多邊形的內角和教學設計(實用19篇)

字號:

    個人成長與自我實現,是每個人生命中不可或缺的重要部分。使用明確而簡練的語言,讓讀者能夠易于理解;以下是一些優(yōu)秀總結范文,供大家參考和借鑒。
    多邊形的內角和教學設計篇一
    這節(jié)課本節(jié)的教學活動充分發(fā)揮學生的主體作用,激發(fā)了學生的學習興趣,使課堂充滿生機。在進行四邊形內角和定理的教學時,設計完成三個步驟:
    (1)通過動手操作,讓學生自己通過實驗的方法發(fā)現四邊形內角和定理;
    (2)讓學生把發(fā)現概括成命題;
    (3)通過學生討論命題證明的不同方法。
    整節(jié)課充滿著“自主、合作、探究、交流”的教學理念,營造了思維馳聘的空間,使學生在主動思考探究的過程中自然的獲得了新的知識。但由于本節(jié)課的內容多,學習時間較緊張,所以在給學生進行課堂討論四邊形內角和的不同的證明方法這一環(huán)節(jié)時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節(jié)課的內容沒有對四邊形內角和的證明方法做以補充。
    這節(jié)課成功之處在習題的設計,由淺入深,每道題都各具代表性,都是典型的例題。使學生能夠熟練的應用多邊形內角和。在講此處不足是到后面難一點的題時,因為快要下課了,沒有給學生太多的時間,就顯得有些倉促,后進生有可能沒弄明白。
    多邊形的內角和教學設計篇二
    《多邊形內角和》這節(jié)課,我基本上完成了教學任務,教學目標基本達成,《多邊形內角和》教學反思。學生明確了轉化的思想是數學最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內角和,并且能夠運用多邊形的內角和公式解決相關問題。同時也有幾個地方引起了我深深的思考。
    首先,在這節(jié)課的設計中,我大膽的嘗試并使用網絡教學。在我最初的設計過程中,按照常規(guī)的方法引導學生先用分割的方法得到四邊形內角和,再探究多邊形的內角和。但是網絡教學教學就成為一種形式,沒有充分的發(fā)揮它的作用,效果也不是很好。后來改為不做任何方法的'指導,采用完全開放的探究,每步探究先讓學生嘗試,把學生推到主動位置,放手讓學生自己學習,教學過程主要靠學生自己去完成,盡可能做到讓學生在“活動”中學習,在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現學生學習的自主性:規(guī)律讓學生自主發(fā)現,方法讓學生自主尋找,思路讓學生自主探究,問題讓學生自主解決。課前我很擔心,但事實說明,這種探究才是真正的讓學生去嘗試,去挑戰(zhàn)。因此,在課堂教學中選用探究式,可以讓學生在自主學習中探究,在質疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學反思《多邊形內角和》教學反思》??傊覍μ骄空n有了更深刻的理解。
    這節(jié)課的第一個環(huán)節(jié):引入,我認為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學生的注意力。這樣這節(jié)課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調動了學生的情緒,打動學生的心靈,形成良好的課堂氣氛切人口。第三個環(huán)節(jié):分層練習。充分發(fā)揮了網絡課的優(yōu)勢,真正做到了分層。
    其次,在探究這個環(huán)節(jié)中,有一個關鍵的地方處理的很不到位。即:當一個學生提出分割方法時,這時沒有及時把握住這個時機,讓更多的學生去嘗試這種方法,而是讓他自己把所得到的結論直接告訴大家,因此沒有讓更多的學生去體驗轉化的思想,我認為這節(jié)課最大的敗筆就在于此。課下我反復的思考出現問題的原因,是因為對學生估計的不足造成的。我總認為,在教師不指導的情況下,不會有學生想到分割這種方法,當課堂上學生出現這種方法時,我就有點激動,順著學生的思路走了,而忽視了大多數。因此,在備課時一定要更為細致的研究學生可能出現的情況,在上課時才能應對自如。
    總之,這節(jié)課我不是很滿意,細分析,偶然當中也包含著必然。新課標要求數學教學過程中要注重學生學習的過程,而知識的學習是一個建構過程,教師通過以組織者、合作者、和引導者的身份,根據學生的具體情況,對教材進行再加工,有創(chuàng)造地設計教學過程,在教學設計中要求新求變。用“新”和“變”來激發(fā)學生學習數學的欲望和興趣。根據不同的教學內容選擇不同的教學模式。因為只有這樣,課堂教學才能煥發(fā)出生機和活力。教師在這個過程中要為學生營造一個積極的、寬松的教學氛圍。所以,要做一個新時代的教師,除具備一定的專業(yè)知識外,還要具備領導才能,能夠駕御整個課堂。發(fā)現了自己的不足就意味著自己的進步。在今后的教學中,我會更加努力,讓我的每一位學生在我的每一節(jié)課上都能夠有新的收獲。
    多邊形的內角和教學設計篇三
    《探索多邊形的內角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數學教學的一點啟發(fā)。
    有幸與實驗小學趙麗老師同時選中《多邊形的內角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農村小學學生人數的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據學生認知水平差異,把學生分成a,b兩組,在組內又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經過與普通班的對比研究,發(fā)現復式班學生在學習效果上有著明顯的成效。基于這一基礎,我采用分層的模式來進行多邊形的內角和的教學,這一嘗試,讓我對自己的.數學教學有了如下反思:
    1,以經驗為基礎,讓學生得到不同的發(fā)展。
    基于學生的認知經驗及活動經驗,對學生進行分組,以期達到不同的學生在數學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
    2,勇于放手,培養(yǎng)學生自學的能力。
    在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉化為三角形內角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現,學生的探究自學能力比我預想的出色許多。
    3,細節(jié)入手,培養(yǎng)學生良好習慣。
    小學數學良好習慣的培養(yǎng)不僅對學生自身的數學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數學老師對課堂全局的把握更加深刻,才能夠讓數學課堂井然有序,數學教學效果得到最大程度的保證。
    “授人以魚,不如授人以漁。”我們的數學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
    多邊形的內角和教學設計篇四
    (1)知識結構:
    (2)重點和難點分析:
    重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的`數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。
    教學目標:
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
    3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;。
    4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想.
