數(shù)學教案-多邊形的內角和大全(21篇)

字號:

    編寫好教案可以提前預估學生可能出現(xiàn)的問題和困惑,準備相應的解決方案。在編寫教案時,教師應注重培養(yǎng)學生的自主學習能力和合作學習能力。以下是小編整理的一些教案精選,供大家參考和學習。
    數(shù)學教案-多邊形的內角和篇一
    《探索多邊形的內角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
    有幸與實驗小學趙麗老師同時選中《多邊形的內角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎,我采用分層的模式來進行多邊形的內角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
    1,以經(jīng)驗為基礎,讓學生得到不同的發(fā)展。
    基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
    2,勇于放手,培養(yǎng)學生自學的能力。
    在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉化為三角形內角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
    3,細節(jié)入手,培養(yǎng)學生良好習慣。
    小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
    “授人以魚,不如授人以漁。”我們的數(shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
    數(shù)學教案-多邊形的內角和篇二
    上完這節(jié)課后,自我感覺良好,學生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
    首先我先復習相關知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標是一致的,都是通過添加輔助線,把未知的多邊形的內角和轉化為一些三角形的內角和,向學生滲透了“轉化”這種數(shù)學思想方法。在此教學中,只須真正實施民主的開放式教學,創(chuàng)設平等、民主、寬松的教學氛圍,使師生完全處于平等的地位,學生才能敞開思想,積極參與教學活動,才能最大限度地調動學生的積極性,激發(fā)他們的學習興趣,引導他們多角度、多方位、多層次地思考問題,使他們有足夠的機會顯示靈性,展現(xiàn)個性。在問題探究、合作交流、形成共識的基礎上,在課堂活動中經(jīng)歷、感悟知識的生成、發(fā)展與變化過程,也只有這樣,才能將創(chuàng)新教育的目標落到實處,讓學生在自主參與學習,解決問題、嘗試到一題多證的方法,體驗到參與的樂趣、合作的價值,并獲得成功的體驗。
    六、案例點評。
    陳老師在本節(jié)課的教學設計上,內容豐富,過程非常具體,設計也較合理。整節(jié)課以推導多邊形的內角和為線索,讓學生經(jīng)歷了提問題、畫圖、判斷、找規(guī)律、猜想出一般性的結論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學生的主體地位,體現(xiàn)了新的教學理念,也符合初中生的心理特點和年齡特征,因此在教學設計上是比較好的。
    但是隨堂練習太少而不精,并且沒有梯度,能否可以設計一些具有一定難度的練習,使不同的學生得到不同層次的發(fā)展,為學有余力的學生提供更大的學習和發(fā)展空間。另外,關于多邊形的內角和的推導不必要一一講解,只要引導學生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學生課后思考。
    數(shù)學教案-多邊形的內角和篇三
    知識與技能:掌握多邊形內角和定理,進一步了解轉化的數(shù)學思想。
    重點:多邊形內角和定理的探索和應用。
    教學難點:邊形定義的理解;多邊形內角和公式的推導;轉化的數(shù)學思維方法的滲透.。
    教學過程。
    第一環(huán)節(jié)創(chuàng)設現(xiàn)實情境,提出問題,引入新(3分鐘,學生思考問題,入)。
    1.多媒體展示蜂窩,教師結合圖片讓學生發(fā)現(xiàn)生活中無處不在的多邊形.。
    2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
    第二環(huán)節(jié)概念形成(5分鐘,學生理解定義)。
    第三環(huán)節(jié)實驗探究(12分鐘,學生動手操作,探究內角和)。
    (以四人小組為單位展開探究活動)。
    活動一:利用四邊形探索四邊形內角和。
    要求:先獨立思考再小組合作交流完成.)。
    (師巡視,了解學生探索進程并適當點撥.)。
    (生思考后交流,把不同的方案在紙上完成.)。
    ……(組間交流,教師展示幾種方法)。
    進而引導學生得出:我們是把四邊形的問題轉化成三角形,再由三角形內角和為180°,求出四邊形內角和為360°,從而使問題得到解決!進一步提出新的探索活動。
    活動二:探索五邊形內角和。
    (要求:獨立思考,自主完成.)。
    第四環(huán)節(jié)思維升華(5分鐘,教師引導學生進行推算)。
    教學過程:
    探索n邊形內角和,并試著說明理由。
    (結合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
    n邊形的內角和=(n—2)180°。
    正n邊形的一個內角==。
    第五環(huán)節(jié)能力拓展(12分鐘,學生搶答)。
    搶答題:
    1.正八邊形的內角和為_______.
