解一元一次方程的教案設(shè)計(熱門22篇)

字號:

    教案不僅是教師備課的重要內(nèi)容,也是教學評估和記錄學生學習情況的依據(jù)。教案的編寫要根據(jù)學生的學習進度和理解程度進行調(diào)整和優(yōu)化。在下面是一些優(yōu)秀教案的范例,供您參考學習。
    解一元一次方程的教案設(shè)計篇一
    3.使學生初步養(yǎng)成正確思考問題的良好習慣。
    和難點。
    課堂設(shè)計。
    一、從學生原有的認知結(jié)構(gòu)提出問題。
    為了回答上述這幾個問題,我們來看下面這個例題。
    例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
    (首先,用算術(shù)方法解,由學生回答,教師板書)。
    解法1:(4+2)÷(3-1)=3.
    答:某數(shù)為3.
    (其次,用代數(shù)方法來解,教師引導,學生口述完成)。
    解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
    解之,得x=3.
    答:某數(shù)為3.
    縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們運用一元一次方程解應(yīng)用題的目的之一。
    我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關(guān)系。因此對于任何一個應(yīng)用題中提供的條件,應(yīng)首先從中找出一個相等關(guān)系,然后再將這個相等關(guān)系表示成方程。
    本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關(guān)系和把這個相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
    二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟。
    師生共同分析:
    1.本題中給出的已知量和未知量各是什么?
    2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)。
    上述分析過程可列表如下:
    x-15%x=42500,
    所以x=50000.
    答:原來有50000千克面粉。
    (還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)。
    (2)例2的解方程過程較為簡捷,同學應(yīng)注意模仿。
    依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結(jié)的情況,教師總結(jié)如下:
    (2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系。(這是關(guān)鍵一步);
    (4)求出所列方程的解;
    (5)檢驗后明確地、完整地寫出答案。這里要求的檢驗應(yīng)是,檢驗所求出的解既能使方程成立,又能使應(yīng)用題有意義。
    (仿照例2的分析方法分析本題,如學生在某處感到困難,教師應(yīng)做適當點撥。解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤。并嚴格規(guī)范書寫格式)。
    解:設(shè)第一小組有x個學生,依題意,得。
    3x+9=5x-(5-4),
    解這個方程:2x=10,
    所以x=5.
    其蘋果數(shù)為3×5+9=24.
    答:第一小組有5名同學,共摘蘋果24個。
    學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
    (設(shè)第一小組共摘了x個蘋果,則依題意,得)。
    三、課堂練習。
    2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。
    3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
    四、師生共同小結(jié)。
    首先,讓學生回答如下問題:
    1.本節(jié)課了哪些內(nèi)容?
    3.在運用上述方法和步驟時應(yīng)注意什么?
    依據(jù)學生的回答情況,教師總結(jié)如下:
    (2)以上步驟同學應(yīng)在理解的基礎(chǔ)上記憶。
    五、作業(yè)。
    1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
    2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
    解一元一次方程的教案設(shè)計篇二
    3.3解一元一次方程(二)―――去括號與去分母(第1課時)教學目標:(1)知識目標:在具體情境中體會去括號的必要性,能運用運算律去括號。(2)能力目標:探索總結(jié)去括號法則,并能利用法則解決簡單的問題。重點:去括號法則及其運用。難點:括號前面是“―”號,去括號時,應(yīng)如何處理。教學過程:(一)創(chuàng)設(shè)情景,導入新課問題某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度。這個工廠去年上半年每月平均用電多少度?(三)典例教學例1.解方程3x-7(x-1)=3-2(x+3)例2.一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時.已知水流的`速度是3千米/小時,求船在靜水中的平均速度.例3.某車間22名生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母.為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?(四)課堂練習1.(1)4x+3(2x-3)=12-(x+4)(2)2.同步p79自我嘗試(五)課堂小結(jié)去括號法則(六)作業(yè)p102習題3.3第2題,同步學習p80開放性作業(yè)教后思:
    解一元一次方程的教案設(shè)計篇三
    去括號,移項,合并同類項,系數(shù)化為1。
    4、鞏固練習。
    (1)解方程(2)當y為何值時,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)。
    (鞏固練習,抽兩個同學上黑板去完成,其余的同學在演草紙上完成,待同學們完成后給予點評。)。
    5、小結(jié):和同學們一起回顧我們這節(jié)課學習了什么?
    解一元一次方程的教案設(shè)計篇四
    活動3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程應(yīng)注意的事項;歸納一元一次方程解法的一般步驟·活動4小結(jié)總結(jié)本節(jié)收獲活動1、創(chuàng)設(shè)問題情境:引言:這件珍貴的文物是紙莎草文書,是古代埃及人用象形文字寫在一種特殊的草上的著作,至今已有3700多年的歷史了·在文書中記載了許多有關(guān)數(shù)學的問題·問題一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。(1)能不能用方程解決這個問題?(2)能嘗試解這個方程嗎?(3)不同的解法有什么各自的特點?設(shè)計意圖:1、利用列方程、解方程解決實際問題,再一次讓學生感受方程的優(yōu)越性,提高學生主動使用方程的意識·2、經(jīng)過對同一方程不同解法到去分母能夠使解方程的過程更加便捷,明白為什么要去分母,這是"去分母"這一步驟的必要性;同時,讓學生認同"去分母"是科學的、可行的,明確為什么能去分母·這樣,學生就會自覺參與探索去分母的一般做法的活動,從而發(fā)現(xiàn)"方程兩邊同時乘以所有分母的最小公倍數(shù)"這一方法·也首次由學生自行突破了難點。3、通過交流,讓學生用自己的語言清楚地表達解決問題的過程,提高學生的語言表達能力·活動2下面方程可以怎樣求解?觀察方程,回答教師提出的問題并對學生的回答進行總結(jié):先去分母·怎樣去分母?解去掉分母后的這個方程歸納總結(jié)去分母的方法:在方程兩邊同時乘以所有分母的最小公倍數(shù);依據(jù)是等式的性質(zhì)2,即"等式兩邊同時乘同一個數(shù),結(jié)果仍相等·"呈現(xiàn)不同學生的解題過程,選取學生在去分母過程中出現(xiàn)的典型錯誤,引導全體學生共同分析錯誤的原因,發(fā)現(xiàn)去分母的易錯點·鞏固了學生對解方程的透徹理解。