    教學重點:
    教學難點:
    四邊形的概念。
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
    3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
    (五)應用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)。
    練習:
    1.課本124頁3題.
    小結:
    能力:向學生滲透類比和轉化的思想方法.
    作業(yè):課本130頁2、3、4題.
    多邊形的內角和教學設計篇五
    尊敬的各位領導:
    老師大家好!
    由我為大家介紹我們工作坊團隊成員共同設計的《多邊形的內角和》一課。我將從教材思考、學生調研、教學目標完善、教學過程設計等方面進行匯報。
    《多邊形的內角和》是冀教版小學數學四年級下冊第九單元探索樂園的第1課時,本單元要求是“在問題探索中,促進數學思維發(fā)展”。實現“不同的人在數學上得到不同的發(fā)展”是《數學課程標準》的基本理念,“發(fā)展合情推理和演繹推理能力”“清晰地表達自己的想法”“學會獨立思考、體會數學的基本思想和思維方式”是課程標準關于數學思考方面的具體要求。
    教材安排了兩個例題,一是探究多邊形邊數與分割的三角形個數的規(guī)律,二在分割三角形的基礎上探索多邊形內角和。為了促進學生思考的連續(xù)性與有序性,我們將教材中的兩個例題進行有機結合,在充分研究四邊形五邊形內角和方法的基礎上提出如何得出任意多邊形內角和問題,為發(fā)展學生的數學思維提供素材、創(chuàng)造探索的空間,讓學生充分體會“畫線段—分割三角形—求內角和”這樣一個連續(xù)推理歸納得出規(guī)律的活動。
    學生在本冊第四單元認識了三角形、知道三角形內角和等于180度,會用字母表示數、字母表示數量關系的基礎上進行學習的。我們團隊的成員對所在學校四年級同學進行了調研,發(fā)現他們對于數學問題具有“猜想”的意識,但是缺乏理性的思考。他們愿意自己動手嘗試探索研究問題,但是對于探索之后有序思考、歸納總結認識還不夠全面。
    有了以上分析,我們在尊重教材的基礎上,確定了本節(jié)課教學目標,并對“過程與方法”目標進行了完善補充。
    知識與技能:探索并了解多邊形的邊數與分割成的三角形個數,以及內角和之間隱含的規(guī)律;能運用多邊形的內角和知識解決相關問題。
    過程與方法:學生經歷探索的全過程,積累探索和發(fā)現數學規(guī)律的經驗,讓學生嘗試從不同的角度尋求解決問題的方法,體會從特殊到一般的認識問題的方法,發(fā)展理性思考。
    教學難點:字母表達式的總結
    教學準備:教師準備三角形、四邊形、五邊形、六邊形圖片,裁紙刀,課件。
    學生學具準備四邊形、五邊形等多邊形圖片模型,三角板。
    教學過程共分為四個環(huán)節(jié)。
    教學過程:
    一、創(chuàng)設情境,回顧三角形知識---注重知識的“生長點”
    同學們請看這是什么圖形?你了解它嗎?你能向大家介紹三角形哪些知識?(這樣設計意圖是注尊重學生已有知識經驗,體會數學知識的內在聯系,重點認識三角形內角的含義及三角形內角和是180度的特點)
    我們知道了三角形內角和是180度,那么四邊形,五邊形的內角和是多少度呢?這節(jié)課我們就一起來研究。
    二、自主合作,探究新知—注重“數學算法的優(yōu)化”共設計了三個探究活動。
    1、四邊形內角和
    (1)有同學愿意猜想四邊形內角和嗎?猜想也要有根據,你能說說你的根據嗎?(引導學生體會理性思考)
    有沒有同學一看到四邊形就馬上想到360度呢?你是根據哪個圖形直接想到的?(讓學生借助已有的長方形、正方形知識進行理性推理,打通新舊知識之間聯系)
    我們通過計算長方形、正方形的內角和是360度,是不是能說明所有四邊形內角和都是360度?(引導學生體會這是一種“假設”因為它是特殊圖形中做的成“猜想”)
    我們需要研究怎樣的圖形才能發(fā)現它們一般的特征和規(guī)律?(任意四邊形)
    (2)小組活動,利用學具中的任意四邊形想辦法計算內角和。師巡視(注意學生不同的方法)
    (3)學生匯報??赡苡杏嬎惴?,引導學生起名字“量角求和法”
    撕角法,起名字“拼角求和法”。
    切割法1,起名字“一分為二求和法”(學生演示這種方法時,教師幫忙切割,強調弄清楚四個內角怎樣變成六個角,分成了幾個三角形,一是畫了一條線段,二是分成了二個三角形)
    歸納總結:四邊形內角和是360度。(通過不同的個性方法,驗證四邊形內角和,進一步認識內角含義,感受不同算法的好處)
    2、五邊形內角和
    今天的研究我們就停在這里嗎?根據經驗,我們要向什么挑戰(zhàn)?(五邊形)你能猜想它是多少度嗎?請你選擇一種方法,證實你的猜想。
    總結:看來數學的方法有很多,但是有的方法有局限性,有的方法只適合三角形和四邊形,量角有誤差,拼角法有的會超過360度,而第三種看起來最簡便。我們稱之為“優(yōu)化法”