    3.一個多邊形每個內角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
    應用發(fā)散:
    第六環(huán)節(jié)時小結:(3分鐘,學生填表)。
    第七環(huán)節(jié)布置作業(yè):習題4、10。
    b組(中等生)1。
    c組(后三分之一生)1。
    教學反思:
    數(shù)學教案-多邊形的內角和篇四
    (1)知識結構:
    (2)重點和難點分析:
    重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內角和》。
    教學目標:
    1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數(shù)學思想;
    4.講解四邊形的`有關概念時,聯(lián)系三角形的有關概念向學生滲透類比思想.
    教學重點:
    教學難點:
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
    3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
    (五)應用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    練習:
    1.課本124頁3題.
    小結:
    能力:向學生滲透類比和轉化的思想方法.
    作業(yè):課本130頁2、3、4題.
    數(shù)學教案-多邊形的內角和篇五
    完成《多邊形的內角和》教學之后,學生很自然地就會想到對于多邊形的情況如何。為了體現(xiàn)課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:
    (1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。
    (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。
    (3)在小組交流過程中學生的發(fā)言過分地注重于探索的結果,而忽視了學生探索過程的展示。同時教師有些總結性的話,限制了學生的思維,不能最大限度的'發(fā)揮學生自主探究的能力。
    (4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現(xiàn)較為一般的學生有此創(chuàng)意時,教師就應大加贊揚,從而也能激發(fā)課堂氣氛。
    將本文的word文檔下載到電腦,方便收藏和打印。
    數(shù)學教案-多邊形的內角和篇六
    過程與方法目標:通過多邊形內角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    教學重點:多邊形的內角和公式
    教學難點:多邊形內角和公式
    講解法、練習法、分小組討論法
    結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結作業(yè)。
    1. 導入新知
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內角和,緊接著提出問題:四邊形的
    內角和是多少?五邊形的內角和是多少?六邊形的內角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內角和的學習奠定了基礎。
    2. 生成新知
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內角和,由此
    得出四邊形的內角和是2個三角形的內角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內角和公式180*(n-2)。
    驗證:七邊形驗證
    在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求
    內角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調我們分隔的一個原則。
    本環(huán)節(jié)的設計主要是對多變形內角和的一個深入了解,給學生一個內化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領學生用我們所學過的多邊形的內角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內角和公式進一步鞏固提高。
    5. 小結作業(yè)
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    數(shù)學教案-多邊形的內角和篇七
    (1)知識結構:
    (2)重點和難點分析:
    重點:四邊形的有關概念及內角和定理。因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決。結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內角和》。
    教學目標:
    1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數(shù)學思想;
    4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向學生滲透類比思想。
    教學重點:
    教學難點:
    四邊形的概念。
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識。請同學們回憶一下這些圖形的概念。找學生說出四種幾何圖形的概念,教師作評價。
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
    在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下。其次,要給學生講清楚“首尾”和“順次”的含義。
    2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念。
    3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序。
    練習:課本124頁1、2題。
    4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了。
    5.四邊形的對角線:
    (四)四邊形的內角和定理。
    定理:四邊形的內角和等于.