這樣做的目的不僅培養(yǎng)了學生的學習自主性和團體協(xié)作精神,還對與重、難點知識的突破起到了一定的促進作用。通過對錯例的辨析,加深學生對"去分母"的認識,避免解方程時出現(xiàn)類似錯誤·去掉分母后,方程即轉(zhuǎn)化為熟悉的形式,新舊知識自然銜接,使學生體會到,只要把新問題想辦法合理轉(zhuǎn)化為熟悉的知識,問題就能得以解決通過在解方程過程中"去分母"這一步驟體會轉(zhuǎn)化思想·活動3解方程設(shè)計意圖:用實踐來加深對"去分母"的方法解一元一次方程的認識·結(jié)合本題思考,能總結(jié)解這種方程的一般操作過程嗎?鞏固所學的一元一次方程的解法,同時說明解方程的步驟是程序化的,但不能生搬硬套,每個步驟要不要使用、何時使用都應(yīng)視方程的特征而定·了解對方程的每一次變形都是為了將方程最終化歸為的形式·解題時應(yīng)根據(jù)題目特點,合理選擇解題步驟·小結(jié)活動4總結(jié)(1)學生能否總結(jié)本節(jié)的知識,是否理解去分母的作用、依據(jù),是否掌握去分母的具體做法;(2)學生是否掌握了一元一次方程解法的一般步驟;(3)學生是否能準確表達自己的觀點·最后復(fù)習、鞏固本節(jié)的知識,學會總結(jié)反思·四。評價分析數(shù)學教學是數(shù)學活動的教學,是師生之間、學生之間交往互動與共同參與發(fā)展的過程。本節(jié)課的評價要讓學生體會到參與學習、與人合作的重要性,獲得成績的喜悅,從而激發(fā)性的學習動力。在這節(jié)的數(shù)學課,如要獲得最直接、真實的反饋,就要盡量讓學生多說、多思考,對于學生提出的問題和解決問題的方法,教師都要給予鼓勵和引導,并隨時觀察解決,評價應(yīng)充分考慮到每個學生的差異,這節(jié)課通過現(xiàn)代化的技術(shù)的運用,節(jié)省出盡可能多的時間,提出挑戰(zhàn)性的問題,讓學生通過開放式的數(shù)學討論提高學生學習的興趣,在交流中獲益。通過隨堂練習和作業(yè)來激勵其學習。同時做練習時,將評價及時反饋給學生,樹立學習數(shù)學的自信心,促進學生的進一步發(fā)展。并在課后作成長記錄,使學生比較全面了解自己的學習過程,特別感受自己的不斷成長和進步,為下一步教學提供重要依據(jù)。
    解一元一次方程的教案設(shè)計篇五
    我們這堂課主要有五個特色:
    1、學而時習之。
    2、新課當舊課上。
    3、重視引導學生再創(chuàng)造,再發(fā)現(xiàn)。
    4、突出學習和強度,角度和反思。
    5、創(chuàng)設(shè)情景,讓學生主動積極參與。
    一、學而時習之。
    二、新課當舊課上。
    三、重視引導學生再創(chuàng)造、再發(fā)現(xiàn)。
    b組訓練題較a組靈活,適用于學有余力的學生。
    第(4)題,學生要考慮兩種情況;目的是通過分類討論的思想,培養(yǎng)學生思維的嚴密性。
    四、突出學習的速度、角度、強度和反思。
    例如:課前訓練一和作業(yè)中對新舊知識的系統(tǒng)復(fù)習,通過多次鞏固達到強化訓練的目的。
    另外,我們設(shè)計了強化a組題,在學生完成a組訓練題后,可以自由選擇是進入強化a組題還是進入b組訓練題中這部分的設(shè)計主要是讓學生養(yǎng)成客觀的自我評價,和為在a組訓練中未能形成基本技能的學生再次創(chuàng)造一個條件和空間,務(wù)求使學生掌握基礎(chǔ)知識,再次有機會形成基本技能,充分體現(xiàn)學習強度和分層教學。
    五、創(chuàng)設(shè)情境,讓學生主動積極參與。
    解一元一次方程的教案設(shè)計篇六
    基礎(chǔ)知識:掌握一元一次方程得解法,了解銷售中的數(shù)量關(guān)系。
    基本技能:能夠分析實際問題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。
    基本思想。
    方法:通過將實際問題轉(zhuǎn)化成數(shù)學問題,培養(yǎng)學生的建模思想;。
    基本活動經(jīng)驗體會解決實際問題的一般步驟及盈虧中的關(guān)系。
    教學重點。
    教學難點。
    找出已知量與未知量之間的關(guān)系及相等關(guān)系。
    教具資料準備。
    教師準備:課件。
    學生準備:書、本。
    教學過程。
    一、創(chuàng)設(shè)情景引入新課。
    觀察圖片引課(見大屏幕)。
    二、探究。
    探究銷售中的盈虧問題:。
    1、商品原價200元,九折出售,賣價是元.
    2、商品進價是30元,售價是50元,則利潤。
    是元.
    2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元.
    3、某種品牌的`彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應(yīng)為元.
    4、某商品按定價的八折出售,售價是14.8元,則原定售價是.
    (學生總結(jié)公式)。
    熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進價之間聯(lián)系。
    三、探究一。
    分析:售價=進價+利潤。
    售價=(1+利潤率)進價。
    虧?
    (2)某文具店有兩個進價不同的計算器都賣64元,
    其中一個盈利60%,另一個虧本20%.這次交易中的盈虧情況?
    (3)某商場把進價為1980元的商品按標價的八折出售,仍。
    獲利10%,則該商品的標價為元.
    注:標價n/10=進(1+率)。
    (4)2、我國政府為解決老百姓看病難的問題,決定下調(diào)藥品的。
    價格,某種藥品在漲價30%后,降價70%至a元,
    則這種藥品在20漲價前價格為元.
    四、小結(jié)。
    通過本節(jié)課的學習你有哪些收獲?你還有哪些疑惑?
    虧損還是盈利對比售價與進價的關(guān)系才能加以判斷。
    小組研究解決提出質(zhì)疑。
    優(yōu)生展示講解質(zhì)疑。
    五、作業(yè)布置:
    板書設(shè)計。
    相關(guān)的關(guān)系式:例題。
    課后反思售價、進價、利潤、利潤率、標價、折扣數(shù)這幾個量之間的關(guān)系一定清楚,之后才能靈活運用,通過變式練習加強記憶提高能力。
    解一元一次方程的教案設(shè)計篇七
    學習目標:
    1、進一步經(jīng)歷運用方程解決實際問題的過程。
    2、提高學生找等量關(guān)系列方程的能力。
    3、培養(yǎng)學生的抽象、概括、分析和解決問題的能力。
    4、學會用數(shù)學的眼光去看待、分析現(xiàn)實生活中的情景。
    重點:
    1、如何從實際問題中尋找等量關(guān)系建立方程,解決問題后如何驗證它的合理性。
    2、解決打折銷售中的有關(guān)利潤、成本價、賣價之間的相關(guān)的現(xiàn)實問題。
    難點:
    如何從實際問題中尋找等量關(guān)系建立方程。
    學習指導:
    一、知識準備。
    1、通過社會調(diào)查,親歷打折銷售這一現(xiàn)實情境,了解打折銷售中的成本價、賣價和利潤之間的關(guān)系。進而能根據(jù)現(xiàn)實情境提出數(shù)學問題。
    2、談一談:
    請舉例說明打折、利潤、利潤率、提價及削價的含義分別是什么?
    3、算一算:
    (1)原價100元的商品,打8折后價格為元;
    (2)原價100元的商品,提價40%后的價格為元;
    (3)進價100元的商品,以150元賣出,利潤是元。
    二、學習新課。
    一)思考:
    1、把下面的“折扣”數(shù)改寫成百分數(shù)。九折八八折七五折。
    2、你是怎樣理解某種商品打“八折”出售的?
    二)問題:
    1、說說“打折銷售”中自己有過的親身經(jīng)歷。
    2、假設(shè)你是一個商店老板,你的追求是什么?
    3、你是怎樣理解商品的利潤?
    三)新知探討。
    1、你認為商品的標價、折數(shù)與商品的賣價之間有怎樣的關(guān)系?
    2、結(jié)合實際,說說你從打折銷售中可以獲得哪些數(shù)學問題?
    (1)某商店出售一種錄音機,原價430元,現(xiàn)在打九折出售,比原價便宜多少錢?
    (2)一種畫冊原價每本16元,現(xiàn)在按每本11。2元出售。這種畫冊按原價打了幾折?
