,請不同解法的學生,或發(fā)生錯誤的學生板演,教師和學生一起分析解法.
三、小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;。
(2)有些式子表面不能應用公式,但實質(zhì)能應用公式,要注意變形.
四、作業(yè)。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.計算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
平方差公式教學教案篇十二
平方差公式本節(jié)課的重點是要學生明白平方差公式及其推導(含代數(shù)驗證和幾何驗證),并能應用平方差公式簡化運算,其中關(guān)鍵是要學生明確平方差公式的結(jié)構(gòu)特征,準確找到a、b。為了讓學生對平方差公式有個全面的認識和了解。先讓學生計算符合平方差公式的兩位數(shù)乘法,進而將數(shù)轉(zhuǎn)化為字母,從代數(shù)的角度,利用多項式乘多項式的知識,推導出平方差公式,接著從幾何角度讓學生加以解釋說明。在此基礎上,通過分析公式的結(jié)構(gòu)特征,加深對公式的理解。之后,設計了一個“尋找a、b”的環(huán)節(jié),通過這個練習進行難點突破。引導學生反思練習過程,得出“誰是a,誰是b,并不以先后為準,而是以符號為準”這一結(jié)論。緊接著給出兩組例題,考察學生對公式的應用。最后通過一組判斷題和補充練習,拓展學生的.思維水平。
為了給學生滲透數(shù)形結(jié)合的思想,要從代數(shù)、幾何兩個角度證明平方差公式,但是從哪個角度入手,有利于知識的銜接,便于學生理解。最終決定給讓學生猜想結(jié)論,再用代數(shù)方法加以證明,后給出幾何解釋,符合知識的發(fā)生過程。
對于課本中的公式文字說明是“兩數(shù)和與這兩數(shù)差的積”的理解:公式中“a、b不僅表示一個數(shù)或字母,還可以表示代數(shù)式”。但這里說的是“兩數(shù)”,原因是所有的規(guī)律最初都是在具體的數(shù)字中發(fā)現(xiàn)的,然后才推廣到字母。所以這里說的數(shù)不再是具體的數(shù),而是代表一個整體;公式中說的“兩數(shù)和與兩數(shù)差的積”,從這個角度說,這兩項應是完全相同的,差別只在于運算符號上。但由于我們之前介紹過“代數(shù)和”,(a+b)(a-b)也可以理解為(a+b)[a(-b)],就像許多教參上說的,是相同項與互為相反數(shù)的項,這樣就與課本定義發(fā)生矛盾。為了避免這個問題,我在介紹公式結(jié)構(gòu)特征時,只說“有一項完全相同,另一項只有符號不同”,學生可以自己去理解。
平方差公式教學教案篇十三
本節(jié)課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應用逆向思維的方向,演繹出平方差公式,對公式的應用首先提醒學生要注意其特征,其次要做好式子的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來,應用公式法因式分解的過程,實際上就是轉(zhuǎn)化和化歸的過程。在解決認識平方差公式的`結(jié)構(gòu)時候,重點突出學生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學設計中,教師只作為了一個點撥者和引路人。然后應用有梯度的典型例題加以鞏固,在學生頭腦中形成一個清晰完整的數(shù)學模型,使學生在今后的練習中游刃有余。
不足之處:
教學中時間把握還是不足,在設計的題目中不怎么合理,應按題目的難度從易到難。
有些題目的歸納可放手給學生討論后由學生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
教學語言還太隨意,數(shù)學的語言應該嚴謹。在語調(diào)上應該有所變化。
平方差公式教學教案篇十四
會推導公式(a+b)(a-b)=a2-b2。
通過教學我對本節(jié)課的反思如下:
1、本節(jié)課我從復習舊知入手,在教學設計時提供充分探索與交流的空間,使學生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學生被動學習的局面。我在教學時沒有直接讓學生推導平方差公式,而是設置了一個做一做,讓學生通過計算四個多項式乘以多項式的題目,讓學生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學生學習數(shù)學的一般能力,讓學生體會發(fā)現(xiàn)的愉悅,激發(fā)學生學習數(shù)學的興趣,感覺效果很好。
不足:在學生將4個多項式乘多項式做完評價后,應及時把他們歸納為某式的平方差的形式,以便學生順理成章的猜測公式的結(jié)果。
2、學生剛接觸這類乘法,我設計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果.我很細地給學生講了以上特點,學生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
4、學生錯誤主要是:
(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;
(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學中應著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學生往往學起來容易,真正掌握起來困難。部分學生只是死記硬背公式,不能完全理解其含義和具體應用。
總之,在以后的教學中我會更深入的專研教材,結(jié)合教學目標與要求,結(jié)合學生的實際特點,克服自己的弱點,盡量使數(shù)學課生動、自然、有趣。
平方差公式教學教案篇十五
上周我們學習了“乘法公式”,乘法公式在簡化多項式乘法運算、因式分解及以后的數(shù)學學習中有著廣泛的應用。根據(jù)課標的規(guī)定主要學習兩個最基本的乘法公式,留出更多的時間和空間給學生自主探索,發(fā)現(xiàn)規(guī)律,體驗乘法公式的來源,理解公式的意義和作用,掌握公式的應用。
通過一周的學習,學生基本上掌握了公式的形式,并能運用公式解答簡單的乘法運算,化簡多項式乘法。但是,對于形式較復雜的,3、4學生就辨認不出運用哪個公式,或者把公式用混,特別是符號問題。所以,要多訓練,多強化,在作題中掌握技巧,掌握公式的特點。
平方差公式教學教案篇一
本節(jié)課是圍繞“引導學生有效預習”的課題設計的,通過預設的問題引發(fā)學生思考,在學生的預習基礎上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
讓學生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認識,有助于讓學生在應用平方差公式行分解因式時注意到它的前提條件;通過例題練習的鞏固,讓學生把握教材,吃透教材,讓學生更加熟練、準確,起到強化、鞏固的作用,讓學生領(lǐng)會換元的思想,達到初步發(fā)展學生綜合應用的能力。