    注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決。
    (五)應用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    證明:(1)(四邊形的內角和等于),
    練習:
    1.課本124頁3題。
    小結:
    知識:四邊形的有關概念及其內角和定理。
    能力:向學生滲透類比和轉化的思想方法。
    作業(yè):課本130頁2、3、4題。
    數(shù)學教案-多邊形的內角和篇八
    (1)知識結構:
    (2)重點和難點分析:
    重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內角和》。
    教學目標:
    1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數(shù)學思想;
    4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向學生滲透類比思想.
    教學重點:
    四邊形的內角和定理.
    教學難點:
    四邊形的概念
    教學過程:
    (一)復習
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念
    1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
    3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    (四)四邊形的內角和定理
    定理:四邊形的內角和等于 .
    注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
    (五)應用、反思
    例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
    求證:(1) ;(2)
    證明:(1) (四邊形的內角和等于 ),
    練習:
    1.課本124頁3題.
    小結:
    知識:四邊形的有關概念及其內角和定理.
    能力:向學生滲透類比和轉化的思想方法.
    作業(yè): 課本130頁 2、3、4題.
    數(shù)學教案-多邊形的內角和篇九
    難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設情境,設疑激思。
    師:大家都知道三角形的內角和是180?,那么四邊形的內角和,你知道嗎?
    在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內角和是360?。
    方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內角和相加是360?。
    接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
    師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180?的和是540?。
    方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結果得540?。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結果得540?。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結果得540?。
    師:你真聰明!做到了學以致用。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720?,十邊形內角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
    學生結合思考題進行討論,并把討論后的結果進行交流。
    發(fā)現(xiàn)1:四邊形內角和是2個180?的和,五邊形內角和是3個180?的'和,六邊形內角和是4個180?的和,十邊形內角和是8個180?的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
    (三)實際應用,優(yōu)勢互補。
    (2)一個多邊形的內角和是1440?,且每個內角都相等,則每個內角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結:
    2、運用轉化思想解決數(shù)學問題。
    3、用數(shù)形結合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    八、教學反思:
    1、教的轉變。
    本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
    2、學的轉變。
    學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉變。
    整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
    數(shù)學教案-多邊形的內角和篇十
    過程與方法目標:通過多邊形內角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    講解法、練習法、分小組討論法。
    結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結作業(yè)。
    1.導入新知。
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內角和,緊接著提出問題:四邊形的。
    內角和是多少?五邊形的內角和是多少?六邊形的內角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內角和的學習奠定了基礎。
    2.生成新知。
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內角和,由此。
    得出四邊形的內角和是2個三角形的內角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內角和公式180*(n-2)。
    驗證:七邊形驗證。
    在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3.深化新知。
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求。
    內角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調我們分隔的一個原則。
    本環(huán)節(jié)的設計主要是對多變形內角和的一個深入了解,給學生一個內化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4.鞏固提高。
    我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領學生用我們所學過的多邊形的內角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內角和公式進一步鞏固提高。
    5.小結作業(yè)。
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    數(shù)學教案-多邊形的內角和篇十一
    二、教學目標。
    2、數(shù)學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生學習熱情。
    三、教學重、難點。
    難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設情境,設疑激思。
    師:大家都知道三角形的內角和是180o,那么四邊形的內角和,你知道嗎?
    在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內角和是360o。
    方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內角和相加是360o。
    接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
    師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180o的和是540o。
    方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720o,十邊形內角和是1440o。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內角和嗎?
    思考:(1)多邊形內角和與三角形內角和的關系?
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
    學生結合思考題進行討論,并把討論后的結果進行交流。
    發(fā)現(xiàn)1:四邊形內角和是2個180o的和,五邊形內角和是3個180o的和,六邊形內角和是4個180o的和,十邊形內角和是8個180o的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
    (三)實際應用,優(yōu)勢互補。
    (2)一個多邊形的內角和是1440o,且每個內角都相等,則每個內角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結:
    2、運用轉化思想解決數(shù)學問題。
    3、用數(shù)形結合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    數(shù)學教案-多邊形的內角和篇十二
    難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設情境,設疑激思。
    師:大家都知道三角形的內角和是180?,那么四邊形的內角和,你知道嗎?