    如果設(shè)每件服裝的成本價為x元,根據(jù)題意,
    (1)每件服裝的標價為:()。
    (2)每件服裝的實際售價為:()。
    (3)每件服裝的利潤為:()。
    (4)列出方程,并解答:
    四)回顧與反思。
    解一元一次方程的教案設(shè)計篇八
    教學設(shè)計思想:
    本節(jié)知識是探究如何用一元一次方程解決實際問題。在前面我們結(jié)合實際問題,討論了如何分析數(shù)量關(guān)系、利用相等關(guān)系列方程以及如何解方程,在此基礎(chǔ)上我們才可以進一步探究用一元一次方程解決實際問題。在課堂中教師出示例題,啟發(fā)學生思考,師生共同探討,學生找等量關(guān)系,列出方程,教師出示鞏固性練習,學生解答,達到鞏固所學知識的目的。
    教學目標:
    1.知識與技能。
    利用相等關(guān)系建立數(shù)學模型列方程;。
    2.過程與方法。
    會用方程解決簡單的實際問題,認識到建立方程模型的重要性;。
    在建立方程解決實際問題時,我們體會到設(shè)未知數(shù)的意義。
    3.情感、態(tài)度與價值觀。
    體會數(shù)學建模與實際的相互密切聯(lián)系,加強數(shù)學建模思想。
    教學重點:解決相關(guān)問題時,利用相等關(guān)系列方程。
    教學難點:解決相關(guān)問題時,利用相等關(guān)系列方程。
    重難點突破:關(guān)鍵是弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,特別是找出可以作為列方程依據(jù)的主要相等關(guān)系。
    教學方法:采用直觀分析法、引導發(fā)現(xiàn)法及嘗試指導法充分發(fā)揮學生的主體作用,使學生在輕松愉快的氣氛中掌握知識。
    課時安排:1課時。
    教具準備:投影儀。
    教學過程:
    一、創(chuàng)設(shè)情境。
    師:通過前幾節(jié)課的學習,同學們回憶一下,列方程解應(yīng)用題的第一步是什么?
    生:分析題意,設(shè)未知數(shù)。
    師:很好。我們以前學的應(yīng)用題大多是求一個未知量,因而設(shè)一個未知數(shù)我們今天要學的內(nèi)容需要求兩個未知量,這又如何解決呢?通過今天的學習,這些問題將得到很好的答案。
    [教法說法]:此節(jié)內(nèi)容與前邊內(nèi)容聯(lián)系不大,所以開門見山直接提出問題,同時也引起學生的注意和好奇,使學生帶著問題進入今天的學習,激發(fā)了學生的求知欲。
    解一元一次方程的教案設(shè)計篇九
    一、教學目標。
    知識與技能。
    1、會根據(jù)實際問題中的數(shù)量關(guān)系列方程解決問題。
    過程與方法。
    培養(yǎng)學生的數(shù)學建模能力,以及分析問題解、決問題的能力。
    情感態(tài)度與價值觀。
    1、通過問題的`解決,培養(yǎng)學生解決問題的能力。
    2、通過開放性問題的設(shè)計,培養(yǎng)學生的創(chuàng)新能力和挑戰(zhàn)自我的意識,增強學生的學習興趣。
    二、重點難點。
    重點。
    根據(jù)題意,分析各類問題中的等量關(guān)系,熟練的列方程解應(yīng)用題。
    難點弄清題意,用列方程解決實際問題。
    三、學情分析。
    學生在上一節(jié)課已經(jīng)學習了一元一次方程的解法,對于學生來說解方程已不是問題了,本節(jié)課是以上一節(jié)課為基礎(chǔ),用方程來解決實際問題,只要學生讀懂題意,建立數(shù)學模型,用一元一次方程會解決就行了。
    四、教學過程設(shè)計。
    教學。
    環(huán)節(jié)問題設(shè)計師生活動備注情境創(chuàng)設(shè)。
    討論交流:按怎樣的解題步驟解方程才最簡便?由此你能得到怎樣的啟發(fā)。
    創(chuàng)設(shè)問題情境,引起學生學習的興趣。
    學生動手解方程。
    自主探究。
    問題一:
    一項工作甲獨做5天完成,乙獨做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,兩人合作3天完成的工作量是,此時剩余的工作量是。
    問題二:
    問題三:
    整理一批圖書,由一個人做要40小時完成.現(xiàn)在計劃由一部分人先做4小時,再增加兩人和他們一起做8小時,完成這項工作.假設(shè)這些人的工作效率相同。
    解一元一次方程的教案設(shè)計篇十
    一、教學目標:
    1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
    2、通過觀察,歸納的概念。
    3、積累活動經(jīng)驗。
    二、重點和難點。
    歸納的概念。
    感受方程作為刻畫現(xiàn)實世界有效模型的意義。
    三、教學過程。
    1、課前訓練一。
    (1)如果||=9,則=;如果2=9,則=。
    (2)在數(shù)軸上距離原點4個單位長度的數(shù)為。
    (3)下列關(guān)于相反數(shù)的說法不正確的是()。
    a、兩個相反數(shù)只有符號不同,并且它們到原點的距離相等。
    b、互為相反數(shù)的兩個數(shù)的絕對值相等。
    c、0的相反數(shù)是0。
    d、互為相反數(shù)的兩個數(shù)的和為0(字母表示為、互為相反數(shù)則)。
    e、有理數(shù)的相反數(shù)一定比0小。
    (4)乘積為1的兩個數(shù)互為倒數(shù),如:
    (5)如果,則()。
    a、,互為倒數(shù)b、,互為相反數(shù)c、,都是0d、,至少有一個為0。
    (6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經(jīng)過幾周后樹苗長高到1米?設(shè)大約經(jīng)過周后樹苗長高到1米,依題意得方程()。
    a、b、c、d、00。
    2、由課本p149卡通圖畫引入新課。
    3、分組討論p149兩個練習。
    4、p150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設(shè)這個足球場的寬為米,那么長為(+25)米,依題意可列得方程為:()。
    課本的寬為3厘米,長比寬多4厘米,則課本的面積為平方厘米。
    解:設(shè)每個練習本要元,則每個筆記本要元,依題意可列得方程:
    6、歸納方程、的概念。
    7、隨堂練習po151。
    8、達標測試。
    (1)下列式子中,屬于方程的是()。
    a、b、c、d、
    (2)下列方程中,屬于的是()。
    a、b、c、d、
    解:設(shè)甲隊勝了場,則平了場,依題意可列得方程:
    解得=。
    答:甲隊勝了場,平了場。
    (4)根據(jù)條件“一個數(shù)比它的一半大2”可列得方程為。
    (5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為。
    p151習題5.1。
    解一元一次方程的教案設(shè)計篇十一
    2、理解方程的解的概念,會判斷一個數(shù)值是否是已知方程的解。
    環(huán)節(jié)一自主學習——對于疑惑的問題盡量小組互助解決。
    課前至少閱讀課本兩遍,完成例題與習題,熟知本節(jié)課學習目標與重點難點。
    環(huán)節(jié)二生生互動——課堂5分鐘練習并與小組成員相互交流心得。
    a。b。c。d。
    2、方程的概念:含有的等式叫做方程。
    a。b。c。d。
    4、一元一次方程的概念:只含有個未知數(shù),并且未知數(shù)的次數(shù)都是,這樣的整式方程叫做一元一次方程。
    5、根據(jù)下面所給的條件,能列出方程的是()。
    a與的'差的b甲數(shù)的2倍與乙數(shù)的的和。
    c一個數(shù)的是6d與的差的。
    6、由第5題可知,問題中必須含有才能列出方程,這正是列方程的關(guān)鍵!
    a。b。c。d。
    8、解方程與方程的解的概念:解方程就是求出使方程中等號的值,而這個值就是。
    環(huán)節(jié)三師生互動——你惑我釋,合作交流,知識提升。
    解一元一次方程的教案設(shè)計篇十二
    本課是針對人民教育出版社出版的《七年級數(shù)學上冊》第三章一元一次方程中3。4實際問題與一元一次方程(行程問題應(yīng)用題歸類解析——追及問題)設(shè)計的內(nèi)容。
    (一)知識與技能:
    1、使學生進一步掌握列一元一次方程解應(yīng)用題的方法和步驟;
    2、熟練掌握追及問題中的等量關(guān)系。
    (二)過程與方法。
    培養(yǎng)學生觀察能力,提高他們分析問題和解決實際問題的能力。
    (三)情感態(tài)度價值觀:
    培養(yǎng)學生勤于思考、樂于探究、敢于發(fā)表自己觀點的學習習慣,從實際問題中體驗數(shù)學的價值。體會觀察、分析、歸納對數(shù)學知識中獲取數(shù)學信息的重要作用,進一步掌握列一元一次方程解應(yīng)用題的方法和步驟,能在獨立思考和小組交流中獲益。
    2、難點:將實際問題轉(zhuǎn)化為數(shù)學模型,并找出等量關(guān)系。
    探究式。
    一、創(chuàng)設(shè)問題情景,引入新課:
    1、行程問題中有哪些基本量?它們間有什么關(guān)系?
