數(shù)學(xué)教案-多邊形的內(nèi)角和(模板22篇)

字號:

    教案的編寫需要綜合考慮學(xué)生的實(shí)際情況、學(xué)科的特點(diǎn)和教學(xué)的目標(biāo)要求。教案的編寫需要注意教學(xué)資源的充分利用和合理安排。通過閱讀下面的教案范文,你可以了解更多關(guān)于教案的寫作和應(yīng)用。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇一
    難點(diǎn):探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
    五、教具、學(xué)具。
    教具:多媒體課件。
    學(xué)具:三角板、量角器。
    六、教學(xué)媒體:大屏幕、實(shí)物投影。
    七、教學(xué)過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
    在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
    接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學(xué)生先獨(dú)立思考每個問題再分組討論。
    關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學(xué)生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180?的和是540?。
    方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結(jié)果得540?。
    方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結(jié)果得540?。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結(jié)果得540?。
    師:你真聰明!做到了學(xué)以致用。
    交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
    得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    (3)從多邊形一個頂點(diǎn)引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點(diǎn)引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實(shí)際應(yīng)用,優(yōu)勢互補(bǔ)。
    (2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學(xué)生自己歸納總結(jié):
    2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習(xí)冊第93頁1、2、3。
    八、教學(xué)反思:
    1、教的轉(zhuǎn)變。
    本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗(yàn)發(fā)現(xiàn)的樂趣。
    2、學(xué)的轉(zhuǎn)變。
    學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉(zhuǎn)變。
    整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇二
    (1)知識結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因?yàn)槿切蔚娜齻€頂點(diǎn)確定一個平面,所以三個頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    四邊形的概念。
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識。請同學(xué)們回憶一下這些圖形的概念。找學(xué)生說出四種幾何圖形的概念,教師作評價。
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或?yàn)閷W(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時針或逆時針的順序。
    練習(xí):課本124頁1、2題。
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了。
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理。
    定理:四邊形的內(nèi)角和等于.
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    證明:(1)(四邊形的內(nèi)角和等于),
    練習(xí):
    1.課本124頁3題。
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理。
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
    作業(yè):課本130頁2、3、4題。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇三
    設(shè)計理念:。
    一教材分析:。
    從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時,對今后學(xué)習(xí)的鑲嵌,正多邊形和圓等都是非常重要的。知識的聯(lián)系性比較強(qiáng)。因此,本節(jié)課具在承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律。再從本節(jié)的教學(xué)理念看,編者從簡單的幾何圖形入手,蘊(yùn)含了把復(fù)雜問題轉(zhuǎn)化為簡單問題,化未知為已知的思想。充分體現(xiàn)了人人學(xué)有價值的數(shù)學(xué),這一新課程標(biāo)準(zhǔn)精神。
    二、學(xué)情分析:。
    三、教學(xué)目標(biāo)的確定:。
    3、通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過渡到論證幾何。
    四、重難點(diǎn)的確立:。
    既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點(diǎn)是探究多邊形的內(nèi)角和的公式。由于七年級學(xué)生初學(xué)幾何,所以學(xué)生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點(diǎn)是探究多邊形內(nèi)角和公式推導(dǎo)的基本思想,而解決問題的關(guān)鍵是教師恰當(dāng)?shù)囊龑?dǎo)。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇四