    在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內角和是360?。
    方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內角和相加是360?。
    接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
    師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180?的和是540?。
    方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結果得540?。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結果得540?。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結果得540?。
    師:你真聰明!做到了學以致用。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720?,十邊形內角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內角和嗎?
    思考:(1)多邊形內角和與三角形內角和的關系?
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
    學生結合思考題進行討論,并把討論后的結果進行交流。
    發(fā)現(xiàn)1:四邊形內角和是2個180?的和,五邊形內角和是3個180?的'和,六邊形內角和是4個180?的和,十邊形內角和是8個180?的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
    (三)實際應用,優(yōu)勢互補。
    (2)一個多邊形的內角和是1440?,且每個內角都相等,則每個內角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結:
    2、運用轉化思想解決數(shù)學問題。
    3、用數(shù)形結合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    八、教學反思:
    1、教的轉變。
    本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
    2、學的轉變。
    學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉變。
    整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
    數(shù)學教案-多邊形的內角和篇十三
    本節(jié)課從復習舊知入手,在引課時提問三角形的相關知識,讓學生在思想上對本節(jié)課產生興趣,并且會覺得知識點不是很難,提高學生的學習興趣,同時加強了數(shù)學與實際生活的聯(lián)系,讓學生感到數(shù)學離自己很近,激發(fā)了學生的求知欲,創(chuàng)設了良好的教學氛圍。
    其次注重讓學生在學習活動中領悟數(shù)學思想方法。數(shù)學的思想方法比有限的數(shù)學知識更為重要。學生在探索多邊形內角和的過程中先把多邊形轉化成三角形、進而求出內角和,這體現(xiàn)了由未知轉化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領會數(shù)學思想方法,真正理解和掌握數(shù)學的知識、技能,增強空間觀念及數(shù)學思考能力培養(yǎng),并獲得數(shù)學活動經(jīng)驗。同時,恰當?shù)氖褂谜n件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。同時也加大了練習量,有助于學生知識可鞏固和提高。
    整節(jié)課學生的情緒飽滿,思維活躍,在教師適當?shù)囊龑?,學生能夠合作交流和自主探究,成功的探索出了多邊形的內角和公式,較好的完成了本節(jié)課的教學目標。
    不足之處:
    1、本節(jié)課給學生提供的探究思考與交流的時間比較充足,但展示交流的機會不夠充分,并且個別學生沒有很好的融入課堂,游離于課本之外。
    2、本節(jié)課學生小組活動的準備、具體實施、歸納交流、評價等環(huán)節(jié)設計不夠完善。
    3、練習不夠多樣化。
    數(shù)學教案-多邊形的內角和篇十四
    4、培養(yǎng)學生合作、表達等能力情感。
    教學重點與難點:多邊形內角和與外角和特點是重點。
    利用化歸思想歸納多邊形內角和與外角和特點是難點。
    教學過程:
    一、創(chuàng)設情境。
    師出示一個三角形,問:這是什么圖形?它是怎樣定義的?
    生:三條線段首尾順次連接而成的圖形。
    師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?
    這些圖形我們都叫做多邊形。
    師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:
    我們叫做凹多邊形,不在我們今天的研究范圍之內。
    二、探究新知。
    1、?確立研究范圍。
    生1:它的角。
    師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內角和與外角和)。
    數(shù)學教案-多邊形的內角和篇十五
    活動。
    目標。
    1、繼續(xù)學習對應數(shù)量與數(shù)字1~10。
    2、能將點子和數(shù)字進行配對。
    活動。
    準備。
    活動過程。
    一、出示小動物圖片,引起幼兒興趣。
    師:今天老師請來了幾個小動物。(出示十張小動物的圖片,并在他們身上編號1~10),來打個招呼!