    2、行程問題有哪些基本類型?
    二、知識應(yīng)用,拓展創(chuàng)新:
    行程問題應(yīng)用題是中小學數(shù)學應(yīng)用題中很重要的一類,學生難以理解,不容易掌握。行程問題的題型千變?nèi)f化,導致許多學生感到束手無策,難以適從。其實認真分析,就會發(fā)現(xiàn)行程問題應(yīng)用題主要有三種基本類型:追及問題、相遇問題和航行問題,而且三個基本量之間的基本關(guān)系“路程=速度×時間”保持不變。
    三、例題講解。
    解:設(shè)x秒后乙能追上甲。
    根據(jù)題意得5x—3x=100。
    解得x=50。
    答:50秒后乙能追上甲。
    小結(jié):針對本題進行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)。
    中的同時不同地問題,以后遇到此類題,該如何解決。
    分析:這個問題中,由于黃色馬先跑1s(此時棕色馬未出發(fā)),經(jīng)過1s后棕色馬再開始出發(fā)和黃色馬同向而行,后來棕色馬追上黃色馬了。因此兩馬所跑路程是相同的,但由于黃色馬先跑了1秒,所以就產(chǎn)生了路程差,那么這個問題就和前面例1一樣了。也可以這樣想:棕色馬的路程=黃色馬的路程+相隔距離。
    解:設(shè)x秒后,棕色馬追上黃色馬,根據(jù)題意,得6x=5x+5解得x=5答:5秒后,棕色馬可以追上黃色馬。
    小結(jié):針對本題進行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)。
    中的同地不同時問題。
    歸納小結(jié):列方程解應(yīng)用題的一般步驟:
    審—通過審題明確已知量、未知量,找出等量關(guān)系;
    設(shè)—設(shè)出合理的未知數(shù)(直接或間接);
    列—依據(jù)找到的等量關(guān)系,列出方程;
    解—求出方程的解;
    驗—檢驗求出的值是否為方程的解,并檢驗是否符合實際問題;
    答—注意單位名稱。
    解答由學生完成。
    本節(jié)知識歸納:
    1、追及問題的特點是同向而行,在直線運動中兩者路程之差等于兩者間的距離;
    2、而在圓周運動中,若同時同地同向出發(fā),則二者路程之差等于跑道的周長。
    3、用示意圖輔助分析數(shù)量間的關(guān)系便于我們列方程。
    四、作業(yè)布置:(見補充題)。
    通過本節(jié)課的學習,使學生進一步掌握列一元一次方程解應(yīng)用題的方法和步驟,并能熟練尋找追及問題中的等量關(guān)系,列出方程,解決追及問題。
    解一元一次方程的教案設(shè)計篇十三
    3.使學生初步養(yǎng)成正確思考問題的良好習慣.。
    一、從學生原有的認知結(jié)構(gòu)提出問題。
    為了回答上述這幾個問題,我們來看下面這個例題.。
    例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
    (首先,用算術(shù)方法解,由學生回答,教師板書)。
    解法1:(4+2)÷(3-1)=3.。
    答:某數(shù)為3.。
    (其次,用代數(shù)方法來解,教師引導,學生口述完成)。
    解法2:設(shè)某數(shù)為x,則有3x-2=x+4.。
    解之,得x=3.。
    答:某數(shù)為3.。
    二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟。
    師生共同分析:
    1.本題中給出的已知量和未知量各是什么?
    2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運出重量=剩余重量)。
    上述分析過程可列表如下:
    解:設(shè)原先有x千克面粉,那么運出了15%x千克,由題意,得。
    x-15%x=42500,
    所以x=50000.。
    答:原先有50000千克面粉.。
    (還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)。
    (2)例2的解方程過程較為簡捷,同學應(yīng)注意模仿.。
    依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結(jié)的狀況,教師總結(jié)如下:
    (2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);
    (4)求出所列方程的解;
    (仿照例2的分析方法分析本題,如學生在某處感到困難,教師應(yīng)做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴格規(guī)范書寫格式)。
    解:設(shè)第一小組有x個學生,依題意,得。
    3x+9=5x-(5-4),
    解這個方程:2x=10,
    所以x=5.。
    其蘋果數(shù)為3×5+9=24.。
    答:第一小組有5名同學,共摘蘋果24個.。
    學生板演后,引導學生探討此題是否可有其他解法,并列出方程.。
    (設(shè)第一小組共摘了x個蘋果,則依題意,得)。
    三、課堂練習。
    2.我國城鄉(xiāng)居民1988年末的儲蓄存款到達3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的儲蓄存款。
    3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).。
    四、師生共同小結(jié)。
    首先,讓學生回答如下問題:
    1.本節(jié)課學習了哪些資料?
    3.在運用上述方法和步驟時應(yīng)注意什么?
    依據(jù)學生的回答狀況,教師總結(jié)如下:
    (2)以上步驟同學應(yīng)在理解的基礎(chǔ)上記憶.。
    五、作業(yè)。
    1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
    2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
    5.把1400獎金分給22名得獎?wù)?,一等獎每?00元,二等獎每人50元.求得到一等獎與二等獎的人數(shù)。
    解一元一次方程的教案設(shè)計篇十四
    (一)教材的地位和作用。
    (二)教材的重難點。
    二、教學目標分析。
    (一)知識技能目標。
    1.目標內(nèi)容。
    (2)培養(yǎng)學生建立方程模型來分析、解決實際問題的能力以及探索精神、合作意識.。
    2.目標分析。
    (二)過程目標。
    1.目標內(nèi)容。
    在活動中感受方程思想在數(shù)學中的作用,進一步增強應(yīng)用意識.。
    2.目標分析。
    (三)情感目標。
    1.目標內(nèi)容。
    2.目標分析。
    三、教材處理與教法分析。
    解一元一次方程的教案設(shè)計篇十五
    3、培養(yǎng)學生根據(jù)問題尋找等量關(guān)系、根據(jù)等量關(guān)系列出方程的能力。
    教學重點。
    2、能驗證一個數(shù)是否是一個方程的解。
    教學難點。
    尋找問題中的等量關(guān)系,列出方程。
    教學過程。
    一、情景誘導。
    如果設(shè)大象的體重為xt,藍鯨的體重應(yīng)如何表示呢?怎樣解決這個問題呢?(學生思考并回答:25x-1=124,)我們把這個式子給它起個名字,叫一元一次方程,這就是我們今天要學習的一元一次方程(板書課題),那——什么叫做一元一次方程——呢?,請同學們帶著這些問題,閱讀課本114頁-115頁練習前的內(nèi)容,對照課本找出自學提綱里問題的答案。
    要求:先完成得請你幫幫沒有完成的同學,不會做的同學請教會做的同學。
    二、自學指導。
    學生自學課本,并完成自學提綱。老師可以先進行板書準備,再到學生中進行巡視指導,掌握學生的學習狀況,為展示歸納做準備。
    附:自學提綱:
    1、什么是方程?請舉出1—2個例子。未知數(shù)通常用什么表示?