    列出算式:180x3=540度(學生不僅在計算度數上有了經驗,而且在計算方法上也有了經驗)
    利用這種最優(yōu)的方法,同桌同學互相說一說,四邊形和五邊形各畫了幾條線段,分割成幾個三角形,怎樣求內角和?(設計意圖是讓學生對探究過程進行歸納整理,為進一步有序的研究其他圖形指明研究方向。)
    現在我們就來看一看其他圖形是不是也有這樣的規(guī)律?
    3、六邊形、七邊形內角和
    小組合作,自己完成探究過程,填寫表格。
    學生匯報,總結畫出的線段數和三角形個數之間聯系。
    三、歸納總結,形成規(guī)律---注重字母表達式的推理
    通過大家的研究,找到了規(guī)律,請問10邊形,能畫幾條線段,分成幾個三角形?
    90邊形?100邊形?n邊形呢?(老師說我們研究三角形的個數,怎么去找邊數的呢?學生說分割出的三角形的個數跟邊數有關。那一千邊形形,n邊形呢?n-2得到的是什么?得到分成的三角形的個數。)
    師:今天你學到了什么?在今天的研究中哪些知識或研究的過程給你留下了深刻的印象?師:今天我們所研究的多邊形都是凸多邊形,還有一種多邊形,它們叫做凹多邊形,你能不能運用今天的研究方法,探究凹多邊形的內角和嗎?老師期待你在課后的研究成果。(設計意圖是不僅讓學生對本節(jié)課知識進行總結,也對數學的思想方法進行回顧,鼓勵學生利用這些思想方法向類似數學問題挑戰(zhàn),以達到學以致用的目的。)
    以上是我們對這節(jié)課的粗淺設計,懇請大家給予批評指正,謝謝!
    多邊形的內角和教學設計篇六
    我在學校出了一節(jié)公開課,下面是我的教學反思。
    教學回顧:
    一:引入新課。提問三角形內角和,正方形和長方形的內角和是多少?那任意一四邊形內角和都是360度嗎?小組討論交流證明任意四邊形內角和都是360度的方法。學生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個三角形的方法最為簡單。類似的探究其他多邊形內角和。
    二:完成學案第一部分,用數學歸納法完成填空,總結得出多邊形內角和公式。
    三:練習。
    四:課堂小結。
    五:作業(yè)。
    反思:
    這節(jié)課本節(jié)的教學活動充分發(fā)揮學生的主體作用,激發(fā)了學生的學習興趣,使課堂充滿生機。在進行四邊形內角和定理的教學時,設計完成三個步驟:
    (1)通過動手操作,讓學生自己通過實驗的方法發(fā)現四邊形內角和定理;
    (2)讓學生把發(fā)現概括成命題;
    (3)通過學生討論命題證明的不同方法。
    整節(jié)課充滿著“自主、合作、探究、交流”的教學理念,營造了思維馳聘的空間,使學生在主動思考探究的過程中自然的獲得了新的知識。但由于本節(jié)課的.內容多,學習時間較緊張,所以在給學生進行課堂討論四邊形內角和的不同的證明方法這一環(huán)節(jié)時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節(jié)課的內容沒有對四邊形內角和的證明方法做以補充(習題課時才加以補充)。
    多邊形的內角和教學設計篇七
    完成《多邊形的內角和》教學之后,學生很自然地就會想到對于多邊形的情況如何。為了體現課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現但沒體現完整的。經過課后反思及老教師們的指點,主要表現在:
    (1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。
    (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。
    (3)在小組交流過程中學生的發(fā)言過分地注重于探索的結果,而忽視了學生探索過程的展示。同時教師有些總結性的話,限制了學生的思維,不能最大限度的'發(fā)揮學生自主探究的能力。
    (4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現較為一般的學生有此創(chuàng)意時,教師就應大加贊揚,從而也能激發(fā)課堂氣氛。
    將本文的word文檔下載到電腦,方便收藏和打印。
    多邊形的內角和教學設計篇八
    (1)知識結構:
    (2)重點和難點分析:
    重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的`數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。
    教學目標:
    1.使學生掌握四邊形的有關概念及四邊形的內角和定理;。
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
    3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;。
    4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想.