    師:我們一起來數(shù)一數(shù)有幾個小動物呢?(老師與幼兒一起數(shù))看看他們身上寫著什么?(認讀1~10)。
    二、游戲:小矮人找朋友。
    1、導語:小朋友你們喜歡小動物嗎?今天小動物要和點子娃娃做游戲,(出示點子娃娃),聽聽,小動物們要說話了(老師以小矮人的口吻說話):“小點子,你們真可愛,可是我們不知道哪個點子娃娃是我的好朋友。”小朋友我們來幫幫他們好嗎?(幼兒回答)。小朋友們觀察一下小動物和點子娃娃它們之間有什么相同的地方?(幼兒自由回答)。好現(xiàn)在咱們就來幫助小動物找朋友。
    2、幼兒幫助動物人找朋友,找完后,找個別幼兒說一說自己的想法。
    師:數(shù)一數(shù)你找了幾對朋友。(幼兒回答)。
    師:說說為什么他們兩個是朋友?你是怎么知道的?(幼兒回答)。
    三、小結:今天,幫助小動物找到了朋友,你們真能干,小矮人都非常感謝你們,并讓我代他們謝謝你們。
    四、作業(yè)。
    師:請小朋友打開書的第13頁,我們一起來數(shù)一數(shù)。(引導幼兒完成作業(yè))。
    數(shù)學教案-多邊形的內角和篇十六
    各位領導,各位老師:
    大家下午好,很高興有機會參加這次教學研究活動。
    我的教學設計是華師大版七年級數(shù)學(下)第八章第三節(jié)"多邊形的內角和與外角和"。根據(jù)新的課程標準,我從以下七個方面說一下本節(jié)課的教學設想:
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些"想一想""試一試""做一做"等內容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    學生上節(jié)課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    新的課程標準注重學生所學內容與現(xiàn)實生活的聯(lián)系,注重學生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標和本節(jié)課的內容特點我確定以下教學目標及重點,難點。
    【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數(shù)學思想。
    【過程與方法】經(jīng)歷質疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    【教學難點】轉化的數(shù)學思維方法。
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
    整個教學過程分五步完成。
    1,創(chuàng)設情景,引入新課。
    首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結,建構體系。
    多邊形內角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    "木工師傅可以用邊角余料鋪地板的原因是什么"這既是對本節(jié)所學知識在現(xiàn)實生活中的應用,又是本章第一節(jié)的延伸,同時也為下節(jié)打下了一個鋪墊。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產生的激情得以釋放。
    板書本節(jié)課學生所需掌握的知識目標:即多邊形內角和與外角和定理。
    本節(jié)課在知識上由簡單到復雜,學生經(jīng)歷質疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
    數(shù)學教案-多邊形的內角和篇十七
    1、通過復習,使學生理清各種平面圖形面積計算公式之間的關系。
    2、使學生能夠應用面積計算公式,熟練計算平行四邊形、三角形、梯形和組合圖形的面積。
    3、能靈活運用所學知識解決有關的實際問題。
    熟練計算平行四邊形、三角形、梯形及組合圖形的面積。
    平行四邊形、三角形、梯形的磁片。
    一、創(chuàng)設情境,揭示課題。
    1、想一想,本單元我們學習了哪些知識?
    揭示課題:今天這節(jié)課我們對第五單元的知識進行整理和復習。
    2、在小組內說一說,你學會了什么?
    二、知識梳理,形成網(wǎng)絡。
    老師根據(jù)學生所說,演示轉化過程,形成如教材96頁的板書。
    (2)從整理圖中能看出各種圖形之間的關系嗎?
    學生回答后老師簡要小結。
    2、練一練:
    老師出示下題讓學生獨立完成后集體核對。
    選擇條件分別計算下列各圖形的面積。
    3、師:剛才復習的是基本圖形的面積,而由幾個基本圖形組合而成的圖形叫什么?
    出示第96頁的第2題,讓學生自己獨立完成。
    集體核對時讓學生說一說自己的幾種方法。
    學生可能會想到下面幾種方法。
    比較哪種方法比較簡便?