    3、在課本“例1”中,你知道這些方程中等號兩邊各表示什么意思嗎?
    4、什么是方程的解?x=1和x=-1中哪一個是方程x+3=2的解?為什么?
    三、展示歸納。
    1、請有問題的同學逐個回答自學提綱中的問題,生說師寫;
    2、發(fā)動學生進行評價、補充、完善;
    3、教師根據(jù)展示情況進行必要的講解和強調(diào)。
    四、變式練習。
    1、2題口答,要求說理由;其它各題,先讓學生獨立完成,教師做必要的板書準備后,巡回指導,了解情況,再讓學生匯報結(jié)果,并請同學評價、完善,然后教師根據(jù)需要進行重點強調(diào)。
    附:變式練習。
    2、請你說出一元一次方程2x=4的解是———,解是x=-2的一元一次方程:。
    3、練習本每本0.8元,小明拿了10元錢買了y本,找回4.4元,列方程是。
    4、設(shè)某數(shù)為x,根據(jù)題意列出方程,不必求解:
    (1)某數(shù)比它的2倍小3;
    (2)某數(shù)與5的差比它的2倍少11;
    (3)把某數(shù)增加它的10%后恰為80.
    6、若x=1是方程kx-1=0的解,則k=.
    五、課堂小結(jié)。
    通過本節(jié)課的學習你學到了什么?還有沒有要提醒同學們注意的?
    六、布置作業(yè)。
    課本83頁習題3.1第1題。
    解一元一次方程的教案設(shè)計篇十六
    2.掌握等式的性質(zhì),理解掌握移項法則。
    3.會用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。
    5.初步學會用方程的思想思考問題和解決問題的一些基本方法,學會用數(shù)學的方法觀察、分析、歸納和總結(jié)現(xiàn)實情境中的實際問題。
    重點。
    難點重點:解方程、用方程解決實際問題。
    難點:用方程解決實際問題。
    教學流程。
    師生活動時間復(fù)備標注。
    二、典例回顧。
    (1).x=5(2).x2+3x=2(3).2x+3y=5。
    判斷下列x值是否為方程3x-5=6x+4的解.
    (1).x=3(2)x=3。
    4.解決問題的基本步驟。
    解:設(shè)先安排x人工作4小時。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:
    去分母,得4x+8(x+2)=40。
    去括號,得4x+8x+16=40。
    移項及合并,得12x=24。
    系數(shù)化為1,得x=2。
    答:應(yīng)先安排2名工人工作4小時.
    注意:工作量=人均效率人數(shù)時間。
    本題的關(guān)鍵是要人均效率與人數(shù)和時間之間的數(shù)量關(guān)系.
    三、基礎(chǔ)訓練:課本第113頁第1.2.3題.
    四、綜合訓練:課本113頁至114頁4.5.6.7.8。
    五、達標訓練:3.7。
    五、課堂小結(jié):收獲了哪些?還有哪些需要再學習?
    學生作業(yè)。
    課件出示問題明確知識要點。
    學生練習基礎(chǔ)上,教師點撥。
    解一元一次方程的教案設(shè)計篇十七
    教學目標:
    1.知識目標。
    (1)通過運用算術(shù)和列方程兩種方法解決實際問題的過程,使學生體會到列方程解應(yīng)用題更簡潔明了,省時省力。
    (2)掌握去括號解一元一次方程的方法,能熟練求解一元一次方程(數(shù)字系數(shù)),并判別解的合理性。
    2.能力目標。
    (1)通過學生觀察、獨立思考等過程,培養(yǎng)學生歸納、概括的能力;。
    (2)進一步讓學生感受到并嘗試尋找不同的解決問題的方法。
    3.情感目標:
    (2)培養(yǎng)學生嚴謹?shù)乃季S品質(zhì);。
    (3)通過學生間的互相交流、溝通,培養(yǎng)他們的協(xié)作意識。
    教學重點:1.弄清列方程解應(yīng)用題的思想方法;。
    教學難點:1.括號前面是“-”號,去括號時,應(yīng)如何處理,括號前面是“-”號的,去括號時,括號內(nèi)的各項要改變符號。
    2.在小學根深蒂固用算術(shù)方法解應(yīng)用題的基礎(chǔ)上,讓學生逐步樹立列方程解應(yīng)用題的思想。
    教學過程:
    一、創(chuàng)設(shè)情境,提出問題。
    問題1:我手中有6、x、30三張卡片,請同學們用他們編個一元一次方程,比一比看誰編的又快又對。
    學生思考,根據(jù)自己對一元一次方程的理解程度自由編題。
    問題2:解方程5(x-2)=8。
    解:5x=8+2,x=2,看一下這位同學的解法對嗎?相信學完本節(jié)內(nèi)容后,就知道其中的奧秘。
    (教學說明:給學生充分的交流空間,在學習過程中體會“取長補短”的涵義,以求在共同學習中得到進步,同時提高語言組織能力及邏輯推理能力)。
    二、探索新知。
    1.情境解決。
    問題1:設(shè)上半年每月平均用電x度,則下半年每月平均用電________度;上半年共用電__________度,下半年共用電_________度。
    問題2:教師引導學生尋找相等關(guān)系,列出方程。
    根據(jù)全年用電15萬度,列方程,得6x+6(x-2000)=150000.
    問題3:怎樣使這個方程向x=a的形式轉(zhuǎn)化呢?
    6x+6(x-2000)=150000。
    去括號。
    6x+6x-12000=150000。
    移項。
    6x+6x=150000+12000。
    合并同類項。
    12x=162000。
    系數(shù)化為1。
    x=13500。
    問題4:本題還有其他列方程的方法嗎?
    用其他方法列出的方程應(yīng)怎樣解?
    設(shè)下半年每月平均用電x度,則6x+6(x+2000)=150000.(學生自己進行解題)。
    歸納結(jié)論:方程中有帶括號的式子時,根據(jù)乘法分配律和去括號法則化簡。(括號前面是“+”號,把“+”號和括號去掉,括號內(nèi)各項都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內(nèi)各項都改變符號。)。
    去括號時要注意:(1)不要漏乘括號內(nèi)的任何一項;(2)若括號前面是“-”號,記住去括號后括號內(nèi)各項都變號。
    例題:解方程3x-7(x-1)=3-2(x+3)。
    解:去括號,得3x-7x+7=3-2x-6。
    移項,得3x-7x+2x=3-6-7。
    合并同類項,得-2x=-10。
    系數(shù)化為1,得x=5。
    三、課堂練習。
    1.課本97頁練習。
    四、總結(jié)反思。
    1.本節(jié)課你學習了什么?
    2.通過今天的學習,你想進一步探究的問題是什么?
    (由學生自主歸納,最后老師總結(jié))。
    四、作業(yè)布置。
    1.課本102頁習題3.3第1、4題。
    2.配套資料相關(guān)練習。
    解一元一次方程的教案設(shè)計篇十八
    (二).過程與方法。
    通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學模型的作用.
    (三).情感態(tài)度與價值觀。
    開展探究性學習,發(fā)展學習能力.
    二、重、難點與關(guān)鍵。
    (一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.
    (三).關(guān)鍵:抓住實際問題中的數(shù)量關(guān)系建立方程模型.
    三、教學過程。
    (一)、復(fù)習提問。
    1.敘述等式的兩條性質(zhì).
    2.解方程:4(x-)=2.