    過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標(biāo):養(yǎng)成實(shí)事求是的科學(xué)態(tài)度。
    講解法、練習(xí)法、分小組討論法。
    結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個教學(xué)環(huán)節(jié):導(dǎo)入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1.導(dǎo)入新知。
    首先是導(dǎo)入新知環(huán)節(jié),我會引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的。
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學(xué)生回顧舊知識的同時,引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
    2.生成新知。
    接下來,進(jìn)入生成新知環(huán)節(jié),我會引導(dǎo)學(xué)生將四邊形分成兩個三角形來求內(nèi)角和,由此。
    得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個頂點(diǎn)出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個小組來回答他們討論的結(jié)果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
    驗(yàn)證:七邊形驗(yàn)證。
    在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3.深化新知。
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求。
    內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個頂點(diǎn)出發(fā),然后用公式驗(yàn)證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強(qiáng)調(diào)我們分隔的一個原則。
    本環(huán)節(jié)的設(shè)計主要是對多變形內(nèi)角和的一個深入了解,給學(xué)生一個內(nèi)化的過程,同時引導(dǎo)學(xué)生不要將知識學(xué)死了,要活學(xué)活用,從多個角度來思考問題,解決問題。
    4.鞏固提高。
    我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實(shí)際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運(yùn)用我們本節(jié)課所學(xué)習(xí)的知識來解決問題,對多邊形的內(nèi)角和公式進(jìn)一步鞏固提高。
    5.小結(jié)作業(yè)。
    先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識點(diǎn),然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識點(diǎn)。對本節(jié)課學(xué)習(xí)內(nèi)容有了一個回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進(jìn)一步提升學(xué)生運(yùn)用知識的能力。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇五
    上完這節(jié)課后,自我感覺良好,學(xué)生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
    首先我先復(fù)習(xí)相關(guān)知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標(biāo)是一致的,都是通過添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學(xué)思想方法。在此教學(xué)中,只須真正實(shí)施民主的開放式教學(xué),創(chuàng)設(shè)平等、民主、寬松的教學(xué)氛圍,使師生完全處于平等的地位,學(xué)生才能敞開思想,積極參與教學(xué)活動,才能最大限度地調(diào)動學(xué)生的積極性,激發(fā)他們的學(xué)習(xí)興趣,引導(dǎo)他們多角度、多方位、多層次地思考問題,使他們有足夠的機(jī)會顯示靈性,展現(xiàn)個性。在問題探究、合作交流、形成共識的基礎(chǔ)上,在課堂活動中經(jīng)歷、感悟知識的生成、發(fā)展與變化過程,也只有這樣,才能將創(chuàng)新教育的目標(biāo)落到實(shí)處,讓學(xué)生在自主參與學(xué)習(xí),解決問題、嘗試到一題多證的方法,體驗(yàn)到參與的樂趣、合作的價值,并獲得成功的體驗(yàn)。
    六、案例點(diǎn)評。
    陳老師在本節(jié)課的教學(xué)設(shè)計上,內(nèi)容豐富,過程非常具體,設(shè)計也較合理。整節(jié)課以推導(dǎo)多邊形的內(nèi)角和為線索,讓學(xué)生經(jīng)歷了提問題、畫圖、判斷、找規(guī)律、猜想出一般性的結(jié)論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學(xué)生的主體地位,體現(xiàn)了新的教學(xué)理念,也符合初中生的心理特點(diǎn)和年齡特征,因此在教學(xué)設(shè)計上是比較好的。
    但是隨堂練習(xí)太少而不精,并且沒有梯度,能否可以設(shè)計一些具有一定難度的練習(xí),使不同的學(xué)生得到不同層次的發(fā)展,為學(xué)有余力的學(xué)生提供更大的學(xué)習(xí)和發(fā)展空間。另外,關(guān)于多邊形的內(nèi)角和的推導(dǎo)不必要一一講解,只要引導(dǎo)學(xué)生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學(xué)生課后思考。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇六
    (1)知識結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因?yàn)槿切蔚娜齻€頂點(diǎn)確定一個平面,所以三個頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
    教學(xué)目標(biāo):
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    四邊形的概念。
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時針或逆時針的順序.
