二次根式乘法教學(xué)設(shè)計(jì)范文(15篇)

字號(hào):

    閱讀是以理解和領(lǐng)悟?yàn)槟康模ㄟ^閱讀文字材料獲取信息和知識(shí)的一種活動(dòng)。掌握寫作技巧、方法和結(jié)構(gòu)是寫一篇較為完美的文章所必需的。下面是一些優(yōu)秀的總結(jié)案例,希望對(duì)大家的寫作有所幫助。
    二次根式乘法教學(xué)設(shè)計(jì)篇一
    本節(jié)的重點(diǎn)是的化簡。本章自始至終圍繞著與計(jì)算進(jìn)行,而的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論。
    本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式。
    這個(gè)公式的表達(dá)形式對(duì)學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤。
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題。
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導(dǎo)學(xué)生猜想出。
    (2)從算術(shù)平方根的意義引入。
    2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
    (1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;
    (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等。
    (第1課時(shí))。
    一、教學(xué)目標(biāo)。
    2.能夠利用二次根式的性質(zhì)化簡二次根式。
    3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法。
    對(duì)比、歸納、總結(jié)。
    三、重點(diǎn)和難點(diǎn)。
    1.重點(diǎn):理解并掌握二次根式的性質(zhì)。
    2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式。
    四、課時(shí)安排。
    1課時(shí)。
    五、教具學(xué)具準(zhǔn)備。
    投影儀、膠片、多媒體。
    六、師生互動(dòng)活動(dòng)設(shè)計(jì)。
    復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主。
    七、教學(xué)過程。
    一、導(dǎo)入新課。
    我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根。
    問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù)。
    二、新課。
    計(jì)算下列各題,并回答以下問題:
    (1);(2);(3);
    (4);(5);(6)。
    (7);(8)。
    1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
    3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論。
    答:
    (1);(2);(3);
    (4);(5);(6)。
    (7);(8).
    1.(1),(2),(3)各題中的被開方數(shù)的冪的底數(shù)都是正數(shù);(4),(5),(6),(7)各題中的被開方數(shù)的冪的底數(shù)都是負(fù)數(shù);(8)題被開方數(shù)的冪的底數(shù)是0.
    2.(1),(2),(3),(8)各題的計(jì)算結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)都分別相等;(4),(5),(6),(7)各題的計(jì)算結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)分別互為相反數(shù)。
    3.用字母表示(1),(2),(3),(8)各題中被開方數(shù)的冪的底數(shù),有。
    (),
    用字母表示(4),(5),(6),(7)各題中被開方數(shù)的冪的底數(shù),有。
    ().
    一個(gè)非負(fù)數(shù)的平方的算術(shù)平方根,等于這個(gè)非負(fù)數(shù)本身;一個(gè)負(fù)數(shù)的平方的算術(shù)平方根,等于這個(gè)負(fù)數(shù)的相反數(shù)。
    問:請(qǐng)把上述討論結(jié)論,用一個(gè)式子表示。(注意表示條件和結(jié)論)。
    答:
    請(qǐng)同學(xué)回憶實(shí)數(shù)的絕對(duì)值的代數(shù)意義,它和上述二次根式的性質(zhì)有什么聯(lián)系?
    答:
    填空:
    1.當(dāng)_________時(shí),;
    2.當(dāng)時(shí),,當(dāng)時(shí),;
    3.若,則________;
    4.當(dāng)時(shí),.
    答:
    1.當(dāng)時(shí),;
    2.當(dāng)時(shí),,
    當(dāng)時(shí),;
    3.若,則;
    4.當(dāng)時(shí),.
    例1化簡().
    分析:可以利用積的算術(shù)平方根的性質(zhì)及二次根式的性質(zhì)化簡。
    解,因?yàn)?,所以,所以?BR>    指出:在化簡和運(yùn)算過程中,把先寫成,再根據(jù)已知條件中的取值范圍,確定其結(jié)果。
    例2化簡().