    三、應用拓展。
    1、練習十九第1題。
    (1)讓學生審題,說一說解題步驟。
    (2)獨立完成。
    (3)小組交流,說一說你的發(fā)現(xiàn)。
    (4)全班交流。
    師小結:幾個圖形都在兩條平行線之間,說明它們的`高是相等的,在高相等的條件下,面積不等,說明它們的高都不等。
    2、練習十九第4題。
    (1)先讓學生獨立完成第1小題,集體核對。
    想一想該如何擺放小樹?讓學生在草稿本上畫一畫示意圖。
    集體訂正,展示。
    四、小結:說一說今天這節(jié)課最大的收獲是什么?
    五、課堂作業(yè):練習十九第2、3題。
    數(shù)學教案-多邊形的內角和篇十八
    1、使學生在理解的基礎上掌握三角形的面積計算公式,能夠正確地計算三角形的面積。
    2、使學生通過操作和對圖形的觀察、比較,發(fā)展學生的空間觀念,使學生知道轉化的思考方法在研究三角形面積時的運用。
    3、培養(yǎng)學生的分析、綜合、抽象、概括和運用轉化方法解決實際問題的能力。
    1、用厚紙做完全相同的兩個直角三角形、兩個銳角三角形、兩個鈍角三角形。
    教師:前面我們學習了平行四邊形面積的計算,今天我們來學習三角形面積的計算。
    板書:三角形面積的計算。
    1、用數(shù)方格的`方法計算三角形的面積。
    教師:前面我們在學習長方形面積和平行四邊形面積時,都曾經(jīng)用過數(shù)方格的方法,下面我們再用數(shù)方格的方法來求三角形的面積。
    2、通過操作總結三角形面積的計算公式。
    讓學生拿出兩個完全一樣的銳角三角形,提問:
    用兩個完全一樣的銳角三角形能不能拼成一個平行四邊形?讓每個學生都動手拼一拼,或者同桌的兩個學生一同拼擺。
    教師邊說邊演示拼的過程。先將兩個銳角三角形重合放置,再按住三角形的右邊頂點,使三角形時針運動相反的方向轉動180,到兩個三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個三角形的右邊平移,直到拼成一個平行四邊形為止,并把拼成的平行四邊形圖畫在黑板上。然后再帶著學生規(guī)范地照上面的步驟做一遍,做時仍需邊做邊強調:先要把兩個銳角三角形重合,再旋轉,旋轉時哪個點不動?旋轉了多少度?平移時是沿著哪條直線移動的?學生學會把兩個完全一樣的銳角三角形拼成一個平行四邊形后,教師再說明:平移是圖上各點沿直線移動,旋轉是一個點不動,其它的點都圍繞著不動點轉。提問:
    每個銳角三角形的面積和拼出的平行四邊形的面積有什么關系?
    學生回答后,教師強調:每個銳角三角形是拼成的平行四邊形面積的一半。
    教師結合黑板上分別由兩個完全相同的三角形拼成的平行四邊形的圖指出:通過上面的實驗,兩個完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個平行四邊形。提問:
    這個平行四邊形的底和三角形的底有什么關系?
    這個平行四邊形的高和三角形的高有什么關系?
    這個平行四邊形的面積和其中一個三角形的面積有什么關系?