    練習(xí):課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)。
    練習(xí):
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇七
    過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標(biāo):養(yǎng)成實(shí)事求是的科學(xué)態(tài)度。
    教學(xué)重點(diǎn):多邊形的內(nèi)角和公式
    教學(xué)難點(diǎn):多邊形內(nèi)角和公式
    講解法、練習(xí)法、分小組討論法
    結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個教學(xué)環(huán)節(jié):導(dǎo)入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1. 導(dǎo)入新知
    首先是導(dǎo)入新知環(huán)節(jié),我會引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學(xué)生回顧舊知識的同時,引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
    2. 生成新知
    接下來,進(jìn)入生成新知環(huán)節(jié),我會引導(dǎo)學(xué)生將四邊形分成兩個三角形來求內(nèi)角和,由此
    得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個頂點(diǎn)出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個小組來回答他們討論的結(jié)果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
    驗(yàn)證:七邊形驗(yàn)證
    在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求
    內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個頂點(diǎn)出發(fā),然后用公式驗(yàn)證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強(qiáng)調(diào)我們分隔的一個原則。
    本環(huán)節(jié)的設(shè)計主要是對多變形內(nèi)角和的一個深入了解,給學(xué)生一個內(nèi)化的過程,同時引導(dǎo)學(xué)生不要將知識學(xué)死了,要活學(xué)活用,從多個角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實(shí)際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運(yùn)用我們本節(jié)課所學(xué)習(xí)的知識來解決問題,對多邊形的內(nèi)角和公式進(jìn)一步鞏固提高。
    5. 小結(jié)作業(yè)
    先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識點(diǎn),然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識點(diǎn)。對本節(jié)課學(xué)習(xí)內(nèi)容有了一個回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進(jìn)一步提升學(xué)生運(yùn)用知識的能力。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇八
    (1)知識結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因?yàn)槿切蔚娜齻€頂點(diǎn)確定一個平面,所以三個頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點(diǎn):
    四邊形的內(nèi)角和定理.
    教學(xué)難點(diǎn):
    四邊形的概念
    教學(xué)過程:
    (一)復(fù)習(xí)
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時針或逆時針的順序.
    練習(xí):課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理
    定理:四邊形的內(nèi)角和等于 .
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思
    例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
    求證:(1) ;(2)
    證明:(1) (四邊形的內(nèi)角和等于 ),
    練習(xí):
    1.課本124頁3題.
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè): 課本130頁 2、3、4題.
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇九
    知識與技能:掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    重點(diǎn):多邊形內(nèi)角和定理的探索和應(yīng)用。
    教學(xué)難點(diǎn):邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.。
    教學(xué)過程。
    第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問題,引入新(3分鐘,學(xué)生思考問題,入)。
    1.多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無處不在的多邊形.。
    2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
    第二環(huán)節(jié)概念形成(5分鐘,學(xué)生理解定義)。
    第三環(huán)節(jié)實(shí)驗(yàn)探究(12分鐘,學(xué)生動手操作,探究內(nèi)角和)。
    (以四人小組為單位展開探究活動)。
    活動一:利用四邊形探索四邊形內(nèi)角和。
    要求:先獨(dú)立思考再小組合作交流完成.)。
    (師巡視,了解學(xué)生探索進(jìn)程并適當(dāng)點(diǎn)撥.)。
    (生思考后交流,把不同的方案在紙上完成.)。
    ……(組間交流,教師展示幾種方法)。
    進(jìn)而引導(dǎo)學(xué)生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進(jìn)一步提出新的探索活動。
    活動二:探索五邊形內(nèi)角和。
    (要求:獨(dú)立思考,自主完成.)。
    第四環(huán)節(jié)思維升華(5分鐘,教師引導(dǎo)學(xué)生進(jìn)行推算)。
    教學(xué)過程:
    探索n邊形內(nèi)角和,并試著說明理由。
    (結(jié)合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
    n邊形的內(nèi)角和=(n—2)180°。
    正n邊形的一個內(nèi)角==。
    第五環(huán)節(jié)能力拓展(12分鐘,學(xué)生搶答)。
    搶答題:
    1.正八邊形的內(nèi)角和為_______.
    3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
    應(yīng)用發(fā)散:
    第六環(huán)節(jié)時小結(jié):(3分鐘,學(xué)生填表)。
    第七環(huán)節(jié)布置作業(yè):習(xí)題4、10。
    b組(中等生)1。
    c組(后三分之一生)1。
    教學(xué)反思:
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十
    (1)知識結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因?yàn)槿切蔚娜齻€頂點(diǎn)確定一個平面,所以三個頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的`有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時針或逆時針的順序.