    分析:根據(jù)二次根式的性質(zhì),當(dāng)時(shí),.
    解.
    例3化簡:(1)();(2)().
    分析:根據(jù)二次根式的性質(zhì),當(dāng)時(shí),.
    解(1).
    (2).
    注意:(1)題中的被開方數(shù),因?yàn)?,所?
    (2)題中的被開方數(shù),因?yàn)?,所?
    這里的取值范圍,在已知條件中沒有直接給出,但可以由已知條件分析而得出。
    例4化簡.
    分析:根據(jù)二次根式的性質(zhì),有。
    所以要比較與3及1與的大小以確定及的符號(hào),然后再進(jìn)行化簡。
    解因?yàn)椋?,所以?BR>    所以。
    三、課堂練習(xí)。
    1.求下列各式的值:
    (1);(2).
    2.化簡:
    (1);(2);
    (3)();(4)().
    3.化簡:
    (1);(2);
    (3);(4);
    (5);(6)().
    答案:
    1.(1)0.1;(2).
    2.(1);(2);(3);(4).
    3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.
    四、小結(jié)。
    1.二次根式的意義是,所以,因此,其中可以取任意實(shí)數(shù)。
    2.化簡形如的二次根式,首先可把寫成的形式,再根據(jù)已知條件中字母的取值范圍,確定其結(jié)果。
    3.在化簡中,注意運(yùn)用題設(shè)中的隱含條件,如二次根式有意義的條件是被開方,這是隱含條件。
    五、作業(yè)。
    1.化簡:
    (1);(2);
    (3)();(4)();
    (5);(6)(,);
    (7)().
    2.化簡:
    (1);
    (2)();
    (3)(,).
    答案:
    1.(1)-30;(2);(3);
    (4);(5);(6);(7).
    2.(1)2;(2)0;(3).
    二次根式乘法教學(xué)設(shè)計(jì)篇二
    3.掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
    4.通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
    5.通過二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
    重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍。
    難點(diǎn):確定二次根式中字母的取值范圍。
    啟發(fā)式、講練結(jié)合。
    (一)復(fù)習(xí)提問。
    1.什么叫平方根、算術(shù)平方根?
    2.說出下列各式的意義,并計(jì)算:
    通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念。
    觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,
    表示的是算術(shù)平方根。
    (二)引入新課。
    我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
    定義:式子叫做二次根式。
    對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
    (1)式子只有在條件a0時(shí)才叫二次根式,是二次根式嗎?呢?
    若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
    (2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次。
    當(dāng)字母取何值時(shí),下列各式為二次根式:
    (1)(2)(3)(4)。
    分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
    (2)-3x0,x0,即x0時(shí),是二次根式。
    (3),且x0,x0,當(dāng)x0時(shí),是二次根式。
    (4),即,故x-20且x-20,x2.當(dāng)x2時(shí),是二次根式。
    例4下列各式是二次根式,求式子中的字母所滿足的條件:
    (1);(2);(3);(4)。
    分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即:只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
    解:(1)由2a+30,得。
    (2)由,得3a-10,解得。
    (3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0.10,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
    (4)由-b20得b20,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.
    (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))。
    1.式子叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式。
    2.式子中,被開方數(shù)(式)必須大于等于零。
    (四)練習(xí)和作業(yè)。
    1.判斷下列各式是否是二次根式。
    分析:(2)中,,是二次根式;(5)是二次根式。因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無意義。
    2.a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
    教材p.172習(xí)題11.1;a組1;b組1.
    二次根式乘法教學(xué)設(shè)計(jì)篇三
    2、掌握把二次根式化為最簡二次根式的方法。
    重點(diǎn):化二次根式為最簡二次根式的方法。
    計(jì)算:
    我們?cè)倏聪旅娴膯栴}:
    簡,得到。
    從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會(huì)對(duì)解決問題帶來方便。
    答:
    1、被開方數(shù)的因數(shù)是整數(shù)或整式;
    2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。
    滿足上面兩個(gè)條件的二次根式叫做最簡二次根式。
    例1試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?