    解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:
    x-=。
    兩邊都加,得x=.
    解法2:利用乘法分配律,去掉括號,得:
    4x-=2。
    兩邊同加,得4x=。
    兩邊同除以4,得x=.
    (二)、新授。
    公元825年左右,中亞細亞數(shù)學家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題.
    分析:設(shè)前年這個學校購買了x臺計算機,已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺.
    題目中的相等關(guān)系為:三年共購買計算機140臺,即。
    前年購買量+去年購買量+今年購買量=140。
    列方程:x+2x+4x=140。
    如何解這個方程呢?
    2x表示2x,4x表示4x,x表示1x.
    根據(jù)分配律,x+2x+4x=(1+2+4)x=7x.
    這樣就可以把含x的項合并為一項,合并時要注意x的系數(shù)是1,不是0.
    下面的框圖表示了解這個方程的具體過程:
    x+2x+4x=140。
    合并。
    7x=140。
    系數(shù)化為1。
    x=20。
    由上可知,前年這個學校購買了20臺計算機.
    上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù).
    例:某班學生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù).
    分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人.
    問:本題中相等關(guān)系是什么?
    答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.
    解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:
    2x+3x+5x=60。
    合并,得10x=60。
    系數(shù)化為1,得x=6。
    所以2x=12,3x=18,5x=30。
    答:甲組12人,乙組18人,丙組30人.
    請同學們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.
    (三)、鞏固練習。
    1.課本第89頁練習.
    (1)x=3.
    (2)可以先合并,也可以先把方程兩邊同乘以2.
    具體解法如下:
    解法1:合并,得(+)x=7。
    即2x=7。
    系數(shù)化為1,得x=。
    解法2:兩邊同乘以2,得x+3x=14。
    合并,得4x=14。
    系數(shù)化為1,得x=。
    (3)合并,得-2.5x=10。
    系數(shù)化為1,得x=-4。
    2.補充練習.
    (2)某學生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)。
    解:(1)設(shè)每份為x個,則黑色皮塊有3x個,白色皮塊有5x個.
    列方程3x+2x=32。
    合并,得8x=32。
    系數(shù)化為1,得x=4。
    黑色皮塊為43=12(個),白色皮塊有54=20(個).
    (2)設(shè)全書共有x頁,那么第一天讀了(x+2)頁,第二天讀了(x-1)頁.
    本問題的相等關(guān)系是:第一天讀的`量+第二天讀的量+還剩23頁=全書頁數(shù).
    列方程:x+2+x-1+23=x.
    四、課堂小結(jié)。
    初學用代數(shù)方法解應(yīng)用題,感到不習慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點,本節(jié)課的兩個問題的相等關(guān)系都是:總量=各部分量的和.這是一個基本的相等關(guān)系.
    合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意x或-x的系數(shù)分別是1,-1,而不是0.
    五、作業(yè)布置。
    1.課本第93頁習題3.2第1、3(1)、(2)、4、5題.
    2.選用課時作業(yè)設(shè)計.
    合并同類項習題課(第2課時)。
    1.(1)3x+3-2x=7;(2)x+x=3;。
    (3)5x-2-7x=8;(4)y-3-5y=;。
    (5)-=5;(6)0.6x-x-3=0.
    二、解答題.
    3.甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時行駛60千米,b車每小時行駛48千米.
    (1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
    4.甲、乙二人從a地去b地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達b地,求a、b兩地之間的距離.
    答案:。
    二、2.705人,設(shè)育紅小學1995年學生人數(shù)為x人,列方程320=x-150.
    3.(1)4小時,設(shè)出發(fā)后x小時相遇,列方程60x+48x=460.
    (2)3小時,設(shè)b車開出后x小時兩車相遇,列方程60+60x+48x=460.
    4.3千米,設(shè)a、b兩地間的距離為x千米,-=.
    5.1分鐘,設(shè)經(jīng)過x分鐘兩人首次相遇,列方程550x-250x=400.
    解一元一次方程的教案設(shè)計篇十九
    2.掌握等式的性質(zhì),理解掌握移項法則。
    3.會用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。
    5.初步學會用方程的思想思考問題和解決問題的一些基本方法,學會用數(shù)學的方法觀察、分析、歸納和總結(jié)現(xiàn)實情境中的實際問題。
    難點重點:
    解方程、用方程解決實際問題。
    難點:用方程解決實際問題。
    教學流程。
    二、典例回顧。
    (1).x=5(2).x2+3x=2(3).2x+3y=5。
    判斷下列x值是否為方程3x-5=6x+4的解.
    (1).x=3(2)x=3。
    4.解決問題的基本步驟。
    解:設(shè)先安排x人工作4小時。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:
    去分母,得4x+8(x+2)=40。
    去括號,得4x+8x+16=40。
    移項及合并,得12x=24。
    系數(shù)化為1,得x=2。
    答:應(yīng)先安排2名工人工作4小時.
    注意:工作量=人均效率人數(shù)時間。
    本題的關(guān)鍵是要人均效率與人數(shù)和時間之間的數(shù)量關(guān)系.
    三、基礎(chǔ)訓練:課本第113頁第1.2.3題.
    四、綜合訓練:課本113頁至114頁4.5.6.7.8。
    五、達標訓練:3.7。
    六、課堂小結(jié):收獲了哪些?還有哪些需要再學習?
    解一元一次方程的教案設(shè)計篇二十
    課程改革的目的之一是促進學習方式的轉(zhuǎn)變,加強學習的主動性和探究性,引導學生從身邊的問題研究開始,主動尋找“現(xiàn)實的、有意義的、富有挑戰(zhàn)性的”學習材料,并更多地進行數(shù)學活動和互相交流.在主動學習、探究學習的過程中獲得知識,培養(yǎng)能力,體會數(shù)學思想方法.使學生經(jīng)歷建立一元一次方程模型并應(yīng)用它解決實際問題的過程,體會方程的作用,掌握運用方程解決簡單問題的方法,提高分析問題、解決問題的能力,增強創(chuàng)新精神和應(yīng)用數(shù)學的意識.
    本節(jié)的重點是建立實際問題的方程模型,通過探究活動,可以進一步體驗一元一次方程與實際生活的密切關(guān)系,加強數(shù)學建模思想,培養(yǎng)學生運用一元一次方程分析和解決實際問題的能力.由于本節(jié)問題的背景和表達都比較貼近生活實際,所以在探究過程中正確建立方程是主要難點,突破難點的關(guān)鍵是弄清問題的背景,分析清楚有關(guān)數(shù)量關(guān)系,特別是找出可以作為列方程依據(jù)的主要相等關(guān)系.切實提高學生利用方程解決實際問題的能力.
    從“課程標準”看,在前面學段中已有關(guān)于簡單方程的內(nèi)容,學生已經(jīng)對方程有初步的認識,會用方程表示簡單情境中的數(shù)量關(guān)系,會解簡單的方程.即對于方程的認識已經(jīng)經(jīng)歷了入門階段,具有一定的感性認識基礎(chǔ).但學生在探究過程中遇到困難時,教師應(yīng)啟發(fā)誘導,設(shè)計必要的鋪墊,讓學生在經(jīng)歷過自己的努力來克服困難的過程中體驗如何進行探究活動,而不是代替他們思考,不要過早給出答案,應(yīng)鼓勵探究多種不同的分析問題和解決問題的方法,使探究過程活躍起來,在這樣的氛圍中可以更好地激發(fā)學生積極思考,使其獲得更大的收獲.
    知識與技能:
    2.會通過移項、合并同類項解一元一次方程.
    1.會將實際問題轉(zhuǎn)化為數(shù)學問題,通過列方程解決問題.
    2.體會數(shù)學應(yīng)用的價值.