    練習(xí):課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    練習(xí):
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十一
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強(qiáng),特別是教材中設(shè)計了一些“想一想”“試一試”“做一做”等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    二,學(xué)生情況。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計成一節(jié)探索活動課是切實(shí)可行的。
    三,教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)的確定。
    【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗(yàn),在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。
    四,教法和學(xué)法。
    本次課改很大程度上借鑒了美國教育家杜威的“在做中學(xué)”的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動,希望通過活動使學(xué)生主動探索,實(shí)踐,交流,達(dá)到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間”及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的'好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動探索,實(shí)踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    五,教學(xué)過程設(shè)計。
    整個教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課。
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識體系。
    4,實(shí)際應(yīng)用,提高能力。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識,又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十二
    本節(jié)課從復(fù)習(xí)舊知入手,在引課時提問三角形的相關(guān)知識,讓學(xué)生在思想上對本節(jié)課產(chǎn)生興趣,并且會覺得知識點(diǎn)不是很難,提高學(xué)生的學(xué)習(xí)興趣,同時加強(qiáng)了數(shù)學(xué)與實(shí)際生活的聯(lián)系,讓學(xué)生感到數(shù)學(xué)離自己很近,激發(fā)了學(xué)生的求知欲,創(chuàng)設(shè)了良好的教學(xué)氛圍。
    其次注重讓學(xué)生在學(xué)習(xí)活動中領(lǐng)悟數(shù)學(xué)思想方法。數(shù)學(xué)的思想方法比有限的數(shù)學(xué)知識更為重要。學(xué)生在探索多邊形內(nèi)角和的過程中先把多邊形轉(zhuǎn)化成三角形、進(jìn)而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學(xué)中適時的利用問題加以引導(dǎo),使學(xué)生領(lǐng)會數(shù)學(xué)思想方法,真正理解和掌握數(shù)學(xué)的知識、技能,增強(qiáng)空間觀念及數(shù)學(xué)思考能力培養(yǎng),并獲得數(shù)學(xué)活動經(jīng)驗(yàn)。同時,恰當(dāng)?shù)氖褂谜n件擴(kuò)大了課堂容量,使課堂教學(xué)的深度和廣度都有所提高。同時也加大了練習(xí)量,有助于學(xué)生知識可鞏固和提高。
    整節(jié)課學(xué)生的情緒飽滿,思維活躍,在教師適當(dāng)?shù)囊龑?dǎo)下,學(xué)生能夠合作交流和自主探究,成功的探索出了多邊形的內(nèi)角和公式,較好的完成了本節(jié)課的教學(xué)目標(biāo)。
    不足之處:
    1、本節(jié)課給學(xué)生提供的探究思考與交流的時間比較充足,但展示交流的機(jī)會不夠充分,并且個別學(xué)生沒有很好的融入課堂,游離于課本之外。
    2、本節(jié)課學(xué)生小組活動的準(zhǔn)備、具體實(shí)施、歸納交流、評價等環(huán)節(jié)設(shè)計不夠完善。
    3、練習(xí)不夠多樣化。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十三
    各位領(lǐng)導(dǎo),各位老師:
    大家下午好,很高興有機(jī)會參加這次教學(xué)研究活動。
    我的教學(xué)設(shè)計是華師大版七年級數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個方面說一下本節(jié)課的教學(xué)設(shè)想:
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強(qiáng),特別是教材中設(shè)計了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計成一節(jié)探索活動課是切實(shí)可行的。
    新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)。
    【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗(yàn),在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動,希望通過活動使學(xué)生主動探索,實(shí)踐,交流,達(dá)到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動探索,實(shí)踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    整個教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課。
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識體系。
    4,實(shí)際應(yīng)用,提高能力。
    "木工師傅可以用邊角余料鋪地板的原因是什么"這既是對本節(jié)所學(xué)知識在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時也為下節(jié)打下了一個鋪墊。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識,又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學(xué)生所需掌握的知識目標(biāo):即多邊形內(nèi)角和與外角和定理。
    本節(jié)課在知識上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點(diǎn)點(diǎn)快感,到解決整個問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時,一次有效的教學(xué)競賽活動,使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十四
    教學(xué)目標(biāo)。
    知識與技能。
    掌握多邊形內(nèi)角和公式及外角和定理,并能應(yīng)用.
    過程與方法。
    2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神.
    情感態(tài)度價值觀。
    通過猜想、推理等數(shù)學(xué)活動,感受數(shù)學(xué)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.