    解
    (1)不是最簡二次根式。因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。整數(shù)。
    (3)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式。
    (4)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式。
    (5)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式。
    (6)不是最簡二次根式。因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22。
    指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論。
    1、在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;
    2、在二次根式的被開方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。
    例2把下列各式化為最簡二次根式:
    分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。
    例3把下列各式化成最簡二次根式:
    分析:題(1)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式。
    題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡二次根式。
    通過例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法。
    答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡。
    如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。
    a、2b、3。
    c、1d、0。
    3、把下列各式化成最簡二次根式:
    答案:
    1、b。
    2、b。
    1、最簡二次根式必須滿足兩個(gè)條件:
    (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
    (2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
    2、把一個(gè)式子化為最簡二次根式的方法是:
    (2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。
    1、把下列各式化成最簡二次根式:
    2、把下列各式化成最簡二次根式:
    二次根式乘法教學(xué)設(shè)計(jì)篇四
    本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問題,來提高我們用數(shù)學(xué)解決實(shí)際問題的意識(shí)和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。
    本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。
    新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。
    會(huì)化簡二次根式,了解同類二次根式的概念,會(huì)進(jìn)行簡單的二次根式的加減法;通過加減運(yùn)算解決生活的實(shí)際問題。
    通過類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實(shí)際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。
    通過對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗(yàn)到成功的樂趣。
    合并被開放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡單的二次根式的加減法。
    難點(diǎn):
    關(guān)鍵問題:
    了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。
    1.引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。
    2.類比法:由實(shí)際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。
    3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對(duì)個(gè)別問題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。
    二次根式乘法教學(xué)設(shè)計(jì)篇五
    1、通過二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會(huì)進(jìn)行二次根式的混合運(yùn)算。
    2、在進(jìn)行二次根式混合運(yùn)算的過程中,體會(huì)類比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。
    教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。
    教學(xué)過程:
    (學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。
    1、學(xué)生匯報(bào)解題過程,生說師寫;。
    2、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;。
    3、師畫龍點(diǎn)睛強(qiáng)調(diào):。
    (1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。
    (2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。
    (先讓學(xué)生獨(dú)立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)。
    本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補(bǔ)充。)。
    二次根式乘法教學(xué)設(shè)計(jì)篇六
    2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡二次根式。
    教學(xué)重點(diǎn)。
    教學(xué)難點(diǎn)。
    一個(gè)二次根式化成最簡二次根式的方法。
    教學(xué)過程。
    1.把下列各根式化簡,并說出化簡的根據(jù):
    2.引導(dǎo)學(xué)生觀察考慮:
    化簡前后的根式,被開方數(shù)有什么不同?
    化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。
    3.啟發(fā)學(xué)生回答:
    二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
    1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
    滿足下列兩個(gè)條件的二次根式叫做最簡二次根式:
    (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
    (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
    最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
    2.練習(xí):
    下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
    3.例題:
    例1把下列各式化成最簡二次根式:
    例2把下列各式化成最簡二次根式:
    4.總結(jié)。
    把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
    當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
    當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
    此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
    1.把下列各式化成最簡二次根式:
    2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
    二次根式乘法教學(xué)設(shè)計(jì)篇七
    2、內(nèi)容解析。
    二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ)。
    基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式。
    1、教學(xué)目標(biāo)。
    (1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
    (3)理解最簡二次根式的概念、
    2、目標(biāo)解析。
    (1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
    (2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡單的二次根式進(jìn)行運(yùn)算。
    (3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式。
    本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行、二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算、教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。
    本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。
    1、復(fù)習(xí)提問,探究規(guī)律。
    問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
    師生活動(dòng)學(xué)生回答。
    【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則。
    二次根式乘法教學(xué)設(shè)計(jì)篇八
    2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡二次根式。
    1.把下列各根式化簡,并說出化簡的根據(jù):
    2.引導(dǎo)學(xué)生觀察考慮:
    化簡前后的根式,被開方數(shù)有什么不同?