    會設(shè)未知數(shù),并能利用問題中的相等關(guān)系列方程,對于列出的方程能用“移項”等方法來解決手機收費問題,進一步了解用方程解決實際問題的基本過程.
    通過學習,使學生更加關(guān)注生活,增強用數(shù)學的意識,從而激發(fā)其學習數(shù)學的熱情.
    難點:將實際問題轉(zhuǎn)化為數(shù)學問題,通過列方程解決問題.
    采用探究、合作、交流等教學方式完成教學.
    采用多種媒體輔助教學.
    一、創(chuàng)設(shè)情境,導入新課(觀看大屏幕)。
    二、學習新課,探究新知。
    展現(xiàn)問題:
    小明的爸爸新買了一部手機,他從電信公司了解到現(xiàn)有兩種移動電話計費方式:
    他正為選擇哪一種方式猶豫呢?你能幫助他做出選擇嗎?
    (一)算一算:
    一個月通話200分鐘,按兩種計費方式各需交費多少元?300分鐘呢?
    通話時間,全球通,神州行。
    [設(shè)計意圖:這里用表格形式給出答案,便于學生對后面問題的分析.]。
    (二)議一議:
    (1)累計通話t分鐘,用“全球通”收費多少元?
    (2)累計通話t分鐘,用“神州行”收費多少元?
    (3)對于某個通話時間,兩種計費方式的收費會一樣嗎?
    (三)解一解:
    設(shè)累計通話t分鐘,兩種計費方式的收費會一樣.
    則:
    0.6t=50+0.4t,
    移項,得0.6t-0.4t=50,
    合并,得0.2t=50,
    系數(shù)化為1,得t=250.
    由上可知,如果一個月通話250分鐘,那么兩種計費方式的收費相同.
    (四)想一想:
    怎樣選擇計費方式更省錢呢?(可分組交流)如果一個月內(nèi)累計通話時間不足250分鐘,那么選擇“神州行”收費少;如果一個月內(nèi)累計通話時間超過250分鐘,那么選擇“全球通”收費少.
    (五)試一試:
    根據(jù)以上解題過程,你能為小明的爸爸做選擇了嗎?如果小明的爸爸活動較多,與外界的聯(lián)系一定不少,手機使用時間肯定多于250分鐘,那么,他應(yīng)該選擇“全球通”,否則選擇“神州行”.
    (六)猜一猜:
    假如你爸爸也遇到同樣問題,請為你爸爸作出選擇?
    三、鞏固訓練,能力提升。
    1.方程6x+a=12與3x+1=6的解相同,則a=()。
    a.1b.2c.3d.4。
    2.某蔬菜生產(chǎn)基地10月份上市青菜x萬千克,11月份上市青菜是10月份的4倍還多5萬千克,那么兩個月份共上市青菜()萬千克。
    a.3x+3b.4x+4。
    c.5x+5d.6x+6。
    3.一列火車長為150米,以每秒15米的速度通過600米隧道,從火車進入隧道算起到這列火車完全通過隧道所需時間是()秒。
    a.30b.40c.50d.60。
    4.有一根竹竿和一條繩子,竹竿比繩子短2米,把繩子對折后比竹竿短1.5米,則竹竿長()米.
    a.3b.4c.5d.6。
    5.三個數(shù)的比是5∶6∶7,它們的和是198,則這三個數(shù)分別是()。
    a.33、44、55b.44、55、66。
    c.55、66、77d.66、77、88。
    四、知識回顧,歸納總結(jié)。
    1.不同層次學生對本節(jié)知識認知程度(可談收獲及感受);
    2.用一元一次方程分析和解決實際問題的基本過程(師生共同總結(jié))。
    五、布置作業(yè),鞏固新知。
    1.基礎(chǔ)作業(yè):教材84頁第4題,85頁第10題。
    2.課外探究:某學校在暑假將帶領(lǐng)該校“科技能手”去北京旅游,甲旅行社說:“如果校長買全票,則其余學生可以享受半價優(yōu)惠”;乙旅行社說:“包括校長在內(nèi),全部按全票價6折優(yōu)惠”;若全票價為40元.
    (1)如果學生為3人或7人時,兩個旅行社各收費多少?
    (2)學生數(shù)為多少時,兩家旅行社的收費一樣?
    [設(shè)計意圖:及時了解學生學習效果,調(diào)整教學安排,通過課后探究,獨立思考,自我評價學習效果,使得基礎(chǔ)知識和基本技能在頭腦中留下較深刻的印象。
    解一元一次方程的教案設(shè)計篇二十一
    (二)過程與方法。
    通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學模型的作用。
    (三)情感態(tài)度與價值觀。
    開展探究性學習,發(fā)展學習能力。
    (一)重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程。
    (三)關(guān)鍵:抓住實際問題中的數(shù)量關(guān)系建立方程模型。
    (一)、復(fù)習提問。
    1、敘述等式的兩條性質(zhì)。
    2、解方程:4(x—)=2。
    解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:
    x—=。
    兩邊都加,得x=。
    解法2:利用乘法分配律,去掉括號,得:
    4x—=2。
    兩邊同加,得4x=。
    兩邊同除以4,得x=。
    (二)、新授。
    公元825年左右,中亞細亞數(shù)學家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程。這本書的拉丁文譯本取名為《對消與還原》。對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題。
    分析:設(shè)前年這個學校購買了x臺計算機,已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺。
    題目中的相等關(guān)系為:三年共購買計算機140臺,即。
    前年購買量+去年購買量+今年購買量=140。
    列方程:x+2x+4x=140。
    如何解這個方程呢?
    2x表示2x,4x表示4x,x表示1x。
    根據(jù)分配律,x+2x+4x=(1+2+4)x=7x。
    這樣就可以把含x的項合并為一項,合并時要注意x的系數(shù)是1,不是0。
    下面的框圖表示了解這個方程的具體過程:
    x+2x+4x=140。
    合并。
    7x=140。
    系數(shù)化為1。
    x=20。
    由上可知,前年這個學校購買了20臺計算機。
    上面解方程中合并起了化簡作用,把含有未知數(shù)的`項合并為一項,從而達到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù)。
    例:某班學生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù)。
    分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人。
    問:本題中相等關(guān)系是什么?