本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應用,它是解高次方程的基礎,在教材中具有重要的地位。在教材的處理上以學生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎上充分認識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學生學會合情推理的能力,同時也培養(yǎng)了學生愛思考,善交流的良好學習慣。
(一)知識與技能。
2.掌握提公因式法、平方差公式分解因式的綜合應用。
(二)過程與方法。
1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達能力。
3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學生的化歸思想。
4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通過活動4,讓學生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
(三)情感與態(tài)度。
1.通過探究平方差公式,讓學生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
平方差公式教學教案篇二
一、教學目標:
1、使學生理解和掌握平方差公式,并會用公式進行計算;
2、注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應用數(shù)學的意識;
3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
二、重點、難點:
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
三、教學方法。
以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
四、教學過程。
(一)創(chuàng)設問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設疑激發(fā)學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質(zhì)能應用公式,要注意分清a、b。
(學生回答,教師總結(jié))。
(六)作業(yè)。
p106習題1—5題。
七、板書設計:
教學反思。
通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
平方差公式教學教案篇三
指導學生用語言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個公式叫做平方差公式。
指導學生發(fā)現(xiàn)公式的特點:
1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個二項式的積,在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。
2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。
提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。
平方差公式教學教案篇四
3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
(一)創(chuàng)設問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設疑激發(fā)學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質(zhì)能應用公式,要注意分清a、b。
(學生回答,教師總結(jié))。
(六)作業(yè)。
p106習題1—5題。
教學反思。
通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
平方差公式教學教案篇五
《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標。為此,我作了如下努力:
1、把數(shù)學問題“蘊藏”在游戲中。
導入新課,是課堂教學的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學方式的運用。
把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現(xiàn)從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學生的主體地位上。
這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教學教案篇六
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
幫助學生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應由易到難逐步安排學習這方面的內(nèi)容。
平方差公式教學教案篇七
2.經(jīng)歷探索平方差公式的過程,認識“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認識規(guī)律和數(shù)學發(fā)現(xiàn)方法,平方差公式第一課時教學反思。
重點:公式的理解與正確運用(考點:此公式很關(guān)鍵,一定要搞清楚特征,在以后的學習中還繼續(xù)應用)。
難點:公式的理解與正確運用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
學生分組討論,交流,小組長回答問題。
師生共同總結(jié)歸納:
即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
(1)一組完全相同的項;
(2)一組互為相反數(shù)的項。
2.例題。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式應用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
兩個學生板演,其余學生在練習本上自己獨立完成。
老師巡視,輔導學困生。
1.計算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
師生共同分析:此題特征,兩次利用平方差公式,教學反思《平方差公式第一課時教學反思》。
學生在練習本上獨立完成,同桌互相檢查。
2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
學生分組討論交流,獨立完成運算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、運用公式要注意的.問題:
(2)公式中的a、b可以代表什么?