    化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。
    3.啟發(fā)學(xué)生回答:
    二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
    1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
    滿足下列兩個(gè)條件的二次根式叫做最簡二次根式:
    (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
    (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
    最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
    2.練習(xí):
    下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
    3.例題:
    4.總結(jié)。
    把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
    當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
    當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
    此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
    2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
    本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個(gè)根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡。
    字).
    二次根式乘法教學(xué)設(shè)計(jì)篇九
    3.a、b層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,c層同學(xué)至少完成例1、例2的學(xué)習(xí)。
    小結(jié):
    這節(jié)課你學(xué)到了什么知識(shí)?你有什么收獲?
    作業(yè):課堂練習(xí)冊(cè)第5、6頁。
    自學(xué)的`同時(shí)抽查部分同學(xué)在黑板上板書計(jì)算過程。抽2名c層同學(xué)在黑板上完成例1板書過程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名b層同學(xué)訂正。抽2名b層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯(cuò)誤,再抽2名a層同學(xué)訂正。抽1名a層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)姆治鲋v解。
    此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1m,學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。
    老師提示:
    1)解決問題的方案是否得當(dāng);2)考慮的問題是否全面。3)計(jì)算是否準(zhǔn)確。
    a層同學(xué)完成16頁練習(xí)1、2、3;b層同學(xué)完成練習(xí)1、2,可選做第3題;c層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時(shí)共同分析矯正或請(qǐng)教老師。也可以抽查部分同學(xué)。例如:抽3名c層同學(xué)口答練習(xí)1;抽4名b層或c層同學(xué)在黑板上板書練習(xí)第2題;抽1名a層或b層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。
    點(diǎn)撥:
    1)對(duì)的化簡是否正確;
    2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;
    3)運(yùn)算法則的運(yùn)用是否正確。
    先測(cè)試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的知識(shí),談自己的感受。
    小結(jié)時(shí)教師要關(guān)注:
    1)學(xué)生是否抓住本課的重點(diǎn);
    2)對(duì)于常見錯(cuò)誤的認(rèn)識(shí)。
    把學(xué)習(xí)目標(biāo)由高到低分為a、b、c三個(gè)層次,教學(xué)中做到分層要求。
    學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識(shí)的欲望。
    將二次根式的加減運(yùn)算融入實(shí)際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對(duì)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)和能力。
    小組成員互相檢查學(xué)生對(duì)于新的知識(shí)掌握的情況,鞏固學(xué)生剛掌握的知識(shí)能力。達(dá)到共同把關(guān)、合作互助的目的。