    教學重點:
    教學難點:
    四邊形的概念。
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
    3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
    (五)應用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)。
    練習:
    1.課本124頁3題.
    小結:
    知識:四邊形的有關概念及其內角和定理.
    能力:向學生滲透類比和轉化的思想方法.
    作業(yè):課本130頁2、3、4題.
    多邊形的內角和教學設計篇九
    完成《多邊形的內角和》教學之后,學生很自然地就會想到對于多邊形的情況如何。為了體現課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現但沒體現完整的。經過課后反思及老教師們的指點,主要表現在:
    (1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。
    (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。
    (3)在小組交流過程中學生的發(fā)言過分地注重于探索的結果,而忽視了學生探索過程的展示。同時教師有些總結性的話,限制了學生的思維,不能最大限度的'發(fā)揮學生自主探究的能力。
    (4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現較為一般的學生有此創(chuàng)意時,教師就應大加贊揚,從而也能激發(fā)課堂氣氛。
    多邊形的內角和教學設計篇十
    《多邊形內角和》這節(jié)課,我基本上完成了教學任務,教學目標基本達成,《多邊形內角和》教學反思。學生明確了轉化的思想是數學最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內角和,并且能夠運用多邊形的內角和公式解決相關問題。同時也有幾個地方引起了我深深的思考。
    首先,在這節(jié)課的設計中,我大膽的嘗試并使用網絡教學。在我最初的設計過程中,按照常規(guī)的方法引導學生先用分割的`方法得到四邊形內角和,再探究多邊形的內角和。但是網絡教學教學就成為一種形式,沒有充分的發(fā)揮它的作用,效果也不是很好。后來改為不做任何方法的指導,采用完全開放的探究,每步探究先讓學生嘗試,把學生推到主動位置,放手讓學生自己學習,教學過程主要靠學生自己去完成,盡可能做到讓學生在“活動”中學習,在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現學生學習的自主性:規(guī)律讓學生自主發(fā)現,方法讓學生自主尋找,思路讓學生自主探究,問題讓學生自主解決。課前我很擔心,但事實說明,這種探究才是真正的讓學生去嘗試,去挑戰(zhàn)。因此,在課堂教學中選用探究式,可以讓學生在自主學習中探究,在質疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學反思《多邊形內角和》教學反思》??傊覍μ骄空n有了更深刻的理解。
    這節(jié)課的第一個環(huán)節(jié):引入,我認為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學生的注意力。這樣這節(jié)課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調動了學生的情緒,打動學生的心靈,形成良好的課堂氣氛切人口。第三個環(huán)節(jié):分層練習。充分發(fā)揮了網絡課的優(yōu)勢,真正做到了分層。
    其次,在探究這個環(huán)節(jié)中,有一個關鍵的地方處理的很不到位。即:當一個學生提出分割方法時,這時沒有及時把握住這個時機,讓更多的學生去嘗試這種方法,而是讓他自己把所得到的結論直接告訴大家,因此沒有讓更多的學生去體驗轉化的思想,我認為這節(jié)課最大的敗筆就在于此。課下我反復的`思考出現問題的原因,是因為對學生估計的不足造成的。我總認為,在教師不指導的情況下,不會有學生想到分割這種方法,當課堂上學生出現這種方法時,我就有點激動,順著學生的思路走了,而忽視了大多數。因此,在備課時一定要更為細致的研究學生可能出現的情況,在上課時才能應對自如。
    總之,這節(jié)課我不是很滿意,細分析,偶然當中也包含著必然。新課標要求數學教學過程中要注重學生學習的過程,而知識的學習是一個建構過程,教師通過以組織者、合作者、和引導者的身份,根據學生的具體情況,對教材進行再加工,有創(chuàng)造地設計教學過程,在教學設計中要求新求變。用“新”和“變”來激發(fā)學生學習數學的欲望和興趣。根據不同的教學內容選擇不同的教學模式。因為只有這樣,課堂教學才能煥發(fā)出生機和活力。教師在這個過程中要為學生營造一個積極的、寬松的教學氛圍。所以,要做一個新時代的教師,除具備一定的專業(yè)知識外,還要具備領導才能,能夠駕御整個課堂。發(fā)現了自己的不足就意味著自己的進步。在今后的教學中,我會更加努力,讓我的每一位學生在我的每一節(jié)課上都能夠有新的收獲。