    答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60。
    解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:
    2x+3x+5x=60。
    合并,得10x=60。
    系數(shù)化為1,得x=6。
    所以2x=12,3x=18,5x=30。
    答:甲組12人,乙組18人,丙組30人。
    請同學們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60。
    (三)、鞏固練習。
    1、課本第89頁練習。
    (1)x=3、
    (2)可以先合并,也可以先把方程兩邊同乘以2、
    具體解法如下:
    解法1:合并,得(+)x=7。
    即2x=7。
    系數(shù)化為1,得x=。
    解法2:兩邊同乘以2,得x+3x=14。
    合并,得4x=14。
    系數(shù)化為1,得x=。
    (3)合并,得—2、5x=10。
    系數(shù)化為1,得x=—4。
    2、補充練習。
    (2)某學生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)。
    解:(1)設(shè)每份為x個,則黑色皮塊有3x個,白色皮塊有5x個。
    列方程3x+2x=32。
    合并,得8x=32。
    系數(shù)化為1,得x=4。
    黑色皮塊為43=12(個),白色皮塊有54=20(個)。
    (2)設(shè)全書共有x頁,那么第一天讀了(x+2)頁,第二天讀了(x—1)頁。
    本問題的相等關(guān)系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數(shù)。
    列方程:x+2+x—1+23=x。
    四、課堂小結(jié)。
    初學用代數(shù)方法解應(yīng)用題,感到不習慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點,本節(jié)課的兩個問題的相等關(guān)系都是:總量=各部分量的和。這是一個基本的相等關(guān)系。
    合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意x或—x的系數(shù)分別是1,—1,而不是0。
    五、作業(yè)布置。
    1、課本第93頁習題3、2第1、3(1)、(2)、4、5題。
    2、選用課時作業(yè)設(shè)計。
    合并同類項習題課(第2課時)。
    1、(1)3x+3—2x=7;(2)x+x=3;
    (3)5x—2—7x=8;(4)y—3—5y=;
    (5)—=5;(6)0。6x—x—3=0。
    二、解答題。
    3、甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時行駛60千米,b車每小時行駛48千米。
    (1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
    4、甲、乙二人從a地去b地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達b地,求a、b兩地之間的距離。
    答案:
    二、2、705人,設(shè)育紅小學1995年學生人數(shù)為x人,列方程320=x—150。
    3、(1)4小時,設(shè)出發(fā)后x小時相遇,列方程60x+48x=460。
    (2)3小時,設(shè)b車開出后x小時兩車相遇,列方程60+60x+48x=460。
    4、3千米,設(shè)a、b兩地間的距離為x千米,—=。
    5、1分鐘,設(shè)經(jīng)過x分鐘兩人首次相遇,列方程550x—250x=400。
    解一元一次方程的教案設(shè)計篇二十二
    (1)本節(jié)課是七年級第七章《用一元一次方程解決實際問題》的第3課時,主要學習用一元一次方程解決路程問題。通過上兩節(jié)課的學習,學生已經(jīng)初步掌握了用一元一次方程解決實際問題的方法,本節(jié)課在此基礎(chǔ)上,結(jié)合路程問題,進一步學習如何從實際問題中分析數(shù)量關(guān)系,用一元一次方程解決實際問題。對學習函數(shù)、不等式與其他方程解實際問題都具有重要的意義和作用。
    2、教學目標(認知、能力、情感)。
    (1)知識目標。
    能借助“列表”的方法審題、找等量關(guān)系,進而用一元一次方程解決路程問題。
    (2)能力目標。
    進一步培養(yǎng)學生分析問題,解決實際問題的能力。
    (3)情感目標。
    通過實際問題的解決,讓學生認識數(shù)學的價值和學習數(shù)學的必要性;通過問題情境的設(shè)置,讓學生熱愛生活、熱愛體育。
    3、教學重點:
    引導學生經(jīng)歷借助“列表法”找等量關(guān)系,用一元一次方程模型解決路程問題的過程。
    知識、方法重要,其獲取過程更重要,在教學中不能只重結(jié)果而忽視過程中學生經(jīng)歷的觀察、分析、交流等活動,不然學生就不具備主動建構(gòu)知識的能力和持續(xù)發(fā)展的動力,只會成為解題工具,所以我把方法獲取過程作為本課的重點。
    4、教學難點。
    掌握用列表的方法審清題意,抽象具體問題中的數(shù)學背景,建立數(shù)量間的等量關(guān)系。
    用一元一次方程解決實際問題的關(guān)鍵是找到等量關(guān)系。體會“列表法”在把握路程問題等量關(guān)系的優(yōu)越性,進而掌握這種方法是學生感到困難的,所以把它是本節(jié)課的難點。
    5、教法學法。
    優(yōu)選教法。
    本節(jié)課主要采用“學生主體性學習”的教學模式。通過多媒體創(chuàng)設(shè)情境,激發(fā)學生興趣,問題讓學生想,設(shè)計問題讓學生做,方法技巧讓學生歸納。教師的作用在于組織、引導、點撥,促進學生主動探索,積極思考,歸納,充分發(fā)揮學生的主體作用,讓學生真正成為課堂的主人.
    指導學法。
    學生不是被動的接受信息,而是在“結(jié)合具體情景、設(shè)計解決策略、與他人合作交流、自我反思”的過程中學習。
    我把本節(jié)課設(shè)計為5個環(huán)節(jié):
    1、情境引入相遇問題,初步感知列表方法。
    通過救人情境的創(chuàng)設(shè),既對學生已有知識的檢測,又激發(fā)學生解決問題的興趣,在不知不覺中引入路程問題——相遇問題。
    引入問題后,學生獨立思考如何確定問題中的等量關(guān)系,然后課堂交流理清題意、找到等量關(guān)系的方法(畫圖或列表)。在此基礎(chǔ)上,引導學生探究如何用列表的方法理清題目中的數(shù)量,讓學生初步感受“列表”表示數(shù)量關(guān)系的優(yōu)越性。
    本環(huán)節(jié)讓學生在獨立思考、交流探討中感受“列表法”,讓學生參與的知識獲取過程,真正體現(xiàn)了學生是數(shù)學學習的主人。
    2、感悟故事中的追及問題,拓展提高對列表的認識。
    以同學們熟悉的故事為背景,配以形象生動的動畫,引入路程問題——追擊問題。然后讓學生應(yīng)用列表法表示追擊問題的數(shù)量關(guān)系,思考解決問題的多種方法(根據(jù)不同等量關(guān)系,設(shè)不同未知數(shù),列出不同的方程),進一步體會“列表”表示數(shù)量關(guān)系的威力。
    教學過程不能簡單地重復(fù),學習過程也不能使機械地模仿,而應(yīng)在螺旋上升的過程中不斷提高。由相遇問題到追擊問題,由一種方法到兩種方法,就是這一理念的直接體現(xiàn)。學生在應(yīng)用“列表”法的過程中,提高對“列表”法表示數(shù)量關(guān)系優(yōu)越性的認識。
    3、回歸現(xiàn)實,梳理新知。
    本環(huán)節(jié)讓學生應(yīng)用所學知識解決現(xiàn)實生活中的問題。
    本題以“奧運”為背景,不僅反映了數(shù)學來源于實際生活,同時也體現(xiàn)了知識的實用價值,而且解決問題的過程也是一個“數(shù)學化”的過程。這一環(huán)節(jié)既對路程問題進行了鞏固練習又滲透了愛國主義教育。
    4、合作互動,深化提高。
    編寫一道應(yīng)用題,使它的題意適合一元一次方程60x=40x+100,要求題意清楚、聯(lián)系生活、符合實際、有一定的創(chuàng)意。
    本環(huán)節(jié)讓學生以小組為單位編寫題目。
    前面的環(huán)節(jié)是由實際問題到數(shù)學模型,現(xiàn)在是由數(shù)學模型到實際問題,不僅有利于學生獲取知識,而且也有利于學生展示聰明才智、形成獨特個性和發(fā)展創(chuàng)新。以小組為單位編寫題目不僅可以發(fā)揮學生的集體智慧,而且還可以培養(yǎng)他們的合作和團隊意識。
    5、暢談收獲,內(nèi)化提高。
    這節(jié)課體驗到了什么?
    讓學生本節(jié)學習收獲和感受,全體同學交流。
    對學生數(shù)學學習的既要關(guān)注學生數(shù)學學習的水平,更要關(guān)注他們在數(shù)學活動中所表現(xiàn)出來的情感與態(tài)度,課后設(shè)計的暢談收獲,把課堂還給了學生,他們收獲,交流疑問,當堂消化本節(jié)內(nèi)容,讓每一個學生都體驗到成功的喜悅,學生的主體地位得以充分體現(xiàn)。
    (1)本節(jié)課在情境的創(chuàng)設(shè)上,突出了現(xiàn)實性、趣味性和挑戰(zhàn)性,學生喜聞樂見,使他們能快速進入問題的解決。
    (2)讓學生經(jīng)歷實踐—–認識——再實踐——再認識的過程,在這個過程中,學生分析問題和解決問題的能力螺旋上升,符合學生學習數(shù)學的心理規(guī)律。