    培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。
    對(duì)課堂的問題及時(shí)反饋,使學(xué)生熟練掌握新知識(shí)。
    每個(gè)學(xué)生對(duì)于知識(shí)的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。
    二次根式乘法教學(xué)設(shè)計(jì)篇十
    1.使學(xué)生了解最簡二次根式的概念和同類二次根式的概念.。
    2.能判斷二次根式中的同類二次根式.。
    3.會(huì)用同類二次根式進(jìn)行二次根式的加減.。
    (二)能力訓(xùn)練點(diǎn)。
    通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運(yùn)算能力.。
    (三)德育滲透點(diǎn)。
    (四)美育滲透點(diǎn)。
    通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.。
    二、學(xué)法引導(dǎo)。
    三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法。
    四、課時(shí)安排。
    2課時(shí)。
    五、教具學(xué)具準(zhǔn)備。
    投影片。
    1.復(fù)習(xí)最簡二根式整式及的加減運(yùn)算,引入二次根式的加減運(yùn)算,盡量讓學(xué)生回答問題.。
    七、教學(xué)步驟。
    (一)明確目標(biāo)。
    (二)整體感知。
    二次根式乘法教學(xué)設(shè)計(jì)篇十一
    初次進(jìn)行“信息技術(shù)與課程整合”課程的實(shí)驗(yàn),首先感到的一個(gè)字就是“累”。也許是缺乏經(jīng)驗(yàn)的原因。盡管課前進(jìn)行充分的準(zhǔn)備,可是在實(shí)施的過程中,大概是傳統(tǒng)的單一型課程印記太深刻的緣故吧,總是擔(dān)心學(xué)生對(duì)知識(shí)點(diǎn)的掌握會(huì)產(chǎn)生問題!有意思的是一開始學(xué)生面對(duì)課堂上大量的可自由支配的時(shí)間也感到不會(huì)用。部分小組的學(xué)生缺乏動(dòng)手探索的精神,總在觀察其他小組的進(jìn)展,或是期待教師的提示。寄希望于有了現(xiàn)成的樣板后再進(jìn)行模仿。使我猶感“二期課改”的必要性,絕不能再以“一言堂”、“啟發(fā)和灌輸”為教學(xué)模式了。
    其次,變課堂上一對(duì)多的教學(xué)結(jié)構(gòu)為學(xué)生之間鏈?zhǔn)綄W(xué)習(xí)結(jié)構(gòu),更能促進(jìn)學(xué)生之間的合作與交流,使他們成為學(xué)習(xí)的主人。特別是其中一組同學(xué),起初都不敢上機(jī)操作,你推我讓。在指導(dǎo)老師的幫助下,互相確定的了自己的優(yōu)勢(shì)與劣勢(shì),進(jìn)行了分工。有的負(fù)責(zé)搜索、有的負(fù)責(zé)整理、有的做筆記等等。在一段時(shí)間以后這個(gè)小組也能夠獨(dú)立的完成課題學(xué)習(xí)的任務(wù)。我想在合作學(xué)習(xí)的過程中,每個(gè)人都能認(rèn)真傾聽他人的意見和見解,也是一種人際交往能力的提高。
    在尋求學(xué)習(xí)資源的過程中,學(xué)生們?cè)诨ハ嘀更c(diǎn)和幫助下,鞏固了計(jì)算機(jī)操作,并能100%應(yīng)用搜索引擎進(jìn)行查找,在交流心得體會(huì)的過程中,進(jìn)一步學(xué)習(xí)別人的點(diǎn)滴經(jīng)驗(yàn),逐步提高信息技術(shù)的素養(yǎng)。
    時(shí)間的緊迫仍舊是整合課程中的一個(gè)矛盾,由于小組內(nèi)同學(xué)的信息技術(shù)水準(zhǔn)參差不齊,如果僅有一兩個(gè)同學(xué)進(jìn)行操作,雖然表面上也實(shí)現(xiàn)了小組的要求,可是又把學(xué)生之間的差距暴露了出來。因此只能夠人人進(jìn)行嘗試,互相幫助,共同完成目標(biāo)。當(dāng)然由于事先已經(jīng)考慮到這一問題,因此部分教學(xué)內(nèi)容可以留待下節(jié)課的解決。盡量保證學(xué)生獨(dú)立探究的時(shí)間,又要保證一定學(xué)習(xí)效率,這對(duì)教師的組織教學(xué)提出了很高的要求。
    總之,作為一名教師,我感受到學(xué)生學(xué)習(xí)方式和習(xí)慣的小小變化,更感到自己在實(shí)驗(yàn)課題方面研究上屬于較淺層次。自己也要多學(xué)習(xí)相關(guān)科研文章,設(shè)計(jì)好下一堂系列課。
    二次根式乘法教學(xué)設(shè)計(jì)篇十二
    這是八年級(jí)第十六章第三節(jié),學(xué)生是在已掌握最簡二次根式、合并同類二次根式以及二次根式的加減法的基礎(chǔ)上進(jìn)一步學(xué)習(xí)二次根式的乘除法,同時(shí)為以后學(xué)習(xí)二次根式的混合運(yùn)算作鋪墊。首先,情景引入:通過將大正方形中已知兩小正方形的面積,求剩下的長方形面積的問題引入二次根式的乘法及乘法法則;其次,通過例題1利用總結(jié)出二次根式的乘除法則進(jìn)行計(jì)算同時(shí)注意結(jié)果要化簡;再次,利用乘除法關(guān)系引入二次根式的除法法則并用之計(jì)算;最后,通過二次根式的乘除法來解決實(shí)際問題。