    將本文的word文檔下載到電腦,方便收藏和打印。
    多邊形的內角和教學設計篇十一
    目標。
    重點。
    難點。
    用具。
    方法。
    過程。
    1、溫故知新,揭示課題。
    引言之后,先讓學生:
    (1)試說出三角形以及三角形的邊、頂點、角的概念。
    (2)如圖1:試畫出的平分線、bc邊上的中線、bc邊上的高。
    然后,在此基礎上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強調“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。
    2、運用反例,揭示內涵。
    3、討論歸納,深化定義。
    引導啟發(fā)學生,歸納討論探索得到的結果:
    定義1三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。
    強調:三角形的角平分線是一條線段,而角的平分線是一條射線。
    定義2三角形的中線:在三角形中,連結一個頂點和它的對邊中點的線段。
    強調:三角形中線是一條線段。
    定義3三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。
    強調:三角形的高是線段,而垂線是直線。
    4、符號表示,加深理解。
    通過符號的表述,使學生對三角形的角平分線、中線、高的理解得到加深和強化,在記憶上也趨于簡化。
    5、初步運用,反復辨析。
    練習的設計遵循由由淺入深、循序漸進的原則,三個題目,三個層次:
    題1三角形的一條高是()。
    a.直線b.射線c.垂線。d.垂線段。
    題2畫鈍角三角形的高ae。
    題3。
    先讓學生思考練習,然后師生一起分析糾正,最后教師點撥小結。這環(huán)節(jié)運用電教手段,以增大教學容量和直觀性,提高效率。
    6、歸納總結,強化思想。
    這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。
    揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在學習時熟練三種語言的相互轉化。
    7、布置作業(yè),題目是:
    (1)書面作業(yè)p30#2,3 p41#5(做在書上)。
    (2)交本作業(yè)p41#4。
    (3)思考題1:
    思考題2:
    答案:1.4、7;。
    2.能。三角形為等腰三角形。
    多邊形的內角和教學設計篇十二
    學生已經學過三角形的內角和定理的知識基礎,并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導學生利用分類、數形結合的思想,加強對數學知識的應用,發(fā)展學生合情合理的推理能力和語言表達能力。
    1.知識與技能:運用三角形內角和定理來推證多邊形內角和公式,掌握多邊形的內角和的計算公式。
    2.過程與方法:經理探究多邊形內角和計算方法的過程,培養(yǎng)學生的合作交流的意識。
    3.情感態(tài)度與價值觀:感受數學化歸的思想和實際應用的價值,同時培養(yǎng)學生善于發(fā)現,積極探究,合作創(chuàng)新的學習態(tài)度。
    1、請看:我身后的建筑物是什么?——水立方。我看到水立方時發(fā)現它的膜結構的結合處都是多邊形,你們想知道這些多邊形的內角和嗎?(多媒體展示)。
    知道四邊形的內角和為360°,現在你能利用三角形的內角和定理證明嗎?自主學習教材第34頁“動腦筋”
    【教學說明】“解放學生的手,解放學生的大腦”,鼓勵學生積極參與合作交流,尋找多種圖形形式,深入全面轉化的本質——將四邊形轉化為三角形問題來解決.
    預設回答:能,可以引對角線,將多邊形分成幾個三角形。
    讓學生合作交流討論,展示探究成果。教材第35頁“探究”
    n邊形有幾個內角?是否可以“轉化”為多個三角形的角來求得呢?如何“轉化”?
    【教學說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內角和的探索,讓學生從特殊到一般歸納總結出多邊形內角和公式,體會數形間的聯系,感受從特殊到一般的數學推理過程和數學思考方法.
    例:教材第36頁例1。
    【教學說明】讓學生利用多邊形的內角和公式求一個多邊形的內角和或它的邊數,加深知識的理解與運用.
    1、若從一個多邊形的一個頂點出發(fā),最多可以引10條對角線,則它是()。
    a.十三邊形b.十二邊形。
    c.十一邊形d.十邊形。
    2、十二邊形的內角和為,已知一個多邊形的內角和是1260°,則這個多邊形的邊數是。
    【教學說明】由學生自主完成,教師及時了解學生的學習效果,讓學生經歷運用知識解決問題的過程.對需要幫助的學生及時點撥并加以強化.在完成上述題目后,讓學生完成練習冊中本課時的對應訓練部分.
    1、這節(jié)課你有什么新的收獲?