    重點(diǎn)。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十五
    二、教學(xué)目標(biāo)。
    2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運(yùn)用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
    3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標(biāo):通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
    三、教學(xué)重、難點(diǎn)。
    難點(diǎn):探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
    五、教具、學(xué)具。
    教具:多媒體課件。
    學(xué)具:三角板、量角器。
    六、教學(xué)媒體:大屏幕、實(shí)物投影。
    七、教學(xué)過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?
    在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。
    接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學(xué)生先獨(dú)立思考每個問題再分組討論。
    關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學(xué)生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180o的和是540o。
    方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。
    方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結(jié)果得540o。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。
    交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
    得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
    思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
    (3)從多邊形一個頂點(diǎn)引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點(diǎn)引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實(shí)際應(yīng)用,優(yōu)勢互補(bǔ)。
    (2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學(xué)生自己歸納總結(jié):
    2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習(xí)冊第93頁1、2、3。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十六
    1、通過復(fù)習(xí),使學(xué)生理清各種平面圖形面積計算公式之間的關(guān)系。
    2、使學(xué)生能夠應(yīng)用面積計算公式,熟練計算平行四邊形、三角形、梯形和組合圖形的面積。
    3、能靈活運(yùn)用所學(xué)知識解決有關(guān)的實(shí)際問題。
    熟練計算平行四邊形、三角形、梯形及組合圖形的面積。
    平行四邊形、三角形、梯形的磁片。
    一、創(chuàng)設(shè)情境,揭示課題。
    1、想一想,本單元我們學(xué)習(xí)了哪些知識?
    揭示課題:今天這節(jié)課我們對第五單元的知識進(jìn)行整理和復(fù)習(xí)。
    2、在小組內(nèi)說一說,你學(xué)會了什么?
    二、知識梳理,形成網(wǎng)絡(luò)。
    老師根據(jù)學(xué)生所說,演示轉(zhuǎn)化過程,形成如教材96頁的板書。
    (2)從整理圖中能看出各種圖形之間的關(guān)系嗎?
    學(xué)生回答后老師簡要小結(jié)。
    2、練一練:
    老師出示下題讓學(xué)生獨(dú)立完成后集體核對。
    選擇條件分別計算下列各圖形的面積。
    3、師:剛才復(fù)習(xí)的是基本圖形的面積,而由幾個基本圖形組合而成的圖形叫什么?
    出示第96頁的第2題,讓學(xué)生自己獨(dú)立完成。
    集體核對時讓學(xué)生說一說自己的幾種方法。
    學(xué)生可能會想到下面幾種方法。
    比較哪種方法比較簡便?
    三、應(yīng)用拓展。
    1、練習(xí)十九第1題。
    (1)讓學(xué)生審題,說一說解題步驟。
    (2)獨(dú)立完成。
    (3)小組交流,說一說你的發(fā)現(xiàn)。
    (4)全班交流。
    師小結(jié):幾個圖形都在兩條平行線之間,說明它們的`高是相等的,在高相等的條件下,面積不等,說明它們的高都不等。
    2、練習(xí)十九第4題。
    (1)先讓學(xué)生獨(dú)立完成第1小題,集體核對。
    想一想該如何擺放小樹?讓學(xué)生在草稿本上畫一畫示意圖。
    集體訂正,展示。
    四、小結(jié):說一說今天這節(jié)課最大的收獲是什么?