    數(shù)學教案-多邊形的內角和篇十九
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些"想一想""試一試""做一做"等內容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    學生上節(jié)課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數(shù)學思想
    【過程與方法】經(jīng)歷質疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    【教學重點】多邊形內角和及外角和定理
    【教學難點】轉化的數(shù)學思維方法
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
    整個教學過程分五步完成。
    1,創(chuàng)設情景,引入新課
    首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結,建構體系。
    多邊形內角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    5,分組競賽,升華情感
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產生的激情得以釋放。
    板書本節(jié)課學生所需掌握的知識目標:即多邊形內角和與外角和定理
    本節(jié)課在知識上由簡單到復雜,學生經(jīng)歷質疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
    數(shù)學教案-多邊形的內角和篇二十
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些“想一想”“試一試”“做一做”等內容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    二,學生情況。
    學生上節(jié)課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    三,教學目標及重點,難點的確定。
    【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數(shù)學思想。
    【過程與方法】經(jīng)歷質疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    【教學難點】轉化的數(shù)學思維方法。
    四,教法和學法。
    本次課改很大程度上借鑒了美國教育家杜威的“在做中學”的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的'好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
    五,教學過程設計。
    整個教學過程分五步完成。
    1,創(chuàng)設情景,引入新課。
    首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結,建構體系。
    多邊形內角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產生的激情得以釋放。
    數(shù)學教案-多邊形的內角和篇二十一
    尊敬的各位領導:
    老師大家好!
    由我為大家介紹我們工作坊團隊成員共同設計的《多邊形的內角和》一課。我將從教材思考、學生調研、教學目標完善、教學過程設計等方面進行匯報。
    《多邊形的內角和》是冀教版小學數(shù)學四年級下冊第九單元探索樂園的第1課時,本單元要求是“在問題探索中,促進數(shù)學思維發(fā)展”。實現(xiàn)“不同的人在數(shù)學上得到不同的發(fā)展”是《數(shù)學課程標準》的基本理念,“發(fā)展合情推理和演繹推理能力”“清晰地表達自己的想法”“學會獨立思考、體會數(shù)學的基本思想和思維方式”是課程標準關于數(shù)學思考方面的具體要求。
    教材安排了兩個例題,一是探究多邊形邊數(shù)與分割的三角形個數(shù)的規(guī)律,二在分割三角形的基礎上探索多邊形內角和。為了促進學生思考的連續(xù)性與有序性,我們將教材中的兩個例題進行有機結合,在充分研究四邊形五邊形內角和方法的基礎上提出如何得出任意多邊形內角和問題,為發(fā)展學生的數(shù)學思維提供素材、創(chuàng)造探索的空間,讓學生充分體會“畫線段—分割三角形—求內角和”這樣一個連續(xù)推理歸納得出規(guī)律的活動。
    學生在本冊第四單元認識了三角形、知道三角形內角和等于180度,會用字母表示數(shù)、字母表示數(shù)量關系的基礎上進行學習的。我們團隊的成員對所在學校四年級同學進行了調研,發(fā)現(xiàn)他們對于數(shù)學問題具有“猜想”的意識,但是缺乏理性的思考。他們愿意自己動手嘗試探索研究問題,但是對于探索之后有序思考、歸納總結認識還不夠全面。