    教材第36頁練習1、2題。
    邊數越多,內角和就越大;
    每增加一條邊,內角和就增加180度。
    多邊形的內角和教學設計篇十三
    我說課的內容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內角和》的第二課時。我將在新課程理念的指導下從以下七個方面進行說課。
    多邊形的內角和是在三角形內角和知識基礎上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學習多邊形鑲嵌的基礎,也是今后學習空間幾何的基礎,學好多邊形內角和的內容,為學生認識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎,對發(fā)展學生的空間觀念和幾何直覺有很大的幫助。
    1、我所任教的班級,大部分學生來自農村,由于自小獨立性較強,具有較強的理解能力和應用能力,喜歡合作討論,對數學學習有較濃厚的興趣。大部分學生學習習慣和學習方式較好。
    2、本節(jié)課讓學生通過實驗探索多邊形內角和公式。在此之前學生對三角形、特殊四邊形的內角和已經有了一定的理解和認識。估計學生在探究任意四邊形內角和時會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學生學習的難點,在探究的過程中教師要想辦法把難點分散,有利于學生對本課知識的學習和掌握。
    新的課程標準注重學生經歷觀察、操作、猜想、歸納等探索過程。根據新課標和本節(jié)課的內容特點我確定以下教學目標及重點、難點。
    【知識與技能】。
    【數學思考】。
    (1)通過測量,類比,推理等教學活動,探索多邊形的內角和公式,感受數學思考過程的條理性,發(fā)展推理能力和語言表達能力。
    (2)通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    【解決問題】。
    通過探索多邊形內角和公式,讓學生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
    【情感態(tài)度】。
    1、通過動手實踐、相互間的交流,進一步激發(fā)學習熱情和求知欲望。
    2、體驗猜想得到證實的成就感,在解題中感受生活中數學的存在,體驗數學充滿探索。并在探索過程中激發(fā)、培養(yǎng)學生的愛國主義熱情。
    基于以上教學目標,我確定以下教學重難點:
    【教學難點】探究多邊形內角和時,如何把多邊形轉化成三角形。
    因此,本節(jié)課我借助課件輔助教學,可以更好的突破重難點,增強直觀效果,豐富學生的感性認識,提高課堂效率。
    本節(jié)課借鑒了美國教育家杜威的“在做中學”的理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”的思想,我確定如下教法和學法:
    1.教學方法:
    根據本節(jié)課的教學目標、教材內容以及學生的認知特點,我采用啟發(fā)式、探索式教學方法,意在幫助學生通過觀察,自己動手,從實踐中獲得知識。整個探究學習的過程充滿了師生之間、學生之間的交流和互動,體現了教師是教學活動的組織者、引導者,而學生才是學習的主體。
    2.學習方法:
    利用學生的好奇心設疑,解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內容。
    1、環(huán)節(jié)一:創(chuàng)設情景、引入新課。
    情景:請學生觀察“上海世博園”的宣傳視頻。
    從“情境認知理論”得知:圖文加情境能有效提高課堂教學效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學生的愛國主義熱情,并引導學生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內角和是多少?設計這個問題的目的是因為探索多邊形內角和與邊數關系的根本方法是把多邊形轉化為多個三角形,因此喚醒學生已有知識“三角形內角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內角和是多少?學生回答后進入新課內容,根據三角形的內角和是個確定值,引導學生猜想任意四邊形的內角和是多少?喚醒學生已有知識,將有助于本堂課問題的解決,也為后面習題作鋪墊。
    2、環(huán)節(jié)二:合作交流、探索新知。
    活動1:
    猜一猜:圍繞“任意四邊形的內角和等于多少度?”這一問題引導學生從正方形、長方形這兩個特殊的多邊形的內角和,很容易猜測出四邊形的內角和等于360度。
    議一議:你是怎樣得到的?你能找到幾種方法?這個環(huán)節(jié)學生可能出現“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內角和怎么求?你發(fā)現了什么?通過這個問題讓學生自然過渡到用作輔助線的方法求多邊形的內角和,同時也要告訴學生在測量和剪拼活動中可能會產生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學生充分的探究時間,鼓勵學生積極參與,合作交流,用自己的語言表達解決問題的方式方法,發(fā)展學生的語言表達能力與推理能力。
    針對不同層次的學生,要適當的引導學生利用作輔助線的方法把多邊形轉化為三角形,鼓勵學生尋找多種分割形式,深入領會轉化的本質——將四邊形轉化為三角形問題來解決。然后讓學生表達自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學生體驗數學活動充滿探索,體驗解決問題策略的多樣性。
    想一想:這些分法有什么異同點?學生積極思考,大膽發(fā)言,教師給予適當的評價和鼓勵。教師在學生回答的基礎上小結:借助輔助線把四邊形分割成幾個三角形分割的關鍵在于公共點的選取,并演示公共點在圖形內、外、頂點處。利用三角形內角和求得四邊形內角和,這是數學學習中的一種常用轉化的思想方法。
    活動2:
    做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內角和方法求五邊形、六邊形、七邊形等的內角和,讓學生再一次經歷轉化的過程,加深對轉化思想的理解,通過增加圖形的復雜性,再一次經歷轉化的過程,加深對轉化思想方法的理解,體會由簡單到復雜,由特殊到一般的思想方法。
    議一議:
    問題1:對比上面探究四邊形內角和的過程,你能得出五邊形的內角和?六邊形的內角和?