    總而言之:在二次根式的乘除法運(yùn)算法則的學(xué)習(xí)和應(yīng)用的過程中,滲透分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和學(xué)習(xí)興趣。
    此節(jié)教學(xué)過程中要注意:在學(xué)生學(xué)習(xí)過程中對(duì)二次根式的乘除法法則理解上問題不大,但常常忘記運(yùn)算結(jié)果需要化簡,此外被開方數(shù)是多項(xiàng)式的乘除法運(yùn)算上容易出錯(cuò)。象練習(xí)冊(cè)第3題的(3)小題盡管課堂上練過一題,但還是有人錯(cuò)。
    初的一天,吳亞萍教授來學(xué)校指導(dǎo),學(xué)校要求我準(zhǔn)備一節(jié)新基礎(chǔ)的研討課。于是,我按我的理解與想法上了一堂形似的新基礎(chǔ)教學(xué)研討課,憑我的功底,課當(dāng)然獲得了同事的好評(píng),但吳教授的當(dāng)頭一棒讓我震驚了。吳教授對(duì)“學(xué)生討論”的講述,評(píng)點(diǎn)讓我感覺到耳目一新。是的,教學(xué)這么多年,讓學(xué)生討論、活動(dòng)卻沒有認(rèn)真思考過它的價(jià)值??偸钦J(rèn)為討論是一個(gè)教學(xué)的環(huán)節(jié),也是研討課的需要,卻不知道還有“假討論”、“白討論”一說。更不要說什么叫開放,如何開放,開放到什么程度的問題。那一天我被吳教授的評(píng)課折服了。課后,我再次回憶反思這堂課的問題,我深深感覺到差距。我再一次仔細(xì)閱讀了葉瀾教授和吳亞萍教授的相關(guān)著作。才真正體會(huì)到新基礎(chǔ)教育的理念要求是相當(dāng)高的。
    可以說是理想化的教育狀態(tài)。至今,我都不敢說我領(lǐng)悟了新基礎(chǔ)教育。我只是明白了新基礎(chǔ)教育對(duì)教師提出了更高的要求,不僅要求教師有扎實(shí)的功底,還要求教師對(duì)整個(gè)初中教學(xué)的內(nèi)容要理解,甚至小學(xué)、高中的教學(xué)內(nèi)容也要了解,這樣才可以為學(xué)生建立網(wǎng)狀的知識(shí)結(jié)構(gòu)。更要求教師有靈活的應(yīng)變能力,以靈活處理教學(xué)過程中出現(xiàn)的不可預(yù)測(cè)的資源。對(duì)備課也提出了更高的要求,不僅要備書本知識(shí),更要備學(xué)生,對(duì)不同的班級(jí),不同的學(xué)生都提出不同的要求。要預(yù)測(cè)不同學(xué)生可能出現(xiàn)的不同的問題。此時(shí),我感覺自己是多么的貧乏。俗話說,知恥而后勇,我要努力去改變。
    二次根式乘法教學(xué)設(shè)計(jì)篇十三
    重點(diǎn)和難點(diǎn)。
    過程設(shè)計(jì)。
    計(jì)算:
    我們?cè)倏聪旅娴膯栴}:
    簡,得到。
    從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會(huì)對(duì)解決問題帶來方便.
    答:
    1.被開方數(shù)的因數(shù)是整數(shù)或整式;
    2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.
    滿足上面兩個(gè)條件的二次根式叫做最簡二次根式.
    (l)不是最簡二次根式.因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.
    整數(shù).
    (3)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式.
    (4)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式.
    (5)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式.
    (6)不是最簡二次根式.因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
    指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論.
    1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;
    2.在二次根式的被開方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.
    分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。
    分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式.
    題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡二次根式.
    通過例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法.
    答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡.