一、檢測導入。
二、例題展示。
三、拓展延伸。
四、達標堂測。
五、歸納小結(jié)。
即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
六、布置作業(yè)。
p21:習題1.91、2。
平方差公式教學教案篇八
我參與了學校組織的“同課異構(gòu)”活動,授課內(nèi)容是《乘法公式——平方差公式(一課時)》。
上學期末我恰好在任縣二中參加了一次關(guān)于教材研究的會議,當時河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學一般有六個環(huán)節(jié):引入;形成;明確表述;辨析;鞏固應用;歸納提升。新課標也要求我們在教學中不只是傳授學生基本的知識技能,還要以培養(yǎng)學生的數(shù)學能力及合作探究的意識為目標。為此,我在設計本節(jié)課的教學環(huán)節(jié)時充分考慮學生的認知規(guī)律,并以培養(yǎng)學生的數(shù)學素質(zhì),了解運用數(shù)學思想方法,增強學生的合作探究意識為宗旨。
我的教學流程是按照“引入——猜想——證明——辨析——應用——歸納——檢測”的順序進行的,非常符合學生的認知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:
1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學生們自己去探究不同的方法。事實證明,學生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學生留下了充足的思考和討論時間,真正激發(fā)了學生的思維。
2.通過設置一個“找朋友”的小游戲來辨析公式,調(diào)動了學生的積極性,活躍了課堂氣氛,因此,游戲過后學生對公式的結(jié)構(gòu)特征也有了更深刻的了解。
3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認識公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學思想,最后是感受到數(shù)學運算的一種簡捷美,將本節(jié)課升華到了一個新的高度。
當然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學生練習時,為了抓緊時間完成進度沒有把學生的出錯點講透講細;游戲環(huán)節(jié)參與學生有些少,應讓更多的同學動起來;當堂檢測的題目應該設置上分值和檢測時間,讓學生限時完成,然后可以根據(jù)學生得分了解本節(jié)課的學習效果,以便下節(jié)課再有針對性的進行講解和練習查漏補缺。
通過這次“同課異構(gòu)”活動,我感覺自己在教學環(huán)節(jié)設計、課件制作和使用、導學案的規(guī)范書寫等各方面都有了提高,通過各位領(lǐng)導和老師的點評,我也有了更多的收獲,相信可以為我今后的教學所用。
平方差公式教學教案篇九
導入新課,是課堂教學的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現(xiàn)從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學生的主體地位上。
這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教學教案篇十
學生已經(jīng)掌握了多項式與多項式相乘,但是對于某些特殊的多項式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應用十分廣泛,也是本章重點內(nèi)容之一。
平方差公式是第一個乘法公式,教學時,我是這樣引入新課的,先計算下列各題,看誰做的又對又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學生的好勝心并為進一步探索新知搭建好有力的平臺,然后我又讓學生討論交流上面幾個等式左、右兩邊各有什么特點,你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個規(guī)律嗎?給學生充分的觀察、分析、討論交流的時間,老師應及時的給與必要的指導、鼓勵和由衷的贊美,這一點我做的還很不夠,今后要多多注意。
然后我有設計了這樣一道題:下列多項式乘法中可以用平方差公式計算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學生理解公式的特征,掌握公式的。特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應由易到難逐步安排學習這方面的內(nèi)容。
平方差公式教學教案篇十一
2.注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
教學過程設計。
我們已經(jīng)學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發(fā)表自己的見解.教師根據(jù)學生的回答,引導學生進一步思考:
(當乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數(shù)的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎上,讓學生用語言敘述公式.
二、運用舉例變式練習。
例1計算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么.
例2計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導學生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據(jù)學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應用平方差公式,寫出結(jié)果.解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷.因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應用平方差公式,就能比較簡捷地得到答案.
課堂練習。
1.口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教師巡視學生練習情況,請不同解法的學生,或發(fā)生錯誤的學生板演,教師和學生一起分析解法.
三、小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;。
(2)有些式子表面不能應用公式,但實質(zhì)能應用公式,要注意變形.