    問題2:能否采用不同的分割方法來解決這些問題?
    活動3:
    嘗試完成第五列n邊形的探究。
    但是學生有可能出現其它的解決問題的辦法,比如:由四邊形內角和求五邊形內角和,由五邊形內角和再求六邊形內角和,依次類推,邊數每增加1條內角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導,給學生正確的評價。在探索的過程中再一次培養(yǎng)學生的推理能力和表達能力,以及選擇解決問題的最佳方法的能力。
    練一練:為了使學生達到對知識的鞏固與應用,我特地設計了一組(5個)即時搶答題,通過這些題目學生當堂訓練、獨立計算,并根據學生都喜好競賽的特點,采用搶答式完成。運用所學公式解決問題并鞏固、理解、記憶公式。
    搶答:
    (1)過一個多邊形一個頂點有10條對角線,則這是邊形.
    (2)過一個多邊形一個頂點的所有對角線將這個多邊形分成五個三角形,則這是邊形.
    (3)多邊形的內角和隨著邊數的增加而,邊數增加一條時它的內角和增加度。
    3、環(huán)節(jié)三:例題講解,知識鞏固。
    在此,我設計了2個例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個例題就是對四邊形的內角和的簡單應用,對于學生來說比較簡單;對于例2我把書后面的85頁習題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學生掌握:三角形、五邊形的內角和,正五邊形等相關知識。
    4、環(huán)節(jié)四:分組競賽、情感升華。
    (1)智慧大比拼。
    內容:p87的練習分成2類。
    通過新穎的形式激發(fā)學生的競爭意識和主動參與活動的熱情。學生利用當堂所學的知識解決問題,鞏固本節(jié)知識。
    (2)拓展探究。
    小組合作探究,引導學生分析可能的每一種截取情況,根據不同截法得出不同結論。鼓勵學生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學生深刻的感受到合作交流的重要性,體會成功的喜悅。
    (3)情系世博。
    引導學生利用多邊形的內角和公式解釋小明的設想能否實現。讓學生感受到數學的趣味性,以及與實際生活之間的密切聯系,并激發(fā)學生的愛國之情。
    5、環(huán)節(jié)五:暢所欲言、分享成果。
    請學生談自己學習過程中的收獲,并整理自己參與數學活動的經驗,回味成功的喜悅,形成良好的學習習慣,同時也是給學生正確地評價自己和他人表現的機會,這也是給教者本身一個反思提高的機會。通過這個環(huán)節(jié)使學生這節(jié)課所學的知識系統(tǒng)化,從感性認識上升為理性認識。
    6、環(huán)節(jié)六:布置作業(yè)、課后提升。
    (1)習題7.3第2題、第4題。
    (2)選做題:用另外兩種作輔助線的方法證明多邊形內角和定理。
    采用分層布置作業(yè),讓不同水平的學生得到不同的發(fā)展,培養(yǎng)學生的思維靈活性及成就感,從而貫徹因材施教的原則。
    評價學生,不僅僅是一個手段和結果,它對學生的人格、個性的發(fā)展有著極其重要的作用。新課程對課程的評價應把握形成性、發(fā)展性評價和終結性評價相結合,在實踐中我打算在課堂上從以下幾個方面進行評價:
    1、評價在學習中各種能力〈如表達、想象、動手、思維、自學能力等〉的發(fā)展情況。
    2、評價學習過程中的創(chuàng)新表現。
    3、評價在學習過程中對身邊事物、社會現實的關注程度。
    評價必須最大限度地考慮最終結果,要以培養(yǎng)學生的榮譽感、自尊心和進取心為目的,使其產生獲取成功的動力。
    最后,我的板書設計力求簡潔明了,便于學生觀察比較、歸納總結,并體現教師的示范作用,突出本堂課的重難點,及主要的思想方法。
    多邊形的內角和教學設計篇十四
    過程與方法目標:通過多邊形內角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    教學重點:多邊形的內角和公式
    教學難點:多邊形內角和公式
    講解法、練習法、分小組討論法
    結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結作業(yè)。
    1. 導入新知
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內角和,緊接著提出問題:四邊形的
    內角和是多少?五邊形的內角和是多少?六邊形的內角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內角和的學習奠定了基礎。
    2. 生成新知
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內角和,由此
    得出四邊形的內角和是2個三角形的內角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內角和公式180*(n-2)。
    驗證:七邊形驗證
    在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求
    內角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調我們分隔的一個原則。
    本環(huán)節(jié)的設計主要是對多變形內角和的一個深入了解,給學生一個內化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領學生用我們所學過的多邊形的內角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內角和公式進一步鞏固提高。
    5. 小結作業(yè)
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    多邊形的內角和教學設計篇十五
    其次注重讓學生在學習活動中領悟數學思想方法。數學的思想方法比有限的數學知識更為重要。學生在探索多邊形內角和的過程中先把多邊形轉化成三角形.進而求出內角和,這體現了由未知轉化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領會數學思想方法,真正理解和掌握數學的知識、技能,增強空間觀念及數學思考能力培養(yǎng),并獲得數學活動經驗。同時,恰當的使用課件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。同時也加大了練習量,有助于學生知識可鞏固和提高。