    如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.
    a.2b.3。
    c.1d.0。
    答案:
    1.b。
    2.b。
    (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
    (2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.
    (2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號(hào).
    答案:
    二次根式乘法教學(xué)設(shè)計(jì)篇十四
    在二次根式的除法這一節(jié)的學(xué)習(xí)中,這塊教學(xué)內(nèi)容是在實(shí)數(shù)的基礎(chǔ)上,重點(diǎn)教學(xué)的關(guān)鍵是對(duì)二次根式能進(jìn)行計(jì)算和化簡,在本節(jié)教學(xué)中,存在以下問題。
    1、在教學(xué)設(shè)計(jì)中,仍然存在著對(duì)學(xué)情分析不足,主要是過高估計(jì)學(xué)生的學(xué)習(xí)能力,對(duì)以前學(xué)過的知識(shí)的復(fù)習(xí)工作做的不夠,導(dǎo)致后續(xù)的新知識(shí)的學(xué)習(xí)遇到不少麻煩。
    2、九年級(jí)數(shù)學(xué)是新教材,在教學(xué)過程中,我的教學(xué)理念還沒有及時(shí)更新,從而導(dǎo)致教學(xué)不到位。在二次根式的化簡中,比較重視對(duì)具體數(shù)的化簡,對(duì)字母的要求不高,一般都確保二次根式有意義,而沒有注重要求引導(dǎo)學(xué)生注意二次根式中字母的取值范圍,要求培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和推斷字母取值范圍的能力。剛開始對(duì)這一要求理解不到位,沒有對(duì)學(xué)生提出明確要求,也沒有重視對(duì)典型錯(cuò)誤的分析。
    3、在促進(jìn)學(xué)生探索求知和有效學(xué)習(xí)方面還存在明顯不足。新的教學(xué)理念要求教師在課堂教學(xué)中注意引導(dǎo)學(xué)生探究學(xué)習(xí),在我的課堂教學(xué)中,經(jīng)常為了完成教學(xué)任務(wù)而忽視這方面的引導(dǎo)。在本節(jié)中,其實(shí)有許多內(nèi)容可以進(jìn)行這方面的嘗試。在學(xué)生探究的過程中重視不夠,若能讓學(xué)生在探究的基礎(chǔ)上歸納出方法,學(xué)習(xí)的效果會(huì)提高很多,學(xué)習(xí)的能力也會(huì)不斷提高。
    4、在學(xué)生的學(xué)習(xí)方面,也有值得反思的地方我班的學(xué)生在老師指導(dǎo)下學(xué)習(xí)數(shù)學(xué)方面的積極性并不差,但自主學(xué)習(xí)方面還存在著不足。遇到困難有畏難情緒、對(duì)老師的依賴性太強(qiáng)、作業(yè)只求完成率而不講質(zhì)量、學(xué)習(xí)的競爭意識(shí)和自我要求明顯缺乏。這些都有待于在今后的教學(xué)中進(jìn)行教育和引導(dǎo),加強(qiáng)改進(jìn),提高教學(xué)實(shí)效。
    二次根式乘法教學(xué)設(shè)計(jì)篇十五
    課型:新授課。
    教學(xué)目標(biāo):
    2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過二次根式的加減法運(yùn)算解決實(shí)際問題。
    3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。
    重難點(diǎn)分析:
    重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。
    難點(diǎn):正確合并被開方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。
    教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識(shí),運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。
    運(yùn)用教具:小黑板等。
    教學(xué)過程:
    問題與情景。
    師生活動(dòng)。
    設(shè)計(jì)目的。
    活動(dòng)一:
    情景引入,導(dǎo)學(xué)展示。
    1.把下列二次根式化為最簡二次根式上述兩組二次根式,有什么特點(diǎn)?
    這道題是舊知識(shí)的回顧,老師可以找同學(xué)直接回答。對(duì)于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。
    問:什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。
    由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。
    加強(qiáng)新舊知識(shí)的聯(lián)系。通過觀察,初步認(rèn)識(shí)同類二次根式。