四、作業(yè)。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.計算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
平方差公式教學教案篇十二
平方差公式本節(jié)課的重點是要學生明白平方差公式及其推導(含代數(shù)驗證和幾何驗證),并能應用平方差公式簡化運算,其中關(guān)鍵是要學生明確平方差公式的結(jié)構(gòu)特征,準確找到a、b。為了讓學生對平方差公式有個全面的認識和了解。先讓學生計算符合平方差公式的兩位數(shù)乘法,進而將數(shù)轉(zhuǎn)化為字母,從代數(shù)的角度,利用多項式乘多項式的知識,推導出平方差公式,接著從幾何角度讓學生加以解釋說明。在此基礎上,通過分析公式的結(jié)構(gòu)特征,加深對公式的理解。之后,設計了一個“尋找a、b”的環(huán)節(jié),通過這個練習進行難點突破。引導學生反思練習過程,得出“誰是a,誰是b,并不以先后為準,而是以符號為準”這一結(jié)論。緊接著給出兩組例題,考察學生對公式的應用。最后通過一組判斷題和補充練習,拓展學生的.思維水平。
為了給學生滲透數(shù)形結(jié)合的思想,要從代數(shù)、幾何兩個角度證明平方差公式,但是從哪個角度入手,有利于知識的銜接,便于學生理解。最終決定給讓學生猜想結(jié)論,再用代數(shù)方法加以證明,后給出幾何解釋,符合知識的發(fā)生過程。
對于課本中的公式文字說明是“兩數(shù)和與這兩數(shù)差的積”的理解:公式中“a、b不僅表示一個數(shù)或字母,還可以表示代數(shù)式”。但這里說的是“兩數(shù)”,原因是所有的規(guī)律最初都是在具體的數(shù)字中發(fā)現(xiàn)的,然后才推廣到字母。所以這里說的數(shù)不再是具體的數(shù),而是代表一個整體;公式中說的“兩數(shù)和與兩數(shù)差的積”,從這個角度說,這兩項應是完全相同的,差別只在于運算符號上。但由于我們之前介紹過“代數(shù)和”,(a+b)(a-b)也可以理解為(a+b)[a(-b)],就像許多教參上說的,是相同項與互為相反數(shù)的項,這樣就與課本定義發(fā)生矛盾。為了避免這個問題,我在介紹公式結(jié)構(gòu)特征時,只說“有一項完全相同,另一項只有符號不同”,學生可以自己去理解。
平方差公式教學教案篇十三
本節(jié)課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應用逆向思維的方向,演繹出平方差公式,對公式的應用首先提醒學生要注意其特征,其次要做好式子的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來,應用公式法因式分解的過程,實際上就是轉(zhuǎn)化和化歸的過程。在解決認識平方差公式的`結(jié)構(gòu)時候,重點突出學生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學設計中,教師只作為了一個點撥者和引路人。然后應用有梯度的典型例題加以鞏固,在學生頭腦中形成一個清晰完整的數(shù)學模型,使學生在今后的練習中游刃有余。
不足之處:
教學中時間把握還是不足,在設計的題目中不怎么合理,應按題目的難度從易到難。
有些題目的歸納可放手給學生討論后由學生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
教學語言還太隨意,數(shù)學的語言應該嚴謹。在語調(diào)上應該有所變化。
平方差公式教學教案篇十四
會推導公式(a+b)(a-b)=a2-b2。
通過教學我對本節(jié)課的反思如下:
1、本節(jié)課我從復習舊知入手,在教學設計時提供充分探索與交流的空間,使學生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學生被動學習的局面。我在教學時沒有直接讓學生推導平方差公式,而是設置了一個做一做,讓學生通過計算四個多項式乘以多項式的題目,讓學生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學生學習數(shù)學的一般能力,讓學生體會發(fā)現(xiàn)的愉悅,激發(fā)學生學習數(shù)學的興趣,感覺效果很好。
不足:在學生將4個多項式乘多項式做完評價后,應及時把他們歸納為某式的平方差的形式,以便學生順理成章的猜測公式的結(jié)果。
2、學生剛接觸這類乘法,我設計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果.我很細地給學生講了以上特點,學生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
4、學生錯誤主要是:
(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;
(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學中應著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學生往往學起來容易,真正掌握起來困難。部分學生只是死記硬背公式,不能完全理解其含義和具體應用。
總之,在以后的教學中我會更深入的專研教材,結(jié)合教學目標與要求,結(jié)合學生的實際特點,克服自己的弱點,盡量使數(shù)學課生動、自然、有趣。
平方差公式教學教案篇十五
上周我們學習了“乘法公式”,乘法公式在簡化多項式乘法運算、因式分解及以后的數(shù)學學習中有著廣泛的應用。根據(jù)課標的規(guī)定主要學習兩個最基本的乘法公式,留出更多的時間和空間給學生自主探索,發(fā)現(xiàn)規(guī)律,體驗乘法公式的來源,理解公式的意義和作用,掌握公式的應用。
通過一周的學習,學生基本上掌握了公式的形式,并能運用公式解答簡單的乘法運算,化簡多項式乘法。但是,對于形式較復雜的,3、4學生就辨認不出運用哪個公式,或者把公式用混,特別是符號問題。所以,要多訓練,多強化,在作題中掌握技巧,掌握公式的特點。