    五、課堂作業(yè):練習(xí)十九第2、3題。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十七
    1、使學(xué)生在理解的基礎(chǔ)上掌握三角形的面積計算公式,能夠正確地計算三角形的面積。
    2、使學(xué)生通過操作和對圖形的觀察、比較,發(fā)展學(xué)生的空間觀念,使學(xué)生知道轉(zhuǎn)化的思考方法在研究三角形面積時的運(yùn)用。
    3、培養(yǎng)學(xué)生的分析、綜合、抽象、概括和運(yùn)用轉(zhuǎn)化方法解決實(shí)際問題的能力。
    1、用厚紙做完全相同的兩個直角三角形、兩個銳角三角形、兩個鈍角三角形。
    教師:前面我們學(xué)習(xí)了平行四邊形面積的計算,今天我們來學(xué)習(xí)三角形面積的計算。
    板書:三角形面積的計算。
    1、用數(shù)方格的`方法計算三角形的面積。
    教師:前面我們在學(xué)習(xí)長方形面積和平行四邊形面積時,都曾經(jīng)用過數(shù)方格的方法,下面我們再用數(shù)方格的方法來求三角形的面積。
    2、通過操作總結(jié)三角形面積的計算公式。
    讓學(xué)生拿出兩個完全一樣的銳角三角形,提問:
    用兩個完全一樣的銳角三角形能不能拼成一個平行四邊形?讓每個學(xué)生都動手拼一拼,或者同桌的兩個學(xué)生一同拼擺。
    教師邊說邊演示拼的過程。先將兩個銳角三角形重合放置,再按住三角形的右邊頂點(diǎn),使三角形時針運(yùn)動相反的方向轉(zhuǎn)動180,到兩個三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個三角形的右邊平移,直到拼成一個平行四邊形為止,并把拼成的平行四邊形圖畫在黑板上。然后再帶著學(xué)生規(guī)范地照上面的步驟做一遍,做時仍需邊做邊強(qiáng)調(diào):先要把兩個銳角三角形重合,再旋轉(zhuǎn),旋轉(zhuǎn)時哪個點(diǎn)不動?旋轉(zhuǎn)了多少度?平移時是沿著哪條直線移動的?學(xué)生學(xué)會把兩個完全一樣的銳角三角形拼成一個平行四邊形后,教師再說明:平移是圖上各點(diǎn)沿直線移動,旋轉(zhuǎn)是一個點(diǎn)不動,其它的點(diǎn)都圍繞著不動點(diǎn)轉(zhuǎn)。提問:
    每個銳角三角形的面積和拼出的平行四邊形的面積有什么關(guān)系?
    學(xué)生回答后,教師強(qiáng)調(diào):每個銳角三角形是拼成的平行四邊形面積的一半。
    教師結(jié)合黑板上分別由兩個完全相同的三角形拼成的平行四邊形的圖指出:通過上面的實(shí)驗(yàn),兩個完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個平行四邊形。提問:
    這個平行四邊形的底和三角形的底有什么關(guān)系?
    這個平行四邊形的高和三角形的高有什么關(guān)系?
    這個平行四邊形的面積和其中一個三角形的面積有什么關(guān)系?
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十八
    本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
    二、教學(xué)目標(biāo)。
    2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運(yùn)用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
    3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標(biāo):通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
    三、教學(xué)重、難點(diǎn)。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇十九
    我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時。我將在新課程理念的指導(dǎo)下從以下七個方面進(jìn)行說課。
    多邊形的內(nèi)角和是在三角形內(nèi)角和知識基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
    1、我所任教的班級,大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
    2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識。估計學(xué)生在探究任意四邊形內(nèi)角和時會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對本課知識的學(xué)習(xí)和掌握。
    新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。
    【知識與技能】。
    【數(shù)學(xué)思考】。
    (1)通過測量,類比,推理等教學(xué)活動,探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。
    (2)通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運(yùn)用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
    【解決問題】。
    通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
    【情感態(tài)度】。
    1、通過動手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。
    2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。
    基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):
    【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識,提高課堂效率。
    本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間”的思想,我確定如下教法和學(xué)法:
    1.教學(xué)方法:
    根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動手,從實(shí)踐中獲得知識。整個探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
    2.學(xué)習(xí)方法:
    利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
    1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。
    情景:請學(xué)生觀察“上海世博園”的宣傳視頻。
    從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計這個問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個三角形,因此喚醒學(xué)生已有知識“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識,將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
    2、環(huán)節(jié)二:合作交流、探索新知。
    活動1:
    猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。
    議一議:你是怎樣得到的?你能找到幾種方法?這個環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時也要告訴學(xué)生在測量和剪拼活動中可能會產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時間,鼓勵學(xué)生積極參與,合作交流,用自己的語言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語言表達(dá)能力與推理能力。
    針對不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵學(xué)生尋找多種分割形式,深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動充滿探索,體驗(yàn)解決問題策略的多樣性。
    想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價和鼓勵。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
    活動2:
    做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的理解,體會由簡單到復(fù)雜,由特殊到一般的思想方法。
    議一議:
    問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
    問題2:能否采用不同的分割方法來解決這些問題?