    有了以上分析,我們在尊重教材的基礎上,確定了本節(jié)課教學目標,并對“過程與方法”目標進行了完善補充。
    知識與技能:探索并了解多邊形的邊數(shù)與分割成的三角形個數(shù),以及內角和之間隱含的規(guī)律;能運用多邊形的內角和知識解決相關問題。
    過程與方法:學生經(jīng)歷探索的全過程,積累探索和發(fā)現(xiàn)數(shù)學規(guī)律的經(jīng)驗,讓學生嘗試從不同的角度尋求解決問題的方法,體會從特殊到一般的認識問題的方法,發(fā)展理性思考。
    教學難點:字母表達式的總結
    教學準備:教師準備三角形、四邊形、五邊形、六邊形圖片,裁紙刀,課件。
    學生學具準備四邊形、五邊形等多邊形圖片模型,三角板。
    教學過程共分為四個環(huán)節(jié)。
    教學過程:
    一、創(chuàng)設情境,回顧三角形知識---注重知識的“生長點”
    同學們請看這是什么圖形?你了解它嗎?你能向大家介紹三角形哪些知識?(這樣設計意圖是注尊重學生已有知識經(jīng)驗,體會數(shù)學知識的內在聯(lián)系,重點認識三角形內角的含義及三角形內角和是180度的特點)
    我們知道了三角形內角和是180度,那么四邊形,五邊形的內角和是多少度呢?這節(jié)課我們就一起來研究。
    二、自主合作,探究新知—注重“數(shù)學算法的優(yōu)化”共設計了三個探究活動。
    1、四邊形內角和
    (1)有同學愿意猜想四邊形內角和嗎?猜想也要有根據(jù),你能說說你的根據(jù)嗎?(引導學生體會理性思考)
    有沒有同學一看到四邊形就馬上想到360度呢?你是根據(jù)哪個圖形直接想到的?(讓學生借助已有的長方形、正方形知識進行理性推理,打通新舊知識之間聯(lián)系)
    我們通過計算長方形、正方形的內角和是360度,是不是能說明所有四邊形內角和都是360度?(引導學生體會這是一種“假設”因為它是特殊圖形中做的成“猜想”)
    我們需要研究怎樣的圖形才能發(fā)現(xiàn)它們一般的特征和規(guī)律?(任意四邊形)
    (2)小組活動,利用學具中的任意四邊形想辦法計算內角和。師巡視(注意學生不同的方法)
    (3)學生匯報。可能有計算法,引導學生起名字“量角求和法”
    撕角法,起名字“拼角求和法”。
    切割法1,起名字“一分為二求和法”(學生演示這種方法時,教師幫忙切割,強調弄清楚四個內角怎樣變成六個角,分成了幾個三角形,一是畫了一條線段,二是分成了二個三角形)
    歸納總結:四邊形內角和是360度。(通過不同的個性方法,驗證四邊形內角和,進一步認識內角含義,感受不同算法的好處)
    2、五邊形內角和
    今天的研究我們就停在這里嗎?根據(jù)經(jīng)驗,我們要向什么挑戰(zhàn)?(五邊形)你能猜想它是多少度嗎?請你選擇一種方法,證實你的猜想。
    總結:看來數(shù)學的方法有很多,但是有的方法有局限性,有的方法只適合三角形和四邊形,量角有誤差,拼角法有的會超過360度,而第三種看起來最簡便。我們稱之為“優(yōu)化法”
    列出算式:180x3=540度(學生不僅在計算度數(shù)上有了經(jīng)驗,而且在計算方法上也有了經(jīng)驗)
    利用這種最優(yōu)的方法,同桌同學互相說一說,四邊形和五邊形各畫了幾條線段,分割成幾個三角形,怎樣求內角和?(設計意圖是讓學生對探究過程進行歸納整理,為進一步有序的研究其他圖形指明研究方向。)
    現(xiàn)在我們就來看一看其他圖形是不是也有這樣的規(guī)律?
    3、六邊形、七邊形內角和
    小組合作,自己完成探究過程,填寫表格。
    學生匯報,總結畫出的線段數(shù)和三角形個數(shù)之間聯(lián)系。
    三、歸納總結,形成規(guī)律---注重字母表達式的推理
    通過大家的研究,找到了規(guī)律,請問10邊形,能畫幾條線段,分成幾個三角形?
    90邊形?100邊形?n邊形呢?(老師說我們研究三角形的個數(shù),怎么去找邊數(shù)的呢?學生說分割出的三角形的個數(shù)跟邊數(shù)有關。那一千邊形形,n邊形呢?n-2得到的是什么?得到分成的三角形的個數(shù)。)
    師:今天你學到了什么?在今天的研究中哪些知識或研究的過程給你留下了深刻的印象?師:今天我們所研究的多邊形都是凸多邊形,還有一種多邊形,它們叫做凹多邊形,你能不能運用今天的研究方法,探究凹多邊形的內角和嗎?老師期待你在課后的研究成果。(設計意圖是不僅讓學生對本節(jié)課知識進行總結,也對數(shù)學的思想方法進行回顧,鼓勵學生利用這些思想方法向類似數(shù)學問題挑戰(zhàn),以達到學以致用的目的。)
    以上是我們對這節(jié)課的粗淺設計,懇請大家給予批評指正,謝謝!