    整節(jié)課學生的情緒飽滿,思維活躍,在教師適當的引導下,學生能夠合作交流和自主探究,成功的探索出了多邊形的.內角和公式,較好的完成了本節(jié)課的教學目標。
    不足之處:
    1.本節(jié)課給學生提供的探究思考與交流的時間比較充足,但展示交流的機會不夠充分,并且個別學生沒有很好的融入課堂,游離于課本之外。
    2.本節(jié)課學生小組活動的準備、具體實施、歸納交流、評價等環(huán)節(jié)設計不夠完善。
    3、練習不夠多樣化。
    多邊形的內角和教學設計篇十六
    本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。
    二、教學目標。
    2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。
    三、教學重、難點。
    多邊形的內角和教學設計篇十七
    (1)知識結構:
    (2)重點和難點分析:
    重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數學教案-多邊形的內角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題,初中數學教案《數學教案-多邊形的內角和》。
    教學目標:
    1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;
    4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想.
    教學重點:
    四邊形的內角和定理.
    教學難點:
    四邊形的概念
    教學過程:
    (一)復習
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念
    1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
    3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    (四)四邊形的內角和定理
    定理:四邊形的內角和等于 .
    注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
    (五)應用、反思
    例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
    求證:(1) ;(2)
    證明:(1) (四邊形的內角和等于 ),
    練習:
    1.課本124頁3題.
    小結:
    知識:四邊形的有關概念及其內角和定理.
    能力:向學生滲透類比和轉化的思想方法.
    作業(yè): 課本130頁 2、3、4題.
    多邊形的內角和教學設計篇十八
    【知識與技能】初步掌握多邊形內角和與外角和,進一步了解轉化的數學思想。
    【教學重點】多邊形內角和外角和的探索和應用?!窘虒W難點】轉化數學思想方法的滲透。
    第一環(huán)節(jié)創(chuàng)設現實情境,提出問題,引入新課。
    1.多媒體展示八卦圖,看到這幅圖,你想到什么數學知識。2.回顧三角形內角和的探索方法。
    第二環(huán)節(jié)實驗探究。
    1、提出問題:三角形的內角和為180°,那么多邊形的內角和是多少度呢?從四邊形開始研究.活動一:利用四邊形探索四邊形內角和要求:先獨立思考再小組合作交流完成.)(師巡視,了解學生探索進程并適當點撥.)(生思考后交流,把不同的方案在紙上完成.)。
    ……(組間交流,教師課件展示幾種方法)。
    教師幫助學生反思:在剛才的探索活動中,大家有不同的方法求四邊形的內角和,這些看似不同的方法有沒有相似之處?進而引導學生得出:我們是把四邊形的問題轉化成三角形,再由三角形內角和為180°,求出四邊形內角和為360°,從而使問題得到解決!進一步提出新的探索活動。
    2、活動二:探索五邊形、六邊形、七邊形、八邊形的內角和。(要求:獨立思考,自主完成.)。
    3、探索n邊形內角和,并試著說明理由。
    4、學會了求多邊形的內角和你還想學些什么知識?你準備如何求多邊形的外角和?
    多邊形的內角和教學設計篇十九
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯系性比較強,特別是教材中設計了一些“想一想”“試一試”“做一做”等內容,體現了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    二,學生情況。
    學生上節(jié)課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內容的知識條件已經成熟,學生參加探索活動的熱情已經具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    三,教學目標及重點,難點的確定。
    【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數學思想。
    【過程與方法】經歷質疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數學活動的經驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數學的存在,體驗數學充滿著探索和創(chuàng)造。
    【教學難點】轉化的數學思維方法。
    四,教法和學法。
    本次課改很大程度上借鑒了美國教育家杜威的“在做中學”的理論,突出學生獨立數學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的'好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當的發(fā)展和提高。
    五,教學過程設計。
    整個教學過程分五步完成。
    1,創(chuàng)設情景,引入新課。
    首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結,建構體系。
    多邊形內角和已得出,對外角和更是水到渠成,這時要適當的總結,讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產生的激情得以釋放。