    活動3:
    嘗試完成第五列n邊形的探究。
    但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導(dǎo),給學(xué)生正確的評價。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問題的最佳方法的能力。
    練一練:為了使學(xué)生達(dá)到對知識的鞏固與應(yīng)用,我特地設(shè)計了一組(5個)即時搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計算,并根據(jù)學(xué)生都喜好競賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問題并鞏固、理解、記憶公式。
    搶答:
    (1)過一個多邊形一個頂點(diǎn)有10條對角線,則這是邊形.
    (2)過一個多邊形一個頂點(diǎn)的所有對角線將這個多邊形分成五個三角形,則這是邊形.
    (3)多邊形的內(nèi)角和隨著邊數(shù)的增加而,邊數(shù)增加一條時它的內(nèi)角和增加度。
    3、環(huán)節(jié)三:例題講解,知識鞏固。
    在此,我設(shè)計了2個例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學(xué)生來說比較簡單;對于例2我把書后面的85頁習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識。
    4、環(huán)節(jié)四:分組競賽、情感升華。
    (1)智慧大比拼。
    內(nèi)容:p87的練習(xí)分成2類。
    通過新穎的形式激發(fā)學(xué)生的競爭意識和主動參與活動的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識解決問題,鞏固本節(jié)知識。
    (2)拓展探究。
    小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵學(xué)生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會成功的喜悅。
    (3)情系世博。
    引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國之情。
    5、環(huán)節(jié)五:暢所欲言、分享成果。
    請學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時也是給學(xué)生正確地評價自己和他人表現(xiàn)的機(jī)會,這也是給教者本身一個反思提高的機(jī)會。通過這個環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識系統(tǒng)化,從感性認(rèn)識上升為理性認(rèn)識。
    6、環(huán)節(jié)六:布置作業(yè)、課后提升。
    (1)習(xí)題7.3第2題、第4題。
    (2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
    采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。
    評價學(xué)生,不僅僅是一個手段和結(jié)果,它對學(xué)生的人格、個性的發(fā)展有著極其重要的作用。新課程對課程的評價應(yīng)把握形成性、發(fā)展性評價和終結(jié)性評價相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個方面進(jìn)行評價:
    1、評價在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動手、思維、自學(xué)能力等〉的發(fā)展情況。
    2、評價學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。
    3、評價在學(xué)習(xí)過程中對身邊事物、社會現(xiàn)實(shí)的關(guān)注程度。
    評價必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動力。
    最后,我的板書設(shè)計力求簡潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇二十
    板書設(shè)計:
    第二節(jié)物體分類的教學(xué)。
    三、教學(xué)方法。
    (一)、教幼兒把相同名稱和物體放在一起。
    (二)、教幼兒按物體的外部特征分類。
    表格:教幼兒按物體的外部特征分類的教學(xué)要求(投影)。
    顏色。
    教具要求。
    教學(xué)要求。
    形狀。
    教具要求。
    教學(xué)要求。
    大小、長短、粗細(xì)、厚薄、寬窄。
    教具要求。
    教學(xué)要求。
    將本文的word文檔下載到電腦,方便收藏和打印。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇二十一
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強(qiáng),特別是教材中設(shè)計了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計成一節(jié)探索活動課是切實(shí)可行的。
    【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗(yàn),在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)重點(diǎn)】多邊形內(nèi)角和及外角和定理
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動,希望通過活動使學(xué)生主動探索,實(shí)踐,交流,達(dá)到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動探索,實(shí)踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    整個教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識體系。
    4,實(shí)際應(yīng)用,提高能力。
    5,分組競賽,升華情感
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識,又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學(xué)生所需掌握的知識目標(biāo):即多邊形內(nèi)角和與外角和定理
    本節(jié)課在知識上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點(diǎn)點(diǎn)快感,到解決整個問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時,一次有效的教學(xué)競賽活動,使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。
    數(shù)學(xué)教案-多邊形的內(nèi)角和篇二十二
    (1)知識結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因?yàn)槿切蔚娜齻€頂點(diǎn)確定一個平面,所以三個頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;。
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    四邊形的概念。
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時針或逆時針的順序.
    練習(xí):課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)。
    練習(xí):
    1.課本124頁3題.
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.